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Abstract
The coronavirus disease (COVID-19), caused by SARS-CoV-2 infection, accounts for more than 2.4 million deaths world-
wide, making it the main public health problem in 2020. Purinergic signaling is involved in the pathophysiology of several 
viral infections which makes the purinergic system a potential target of investigation in COVID-19. During viral infections, 
the ATP release initiates a cascade that activates purinergic receptors. This receptor activation enhances the secretion of pro-
inflammatory cytokines and performs the chemotaxis of macrophages and neutrophils, generating an association between 
the immune and the purinergic systems. This review was designed to cover the possible functions of purinergic signaling 
in COVID-19, focusing on the possible role of purinergic receptors such as P2X7 which contributes to cytokine storm and 
inflammasome NLRP3 activation and P2Y1 that activates the blood coagulation pathway. The possible role of ectonucleoti-
dases, such as CD39 and CD73, which have the function of dephosphorylating ATP in an immunosuppressive component, 
adenosine, are also covered in detail. Moreover, therapeutic combination or association possibilities targeting purinergic 
system components are also suggested as a possible useful tool to be tested in future researches, aiming to unveil a novel 
option to treat COVID-19 patients.
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Introduction

Since its conception in the early 1970s by Professor Geoffrey 
Burnstock, the purinergic signaling system has been exten-
sively studied and correlated with several immunological 
changes, such as those that occur during viral infection and 
blood clotting [1, 2]. The COVID-19 pandemic caused by 
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-
CoV-2) started in December 2019 in China and already 
accounts for more than 2.4 million deaths worldwide by 
February 24 2021, according to the World Health Organi-
zation [3]. The most common symptoms found in clinical 
presentation are fatigue, myalgia, diarrhea, anorexia, fever, 
cough, pneumonia, and dyspnea. Although the symptoms 
are moderate in 80% of the cases, the disease can worsen 
in severe acute respiratory syndrome (SARS), defined as 
a state of bilateral infiltration, hypoxemia, and pulmonary 
edema [4, 5].

According to previous studies on viral infections, there 
are interconnected changes in the immune system and in 
the purinergic signaling system, which is composed of 
purinergic receptors, adenine and guanine nucleosides and 
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nucleotides, and ectonucleotidases. Extracellular nucleosides 
and nucleotides participate in different cellular processes, 
such as stimulation or inhibition of apoptosis, proliferation, 
migration, differentiation, secretion of growth factors, and 
inflammatory mediators [6]. Among the nucleosides recep-
tors, four adenosine receptors (P1) coupled to G protein (A1, 
A2A, A2B, A3), seven ion channel receptors subtypes for 
P2X nucleotides (P2X1-7), and eight G protein-coupled 
receptors for nucleotides have been identified (P2Y1, 2, 4, 
6, 11–14) [7]. P1 and P2 receptors represent important phar-
macological targets [8]. Extracellular nucleotides, such as 
adenosine triphosphate (ATP) and adenosine diphosphate 
(ADP), are hydrolyzed by ectoenzymes, mainly ecto-nucle-
oside triphosphate diphosphohydrolase (E-NTPDase or 
CD39), ecto-nucleotide pyrophosphatase/phosphodiesterase 
(E-NPP), and ecto-5′-nucleotidase (CD73). This hydroly-
sis forms adenosine monophosphate (AMP), which will be 
metabolized by the CD73 enzyme to generate adenosine [7]. 
Subsequently, adenosine is converted by the enzyme adeno-
sine deaminase (ADA) into inosine and hypoxanthines [9].

In the initial stage of viral infections, the cells of the 
innate immune system identify the virus and release ATP 
due to the situation of cellular stress. The ATP is a pro-
inflammatory and chemotactic substance for macrophages 
and neutrophils that promotes a cascade of purinergic signal-
ing over the following days [10, 11]. In this way, this review 
was designed to report the possible pathophysiological 
mechanisms of COVID-19 related to the purinergic signal-
ing, specially the possible role of some purinergic receptors 
and ectonucleotidases activities in this scenario. We have 
also argued to understand how and why enzymes and recep-
tors would be potential pharmacological targets in the treat-
ment of the disease that most generated and still generates 
worldwide impacts in the last century.

Pathophysiological and immunological 
concepts of COVID‑19

The infection by SARS-CoV-2 shows important findings. 
Post-mortem histological findings were observed: alveolar 
damage with infiltration of T cells and endothelial pres-
ence of thrombi, in addition to angiogenesis about 2.7 times 
greater compared to patients infected with influenza A, 
caused by H1N1 [12, 13]. Other affected organs also had 
an inflammatory infiltrate of mononucleated cells, such 
as the heart, kidneys, spleen, and lymph nodes. In labora-
tory results, there is a decreased lymphocyte count, more 
pronounced for  CD8+ T cells. Besides, there is dysregu-
lation of the blood coagulation pathway due to decreased 
platelet count, increased degradation of fibrin products, and 
abnormality in coagulation linked to organ failure in sep-
sis, which is mainly mediated by inflammatory cytokines 

[4, 5, 14]. From an immunological point of view, the entry 
of SARS-CoV-2 depends on the binding of its spike pro-
tein with the cell receptor of the angiotensin-converting 
enzyme 2 (ACE2) and the transmembrane serine protease 
2 (TMPRSS2). The infected epithelial cells produce inter-
ferons, which allow a robust innate immune response to 
occur. In this process, the activated dendritic cells (DCs), 
macrophages, and neutrophils produce cytokines, which 
stimulate the adaptive immune response [15, 16]. Concern-
ing the adaptive immune system,  Th1+ cells secrete granulo-
cyte and macrophage colony-stimulating factor (GM-CSF), 
and interleukin-6 (IL-6), and monocytes  CD14+  CD16+, 
which release IL-6 and tumor necrosis factor alpha (TNF-α). 
This collection of products leads to the infiltration of mac-
rophages, denominated macrophage activation syndrome 
(MAS), and neutrophils, whose neutrophil extracellular traps 
(NETs) further increase the release of cytokines, resulting 
in a cytokine storm, an event associated with COVID-19 
gravity and characterized by high activation of immune cells 
and excessive production of inflammatory cytokines. The 
NETs are defined as the release of genetic material by the 
neutrophil, whose purpose is to assist in the innate immune 
response [17–19].

Purinergic signaling in COVID‑19: 
the possible link

Connected with the immune response, there are differ-
ent cascades of purinergic signaling that occur during an 
infection. In COVID-19, some conditions could stimulate 
ATP release by infected cells through pannexin 1 channels, 
such as pathogen invasion (SARS-CoV-2), cell stress, and 
hypoxia [10, 20]. If the ATP release happens during COVID-
19 infection, it is possible that the ATP remains for hours 
to days in acute response in the extracellular environment 
exerting its pro-inflammatory effects, until it is metabolized. 
ATP is a chemoattractant substance for macrophages, and 
it is recognized as a damage-associated molecular pattern 
(DAMP) and activates some purinergic receptors (P2X and 
P2Y), which will be described later. Once in the extracellu-
lar microenvironment, ATP is dephosphorylated by E-NTP-
Dase (CD39) and ecto-5′-nucleotidase (CD73) (Fig. 1). This 
enzymatic dephosphorylation process occurs intending to 
limit the extent and duration of inflammation, since ATP is 
pro-inflammatory and is degraded in an immunosuppres-
sive product, the adenosine. Throughout the infection, ATP, 
ADP, AMP, and adenosine perform their functions by bind-
ing to purinergic receptors that have affinity. These receptors 
are present in the membranes of immune cells and platelets 
and they will be covered in the following topics [10, 11, 20].

The high concentration of adenosine, resulting from the 
action of CD73, has immunosuppressive action through the 
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A2A and A2B receptors of infiltrated immune cells [21]. 
A2AR is found in most cells and platelets, and promotes 
anti-inflammatory responses and prevention of platelet 
aggregation. A2BR is present in macrophages and DCs, it 
functions being the release of IL-6 and the vascular endothe-
lial growth factor (VEGF); this receptor is more expressed 
in inflamed tissues because its activation is dependent on 
hypoxia [11, 22]. Adenosine deaminase (ADA) is responsi-
ble for degrading adenosine to inosine, thus increasing levels 
of this ectonucleotidase may reduce the anti-platelet effect of 
adenosine, but its absence leads to an inflammatory outcome 
in the lung in an in vivo study [23, 24].

P2X7R as a potential therapeutic target

Purinergic receptors are fundamental in understanding 
the COVID-19, because, in addition to being associated 
with the immune system, they have also been studied in 
the context of SARS, fibrosis, and blood clotting [25]. 
One of the receptors recently discussed in COVID-19 is 
P2X7, which is ionotropic, has an affinity for ATP, it is 
present in T cells, macrophages, neutrophils and DCs, 
and its function is to activate the cell types previously 
described and generate an inflammatory environment [11, 
20, 26]. When activated by ATP, P2X7R rapidly promotes 
 K+ efflux, increased cytosolic  Ca2+ concentration, and 

release of cytokines, such as interleukin 1 beta (IL-1β) in 
neutrophils, in addition to activating the NLRP3 inflam-
masome [27]. IL-1β was found at high levels in patients 
affected by COVID-19 [20, 26, 28]. In general, the out-
come of P2X7R signaling is the activation of effector T 
cells, T regulatory cells, natural killer T cells (NKT), 
monocytes, macrophages, and DCs. This means that it 
simultaneously helps the innate and adaptive immune 
response [20]. Di Virgilio et al. [20] proposed that the 
use of P2X7R antagonistic substances could contribute 
to the treatment of COVID-19, since they would reduce 
the pro-inflammatory effects of ATP released in the initial 
phase of the infection, which consequently could decrease 
the activation of macrophages and other cascades of pro-
inflammatory cytokines associated to lung injury caused 
by SARS-CoV-2. Furthermore, Cicko et  al. [29], in a 
research with patients affected by Acute Respiratory Dis-
tress Syndrome (ARDS) and in mice whose lung injury 
was induced with LPS, found increased ATP levels in the 
bronchoalveolar fluid, which could be an outcome associ-
ated with P2X7R stimulation. This receptor is also a pow-
erful trigger for the production of reactive oxygen species 
(ROS), which can inhibit lymphocyte functions and lead 
to sustained cytokine release, factors that would further 
progress inflammation. The drugs with antagonistic action 
in P2X7R, especially with a focus on depression, are in 
Phase II [20]. Therefore, P2X7R can be characterized as 

Fig. 1  The purinergic signaling is composed of adenine nucleotides 
(ATP, ADP, AMP, and adenosine), purinergic receptors, and ectonu-
cleotidases, which are a group of enzymes that dephosphorylate ATP. 
The purinergic receptors are divided into four G protein-coupled 
adenosine receptors, designated P1 purinergic receptors, and eight-
een P2 purinergic receptors, which mostly have an affinity for ATP. 
The P2 still are subdivided into four P2X (ionotropic) and eight P2Y 
(G protein-coupled). About the ectonucleotidases, the E-NTPDase 

acts on dephosphorylation of ATP in ADP, and of ADP in AMP. 
The E-NPP converts ATP into AMP directly. Finally, the ecto-5´-
nucleotidase turns AMP into adenosine, which is degraded by ADA 
in inosine. ATP adenosine triphosphate, ADP adenosine diphos-
phate, AMP adenosine monophosphate, E-NTPDase ecto-nucleoside 
triphosphate diphosphohydrolase, E-NPP ecto-nucleotide pyrophos-
phatase/phosphodiesterase, ADA adenosine deaminase
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an important therapeutic potential for COVID-19 and other 
serious respiratory infections caused by other pathogens 
[29].

Possible functions performed by P2Y2R 
and P2Y6R in the immunological context 
of the infection

Regarding metabotropic receptors, findings in animal mod-
els point to an association between viral pneumonia and 
P2Y2R. One aspect of P2Y receptors is its association with 
G protein, so its prolonged stimulation can cause desen-
sitization of the receptor [26]. This receptor is expressed 
in monocytes, DCs, and lymphocytes. The outcome of the 
P2Y2 activation is chemotaxis and immune cells activa-
tion, which contributes especially to the innate immune 
response [20]. Vanderstocken et al. (2012) [30] observed 
that the absence of P2Y2R in mice infected with viruses 
increases mortality rates, which could be triggered by lower 
viral clearance leading to more persistent viral load, enhanc-
ing the levels of cytokines in bronchoalveolar fluid and pro-
moting a worse state of inflammation. In convergence with 
COVID-19, which has higher levels of IL-6 in the blood of 
affected patients, authors also found in this animal model 
infected by the pneumonia virus of mice the increase of IL-6 
according to the difficulty of establishing and the immu-
nological clearance [15]. Despite this, in this model, ATP 
levels and the infiltration of macrophages and neutrophils 
were not increased, which could happen due to the decrease 
in recruitment of  Th1+ cells [30]. There is a need for fur-
ther studies to clarify the issue of P2Y2R and its effects on 
cytokines in the context of COVID-19.

The P2Y6 receptor, in turn, was investigated in an animal 
model in the context of complicated bacterial pneumonia 
(Pseudomonas aeruginosa) and ventilator-induced lung 
injury [31]. In patients with COVID-19, there is an inflam-
matory infiltrate with neutrophils and the application of 
ventilators is common in severe cases of SARS [5]. In this 
research conducted by Zheng et al. [31] on P2Y6R, there 
was an increment in the α-defensins released by neutrophils, 
which can kill microorganisms, but in excess contributes 
to the inflammatory response with high levels of cytokines 
(IL-1β, IL-6, and TNF-α) and injury to the epithelium and 
pulmonary endothelium. The intervention occurred through 
the use of MRS2578, a selective P2Y6R inhibitor, which 
attenuated the inflammatory state without affecting the anti-
bacterial properties of α-defensins. The P2Y6R block rep-
resents, therefore, a possibility of an important therapeutic 
target in the context of the purinergic system and pneumo-
nia, especially those caused by response to viruses, such 
as COVID-19. It is necessary to consider that the ventila-
tion, which is a strategy to improve oxygenation, could be a 

prediction of the bacterial infection [32]. This co-infection 
of SARS-CoV-2 and another microorganism has the poten-
tial to worsen clinical conditions and increase mortality in 
these patients. There are bacteria involved in ventilator-asso-
ciated pneumonia: Escherichia coli, Klebsiella pneumonia, 
Pseudomonas aeruginosa, Acinetobacter baumannii, and 
Staphylococcus aureus. Most of them are associated with 
resistance to multidrug resistance [33].

Thrombosis and P2Y12R in COVID‑19

In addition to inflammatory infiltrates, abnormalities in 
coagulation were observed, such as deposits of intra-alve-
olar fibrin and disseminated intravascular coagulation in 
patients diagnosed with COVID-19 [12]. Infected patients 
also showed convergent results in pathophysiological find-
ings with an increase in D-dimers, which is the product of 
fibrin degradation, and IL-6, which is being released in 
excess, contributing to the increase in fibrinogen levels [34, 
35]. Findings with hospitalized patients due to COVID-19 
showed that 25% to 31% developed venous thromboembo-
lism, a percentage referring to research carried out in Wuhan 
and Europe [36, 37]. The pathophysiology of this dysregula-
tion in the coagulation pathway is not well understood, but in 
a study with serological markers of neutrophils, an important 
contribution of NETs to coagulation was observed, consider-
ing these “networks” are anti-microbial structures and can 
collaborate for the propagation of intravascular thrombosis 
through the activation of factor XII which, in turn, activates 
platelet functions [38, 39].

Thrombosis has several aspects associated with the 
purinergic signaling system. Among them, the cascade of 
dephosphorylation promoted by CD39, which degrades ATP 
into ADP and AMP, has demonstrated protection against 
platelet activation in vivo. The importance of this enzymatic 
action is in the effects of ADP in the P2Y12 receptor, which 
is metabotropic and is present in platelets. The function of 
P2Y12 is monocytic activation and platelet aggregation 
through the activity of thrombin, collagen, and thromboxane 
A2 [11, 40, 41]. There are drugs developed that selectively 
inhibit P2Y12 and that are already commercialized with an 
indication for some cardiovascular diseases, for example, 
clopidogrel [42, 43]. It was recently reported that both clopi-
dogrel and ticagrelor significantly reduced the formation of 
platelet–monocyte aggregates and peak levels of major pro-
inflammatory cytokines, including TNFα and IL-6, and sup-
pressed D-dimer generation which is elevated in several fatal 
cases of COVID-19 [44, 45]. However, there is no research 
and scientific evidence to suggest the effectiveness of clopi-
dogrel and similar drugs for the treatment of thrombosis due 
to COVID-19. There is a need, therefore, for research to be 
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carried out for this purpose, since other anti-coagulants are 
already being studied, as is the case of heparin [4].

Other receptors related to coagulation dysregulation are 
P2Y1 and P2X1, which collaborate with platelet activation 
causing additional damage to the P2Y12R effects. P2Y1R 
is generally distributed in several tissues, such as blood 
vessels and cells, smooth muscle, neural tissue, heart, and 
reproductive organs. Hence, inhibition of this receptor could 
result in the interference of other physiological pathways. 
However, in an in vivo study, prolonged bleeding time was 
found triggering the preservation of hemostasis. A result 
similar to this was demonstrated in research with the P2X1R. 
Both receptors, therefore, are potential therapeutic targets to 
be researched in the context of anti-platelet drugs [40, 42, 
46]. Figure 2 illustrates the possible purinergic pathways 
addressed throughout the previous topics.

Therapeutic possibilities in COVID‑19

The CD39 and CD73 increased activity contribute, respec-
tively, to the reduction of ATP levels and the increase in the 
amount of adenosine in the site of infection. In the context 

of COVID-19, the modulation of these two enzymes could 
generate an anti-inflammatory environment by reducing the 
levels of ATP and by increasing the levels of adenosine, 
which is an immunosuppressive molecule [11]. The reduc-
tion in ATP levels would decrease chemotaxis of inflamma-
tory cells and the effects of purinergic signaling on ATP and 
ADP-activated receptors: mitigating the release of cytokines 
(IL-1β) and the activation of the inflammasome NLRP3 
by P2X7R, release of cytokines (IL-1β, IL -6 and TNF-α) 
[18] and damage to the pulmonary epithelium by P2Y6R 
[29], and platelet aggregation by P2Y12, P2Y1 and P2X1 
[40–42]. In research by Ahmadi et al. [43], which was a con-
trol group study, performed an analysis of CD39 and CD73 
expression pattern on  CD4+ T,  CD8+ T, natural killer T, and 
natural killer cells of COVID-19 using flow cytometry panel; 
the results were a correlation between the absence of CD73 
from  CD8+ T cells and NKT and more capable of secret-
ing granzyme B, perforin, TNF-α, and interferon-γ (IFN-γ) 
regardless of the disease status. But this effect was stronger 
in lymphocytes obtained from COVID-19 patients com-
pared to those obtained from healthy participants [43]. In 
an in vitro study by Yang et al. [47], it has been shown that 
overexpressed CD39 negatively regulates inflammasome 

Fig. 2  Possible purinergic pathways in COVID-19. SARS-CoV-2 
infects the cell (pneumocyte, for example) from the interaction of its 
surface protein with the ACE2 receptor present on the cell surface. 
This link activates Th1 + cells, which release GM-CSF and IL-6, and 
monocytes, which secrete IL-6 and TNF-alpha. The microenviron-
ment becomes pro-inflammatory and two important phenomena hap-
pen: macrophage activation syndrome (MAS) and the cytokine storm. 
The infected cell, in a state of stress, releases ATP through pannexin 
1. ATP binds to the P2X7 receptor that promotes the release of IL-1β 
by neutrophils. CD39 dephosphorylates ATP in ADP, which acts 
on the P2Y12 receptor on platelets and has the following effects: to 

increase the activity of thrombin, collagen, and thromboxane A2. In 
addition to these factors that contribute to platelet aggregation, neu-
trophils release NETs that activate platelet factor XII. The result is 
platelet aggregation, excessive release of cytokines, and an inflam-
matory microenvironment. SARS-CoV-2 Severe Acute Respiratory 
Syndrome Coronavirus 2, ACE2 angiotensin-converting enzyme 2, 
GM-CSF macrophage colony-stimulating factor, IL-6 interleukin-6, 
TNF-alpha tumor necrosis factor alpha, ATP adenosine triphosphate, 
IL-1B Interleukin 1 beta, CD39 Cluster of Differentiation 39, ADP 
adenosine diphosphate, NETs neutrophil extracellular traps
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NLRP3 and decreases the release of ROS. There is a need 
for more investigation about the prognostic of this associa-
tion between CD73 levels and the immune response, and 
about the CD39 levels in COVID-19 patients.

Regarding the increase in adenosine levels after ATP 
degradation, adenosine acts on G protein-coupled receptors 
A2A and A2B, which increases the intracellular concentra-
tion of cyclic adenosine monophosphate (cAMP), produces 
anti-inflammatory effects in various tissues, and inhibits 
platelet activation [48, 49]. Dipyridamole which acts on the 
adenosinergic pathway may be one of the therapeutic possi-
bilities for the treatment of COVID-19, as suggested by Kan-
thi et al. [50]. Dipyridamole is a drug that inhibits adenosine 
transporters––equilibrative nucleoside transporter 1 (ENT1) 
and 2 (ENT2)––concomitant to the increase in extracellular 
levels of adenosine. This drug is used to promote coronary 
artery vasodilation during tests, such as echocardiography, 
and inhibition of platelet aggregation [51]. This inhibition 
is associated with an increase in cAMP [52], suppression of 
NET release from neutrophils through A2AR [53], in addi-
tion to causing reperfusion due to the vasodilatory effect of 
adenosine [52]. Therefore, the enhancement in the activity 
of CD39 and CD73 and the use of dipyridamole would be an 
important therapeutic combination possibility to the regula-
tion of purinergic signaling in the context of COVID-19. 

However, in vitro and in vivo studies are necessary, since 
the other receptors covered by the review must be taken into 
account. Figure 3 compiles some of the main therapeutic 
possibilities proposed in this review.

Conclusion

In this review, we explored the possible purinergic signal-
ing pathways and therapeutic targets in COVID-19. Cells 
infected by SARS-CoV-2, in a situation of cellular stress, 
can release ATP to the extracellular microenvironment, 
which activates several purinergic receptors. The use of a 
P2X7R antagonist would attenuate the inflammatory state, 
reduce the release of IL-1β by neutrophils, and decrease 
the activation of the inflammasome NLRP3. Other recep-
tors potentially involved in the exacerbated inflammatory 
response would be P2Y2R, its absence hinders clear-
ance, and P2Y6R, in which inhibition in an animal model 
maintained its anti-microbial effects without increasing 
cytokines. P2X7R, P2Y2R, and P2Y6R may be related to the 
findings of COVID-19: infiltration of mononucleated cells 
in the lungs, cytokine storm, and MAS. P2Y12R, in turn, is 
activated by ADP and would be associated with monocyte 
activation and platelet aggregation. Clopidogrel inhibits this 

Fig. 3  Therapeutic possibilities in COVID-19. In “a,” we explored 
the possible effects of the P2X7R antagonist (for example, AZD9056) 
[54, 55], which would have the result of inhibiting the release of 
cytokines and reactive oxygen species (ROS), and the activation of 
the inflammasome NLRP3. In “b,” there is a possible outcome of 
clopidogrel, a selective P2Y12R inhibitor, which could reduce the 
monocytic activation and platelet aggregation. In “c,” there is the 

result of using dipyridamole, which blocks the adenosine transporters 
ENT1 and ENT2, which generates an extracellular environment rich 
in adenosine. This adenosine, in turn, acts on the A2A receptors of 
neutrophils, preventing the formation of NETs, which no longer con-
tributes to the formation of platelet aggregation. ENT1 equilibrative 
nucleoside transporter 1, ENT2 equilibrative nucleoside transporter 2, 
NETs neutrophil extracellular traps
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receptor and, therefore, represents a possibility for cases of 
diffuse coagulation in patients with COVID-19. There is a 
need for further in vivo studies on the impact of P2X1R and 
P2Y1R in the context of thrombosis. In addition to puriner-
gic receptors, inducing increased CD39 and CD73 activ-
ity would increase ATP dephosphorylation in adenosine, 
reducing the effects mentioned in P2X and P2Y receptors, 
but also limiting the immune response. Another attractive 
opportunity is the inhibition of the ENT1 and ENT2 adeno-
sine transporters by dipyridamole, which would enhance 
the levels of extracellular adenosine. However, it must be 
investigated whether the effects on A2A and A2B recep-
tors would continue. Therefore, the purinergic system rep-
resents an important area of   study to be covered in research 
on pathophysiology and treatment in COVID-19, given the 
numerous correlations between purinergic system, immunol-
ogy, and coagulation.
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