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Objective: Lung adenocarcinoma (LUAD) is a highly heterogeneous tumor. Tumor
mutations and the immune microenvironment play important roles in LUAD
development and progression. This study was aimed at elucidating the characteristics
of patients with different tumor immune microenvironment and establishing a prediction
model of prognoses and immunotherapy benefits for patients with LUAD.

Materials and Methods: We conducted a bioinformatics analysis on data from The
Cancer Genome Atlas and Gene Expression Omnibus (training and test sets, respectively).
Patients in the training set were clustered into different immunophenotypes based on
tumor-infiltrating immune cells (TIICs). The immunophenotypic differentially expressed
genes (IDEGs) were used to develop a prognostic risk score (PRS) model. Then, the
model was validated in the test set and applied to evaluate 42 surgery patients with
early LUAD.

Results: Patients in the training set were clustered into high (Immunity_H), medium
(Immunity_M), and low (Immunity_L) immunophenotype groups. Immunity_H patients
had the best survival and more TIICs than Immunity_L patients. Immunity_M patients
had the worst survival, characterized by most CD8+ T and Treg cells and highest
expression of PD-1 and PD-L1. The PRS model, which consisted of 14 IDEGs,
showed good potential for predicting the prognoses of patients in both training and
test sets. In the training set, the low-risk patients had more TIICs, higher
immunophenoscores (IPSs) and lower mutation rates of driver genes. The high-risk
patients had more mutations of DNA mismatch repair deficiency and APOBEC
(apolipoprotein B mRNA editing enzyme catalytic polypeptide-like). The model was
also a good indicator of the curative effect for immunotherapy-treated patients.
Furthermore, the low-risk group out of 42 patients, which was evaluated by the PRS
model, had more TIICs, higher IPSs and better progression-free survival. Additionally, IPSs
and PRSs of these patients were correlated with EGFR mutations.
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Conclusion: The PRS model has good potential for predicting the prognoses and
immunotherapy benefits of LUAD patients. It may facilitate the diagnosis, risk
stratification, and treatment decision-making for LUAD patients.

Keywords: lung adenocarcinoma, tumor-infiltrating immune cells, immunophenotypes, prognostic model,
immunotherapy

INTRODUCTION

In the past few decades, the morbidity and mortality of lung
cancer have increased year after year. According to the latest
WHO data, lung cancer, with morbidity and mortality rates of
11.4 and 18.0% respectively, is the leading cause of cancer-related
death (Bray et al., 2018). It also remains the most common cancer
and leading cause of cancer-related death in China (Wu et al.,
2019). Lung adenocarcinoma (LUAD) is the most common
histologic subtype of non-small cell lung cancer (NSCLC),
accounting for 40% of lung cancer incidence (Chen et al.,
2014). For a long time, LUAD has been considered a non-
immunogenic tumor with high heterogeneity. However,
increasing evidence indicates the occurrence and development
of LUAD depend on tumor mutations and are closely related to
the tumor immune microenvironment (TIME).

The TIME is a complex assembly of the tumor, immune,
stromal, and extracellular components (Schurch et al., 2020). The
organization of these components at the cellular and tissue levels
plays a crucial role in tumor progression (Binnewies et al., 2018;
Junttila and de Sauvage, 2013). Tumor development and the
immune system, with several innate and adaptive immune cell
subpopulations, some of which show phenotypic plasticity and
possess memory, are closely linked. The interactions and balance
between them two directly influence immunotherapy response
(Charoentong et al., 2017). Tumor-infiltrating immune cells
(TIICs) play an important part in the TIME of LUAD
(Bussard et al., 2016); however, the specific mechanisms
remain controversial. With the development of detection
techniques, researchers have found that the activation of TIICs
and immune escape occur before lung cancer invasion, and TIICs
are significantly associated with the survival rate (Mascaux et al.,
2019). Furthermore, with the application of immune checkpoint
inhibitors (ICIs) attracting widespread attention, the
indispensable role of TIICs in immunotherapy has also
become a research focus. The analysis of immunogenomic
data by using bioinformatics tools can provide information on
the composition, function, and localization of TIICs; predict
tumor mutation burden (TMB) and tumor neoantigen; and
indicate immunotherapy response (Schumacher and Schreiber,
2015).

Therefore, we conducted immunotyping of patients based on
TIICs and constructed a prognostic risk model based on
differentially expressed genes of each phenotype to evaluate
the prognosis and immunotherapeutic benefits. We hoped to
determine the characteristics of patients with different TIME;
screen immune-related differentially expressed genes; establish
an effective model to predict the benefits of immunotherapy and
the prognoses of patients with LUAD.

MATERIALS AND METHODS

Downloading and Preprocessing of Data on
mRNA Sequencing and Somatic Mutations
Data on mRNA sequencing (Fragments Per kilobase of exon model
per Million mapped fragments, FPKM) and clinical data of LUAD
were downloaded from TCGA as the training set for the next-step
analysis. The mRNA sequencing (FPKM) and clinical data of
GSE101929, GSE50081, GSE41271, and GSE42127 were
downloaded from the Gene Expression Omnibus (GEO)
platform. The batch effects between GEO datasets were corrected
with the R package SVAR (Irizarry et al., 2003). The processed data
were used as the test set for the subsequent analysis. The mRNA
sequencing and clinical data of GSE13522 and GSE126044 were also
downloaded to evaluate the predictive power of the PRS model for
an immunotherapeutic response. The somatic mutation data for the
training set were downloaded and analyzed using the R package
maftools (Mayakonda et al., 2018). The TMBs and mutation rates of
LUAD-related driver genes were calculated. The list of driver genes
was derived from Integrative Onco Genomics (https://www.intogen.
org/search).

Patient Recruitment and Sample Inclusion
A total of 42 patients (referred as NJDT patients) with stage I or II
LUAD, who underwent surgeries in Nanjing Drum Tower Hospital
from January 2017 to January 2018 were randomly selected.
Paraffin-embedded samples of tumor and normal tissues were
collected. Sections of the paraffin-embedded tissues were stained
using hematoxylin–eosin and examined by two pathologists. The
samples were graded and classified according to the Eighth Edition
of TNM Classification for Lung Cancer proposed by IASLC
(Goldstraw et al., 2016). mRNA high-throughput sequencing was
performed on tumor and matching normal samples, and the FPKM
data was used for follow-up analysis.

Consensus Clustering of TIICs
The Estimation of STromal and Immune cells in MAlignant
Tumor tissues using Expression Data (ESTIMATE) algorithm
was used to evaluate the stromal and immune components of
samples in the training set and the stromal score, tumor purity,
and immune score were calculated (Yoshihara et al., 2013). Based
on signal sample Gene Set Enrichment Analysis (ssGSEA) using
the R packages of gsva (Hanzelmann et al., 2013) and GSEABase
(Reimand et al., 2019), 24 types of TIICs were classified (Bindea
et al., 2013): innate immunity (natural killer cells [NKs], NK
CD56dim cells, NK CD56bright cells, dendritic cells [DCs],
activated DCs [aDCs], immature DCs [iDCs], plasmacytoid
dendritic cells [pDCs], neutrophils, eosinophils, mast cells, and
macrophages) and adaptive immunity (B, T, T helper 1 [Th1],
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Th2, T gamma delta [Tgd], CD4+ T, CD8+ T, T central memory
[Tcm], T effector memory [Tem], T follicular helper [Tfh], Th17,
regulatory T [Treg], and cytotoxic cells). The training set was
clustered hierarchically into high (Immunity_H), medium
(Immunity_M), and low (Immunity_L) immunophenotype
groups. Then, the CIBERSORT algorithm was used to
calculate the relative content of each immune cell subset
among 22 types of leukocyte subsets (LM22 signature) with
1,000 permutations (Newman et al., 2015). When the p value
of the output for each subset was <0.05, the relative contents were
considered accurate and suitable for further analysis.

Identification and Enrichment of IDEGs
For genes with multiple probes, the average of the probes was
used as the gene expression. The R package limma (Ritchie et al.,
2015) was used to identify DEGs between normal and tumor
samples (DEGs_NT) in the training set. DEGs between
Immunity_H and Immunity_M (DEGs_HM) and DEGs
between Immunity_H and Immunity_L (DEGs_HL) groups
were also screened in the same method. DEGs were defined by
the false discovery rate (FDR) < 0.05 and Log2|FoldChange| > 1.
The intersection of DEGs_NT, DEGs_HM, and DEGs_HL was
used to determine IDEGs. Differential pathways were enriched
using Gene Set Enrichment Analysis (GSEA). With the |
normalized enrichment score (NES)| >1, nominal p value <
0.05, and FDR <25%, the enrichment was considered significant.

Establishment and Validation of the
Prognostic Risk Score Model
Univariate Cox regression was used to analyze the correlation
between IDEGs and overall survival (OS); genes with p < 0.05
were screened. Then, the above genes were analyzed by LASSO
regression (Gao et al., 2010) and lambda (λ) values were
calculated. Based on the λ value, which corresponded to the
minimum mean standard error in the cross-validation, variables
were obtained and regression coefficients were calculated. The
regression coefficients multiplied by the mRNA levels of 14 genes
were used to construct the formula. The median risk score in the
training set was used as the grouping cut-off value. Patients with a
risk score greater than the cut-off value were classified into the
high-risk group; the rest were classified into the low-risk group.
Meanwhile, the test set was divided into high- and low-risk
groups by using the same cut-off value. The OS curves of the
patients in the two sets were plotted, and Log-rank test was used
to analyze the differences. The receiver operating characteristic
curves (ROCs) of OS in the two sets were plotted, and the areas
under curves were calculated to evaluate the predictive
performance of the model. Multivariate Cox regression
analysis was performed to construct nomograms in both sets.

Clustering Analysis of de Novo Somatic
Mutation Signatures in the Training Set
The R package SomaticSignatures (Gehring et al., 2015) was used
to identify and cluster de novo mutation signatures. The number
of these signatures was determined by explained variance and

residual sum of squares (RSS). The best number of de novo
signatures was chosen for clustering. De novo signatures were
then compared to 30 curated signatures in the Cancer Gene
Census (COSMIC) by using cosine similarity (Cui et al., 2020),
Cochran-Armitage trend test was used to examine the mutation
signature contribution among groups.

Immunophenoscores
Immunophenoscores (IPSs) were calculated according to the
recently published reports (Charoentong et al., 2017; Hakimi
et al., 2016). In brief, consensus determinants including 20 single
factors and 6 cell types were divided into four categories: effector
cells, suppressive cells, MHC-related molecules, and checkpoints
or immunomodulators. The Z scores of the determinants
included in the particular category were positively weighted
with one and negatively weighted with one. The weighted
averaged Z score was then calculated by averaging the Z
scores within the respective category leading to four values.
The IPSs were calculated on an arbitrary scale of 0–10 based
on the sum of the weighted average Z scores of the four categories.

Workflow
The workflow of this study is shown in Figure 1.

Statistical Analysis
All statistical analyses were conducted with the R software
(version 4.0.2). The Wilcoxon test was used to compare
continuous variables in two groups. The Kaplan-Meier plotter
was employed to generate survival curves for the subgroups in
each dataset. The Log-rank test was used to evaluate significant
differences in survival. The Chi-square test or Fisher’s exact test
were used to analyze the clinicopathological categorical variables
between the different PRS subgroups. Spearman correlation
analysis was used to compute the correlation coefficient
between indicators. The multiple hypothesis test with the
Benjamini–Hochberg method was used to control FDR. All
statistical tests were two-sided, and p values less than 0.05
were considered statistically significant (pp < 0.05, ppp < 0.01,
pppp < 0.001).

RESULTS

TIICs Evaluation and Immunotyping
We analyzed the contents of 24 types of TIICs in both sets and
evaluated the results by principal component analysis (PCA).
There were significant differences between tumor and normal
samples. The differences could be used to distinguish normal and
tumor tissues (Supplementary Figures S1A–C). The contents of
adaptive immune cells increased in tumor tissues, while those of
innate immune cells decreased (Wilcoxon test, p < 0.05)
(Supplementary Figures S1B–D).

Furthermore, the ESTIMATE algorithm was used to evaluate
mRNA profiles of tumor samples in the training set. The OS of
the patients in the high score (greater than the median value)
group based on the immune scores was higher than those of the
patients in the low score group, and the intergroup difference was
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significant (Log-rank test, p < 0.05) (Supplementary Figure
S2A). It indicates that the prognoses of patients with high
immune scores are better than those of the patients with low

immune scores. Therefore, hierarchical cluster analysis was
performed on the TIICs in tumor samples (Supplementary
Figure S2B). According to the immune scores, three clusters

FIGURE 1 | Flowchart of the study protocol. TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus; OS, overall survival; ESTIMATE, Estimation of
STromal and Immune cells in MAlignant Tumor tissues using Expression data; TIICs, tumor-infiltrating immune cells; DEGs, differentially expressed genes; PRS,
prognostic risk score.

FIGURE 2 | Comparison of TIICs and overall survival (OS) of patients in each immunophenotype in the training set. (A) TIIC contents of patients in each
immunophenotype. (B) Comparisons of OS among the three immunophenotypes. (C) Comparisons of OS between Immunity_H and other patients.
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were defined as high (Immunity_H), medium (Immunity_M),
and low immunophenotypes (Immunity_L) (Figure 2A). The OS
of the three immunophenotype groups was statistically different
(Log-rank test, p < 0.05) (Figure 2B). The patients in the
Immunity_H group had the better OS than others (Log-rank
test, p < 0.05) (Figure 2C). The TIICs in each immunophenotype
were further compared. The levels of mature immune cells in the
Immunity_L group were the lowest. Almost all innate immune

cells in the Immunity_H group were more than those in the
Immunity_M group, except Tfh, CD8+ T, and Treg cells. These
three kinds of cell increased in the Immunity_M group
(Wilcoxon test, p < 0.05) (Supplementary Figures S3A,B).
We also used the CIBERSORT method to quantitate TIICs in
each immunophenotype group. Twenty-two types of immune
cells were quantified; however, the number of CD4+ T naive cells
was 0 in all samples. Hence, only 21 types of immune cells were

FIGURE 3 | Construction of the prognostic risk score (PRS) model in the training set. (A) Comparisons of OS between the high- and low-risk groups. (B).
Distribution of survival time of patients with different outcomes; (C) Distribution of increasing risk scores in high- and low-risk groups; (D) Heatmap of the fourteen-gene
expression profiles in high- and low-risk groups; (E) ROCs of models with gender, stage, tumor size (T), lymph node metastasis (N), distant metastasis (M), and PRS as
variables, respectively; (F) Nomogram to predict the 1-year, 2-years and 3-years survival rates of the patients in the training set by using gender, stage, tumor size
(T), lymph node metastasis (N), distant metastasis (M), and risk score as variables, respectively.
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finally analyzed. The contents of most innate immune cells in the
Immunity_H group were higher than those in the Immunity_M
group (Wilcoxon test, p < 0.05) (Supplementary Figure S4A);
however, the numbers of CD8+ T and Tfh cells in the
Immunity_H group were lower than those in the
Immunity_M group (Wilcoxon test, p < 0.05) (Supplementary
Figure S4B).

Feature Analysis of Different
Immunophenotypes in the Training Set
We analyzed the clinical features of patients in the three
immunophenotype groups (Figure 3A, Supplementary Table
S1). The proportion of female patients in the Immunity_H group
was the highest. The patients in the Immunity_H group had the
lowest TMB and the highest IPSs (Wilcoxon test, p < 0.05)
(Supplementary Figure S5A). We also compared HLA
expressions and checkpoints in the three immunophenotype
groups. The levels of PD-L1, PD-1, FASL, CTLA4, and CD244
in the Immunity_M group were higher than those in the
Immunity_H group (Supplementary Figure S4C). In the
Immunity_L group, the expression levels of HLA and
checkpoints were lower than those in the Immunity_H group
(Wilcoxon test, p < 0.05) (Supplementary Figure S4D).

GSEA analysis of the differential enrichment pathways of
Kyoto Encyclopedia of Genes and Genomes (KEGG) showed
that, the pathways of nucleotide sugar metabolism, DNA stability
and autophagy regulation were significantly upregulated
(Supplementary Figure S5B), but immune-related pathways
and cell adhesion were significantly downregulated of tumor
samples in all three immunophenotypes (Supplementary
Figure S5C). The Immunity_H group had the most obvious
upregulation of metabolism pathways, such as glucose, lipid and
water salt metabolism and lysosome pathways. The Immunity_M
group was more strongly related to homologous recombination,
DNA replication and repair and gene transcription. The
Immunity_L group was specifically associated with lowered
immune-related pathways, including B and T cell receptor
signaling pathways, NK cell mediated cytotoxicity, cytokine
receptor interaction and complement-related pathways
(Supplementary Figures S5D,E). Thereafter, we intersected
DEG_HL, DEG_HM and DEG_NT and obtained 421 IDEGs
for subsequent screening (Supplementary Figure S5F). The
molecular function and biological processes of these genes
covered immune response, regulation of gene silencing,
glucolipid metabolism, cell adhesion and blood coagulation
(Supplementary Figure S5G).

Construction and Validation of the PRS
Model
Cox regression analysis was performed for the candidate genes
among the IDEGs that were specifically associated with OS (Log-
rank, p < 0.05), followed by LASSO logistic analysis. The most
suitable tuning parameters (λ) and coefficients were calculated by
cross-validation (Supplementary Figure S6A). Finally, 14 IDEGs
were selected to construct the PRS model. The formula was as

follows: Prognostic Risk Score = (−0.0461 × TLR8mRNA level) +
(0.0992 × FGF2 mRNA level) + (0.0467 × F12 mRNA level) +
(0.3515 × ST6GALNAC3 mRNA level) + (0.0198 × PTPRH
mRNA level) + (0.0368 × EXO1 mRNA level) + (0.0182 ×
FRMD3 mRNA level) + (0.1891 × E2F7 mRNA level) +
(−0.1644 × ABHD6 mRNA level) + (-0.0423 × STK32A
mRNA level) + (−0.0203 × COL4A3 mRNA level) + (0.0178 ×
PLEK2 mRNA level) + (−0.0222 * LIFR mRNA level) + (0.04453
× CYS1 mRNA level). The median score in the training set was
considered as the cut-off value, and the patients were divided into
high-risk (228 cases) and low-risk (228 cases) groups
(Supplementary Table S2). Survival analysis showed that OS
(Figures 3A–C), disease-free survival (DFS), progression-free
survival (PFS), and disease-specific survival (DSS)
(Supplementary Figure S6B) in the high-risk group were
significantly worse than those of the low-risk group (Log-rank
test, p < 0.001). The expression profiles of 14 genes were
visualized as a heatmap (Figure 3D). The area under the ROC
was 0.773 (Figure 3E). Then, the variables of age, stage, T, M, N,
and PRS were analyzed to establish a nomogram for predicting
the 3-years survival rate (Figure 3F).

Further, the PRS model was invalidated in the test set. The
above PRS formula, cut-off value, and grouping method were
used to divide patients into high-risk (248 cases) and low-risk
(221 cases) groups (Supplementary Table S3). The OS of the
high-risk group was significantly worse than that of the low-risk
group (Log-rank, p < 0.001) (Figures 4A–C). The expression
profiles of the PRS model genes were visualized as heatmaps
(Figure 4D). The area under the ROC was 0.707 (Figure 4E).
Then, the variables of age, stage, and risk score were analyzed to
establish a nomogram for predicting the 3-years survival rate
(Figure 4F).

Molecular, Immune, and Mutation Features
of PRS Subgroups in the Training Set
After obtaining the reliable PRS model, we analyzed clinical and
molecular features of PRS subgroups in the training set. The PRS
subgroups showed significant differences in sex, T and N
classifications, and stage. The proportion of female, T1, N0, and
Stage I patients in the low-risk group was significantly higher than
those in the high-risk group (Chi-square test, p < 0.05) (Figure 5A,
Supplementary Table S4). GSEA analysis on the enrichment
pathways of KEGG between the two PRS subgroups showed that
pathways of cell cycle, DNA replication, homologous recombination,
mismatch repair, p53 signal pathway, which were associated with
gene mutation and chromosome instability, were significantly
upregulated in the high-risk patients. In contrast, ABC
transporters, B cell receptor signaling pathway, cell adhesion
molecules (CAMs), histidine metabolism, and mTOR signaling
pathway and other immune-related pathways were significantly
upregulated in the low-risk patients (Figure 5B). In addition,
PRSs of all patients were positively correlated with TMBs
(Spearman correlation, p < 0.001), and negatively correlated with
IPSs (Spearman correlation, p < 0.05) (Figures 5C,D)Meanwhile, in
combination with literature data, we compared two prediction
indicators of neoantigens (Figure 5E): the counts of mutations
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predicted to yield HLA-binding neopeptides (Predicted NeoAgs)
and the ratios of observed versus expected binders per non-silent
mutation (Observed/Expected NeoAgs) (Charoentong et al., 2017;
Hakimi et al., 2016). The Observed/Expected NeoAgs of the low-risk
patients was higher than that of the high-risk ones (Wilcoxon test,
p < 0.05). Patients in the low-risk group may have more effective
neoantigens to promote immunity against tumor and obtain more
benefits from immunotherapy.

Then, we also analyzed mutation rates of genes between PRS
subgroups in the training set. The integral mutation rate of the
high- and low risk group was 92.61 and 78.51%, respectively.
Then, mutation frequencies of 42 driver genes associated with
LUAD were calculated. Mutation ratios of the driver genes
TP53, LRP1B, CLIP1, EZH2, LRIG3, PIK3CA, RBM10, and
KRAS in the high-risk group were higher than those in the
low-risk group (Chi-square test, p < 0.05) (Supplementary

FIGURE 4 | Validation of the prognostic risk score (PRS) model in the test set. (A) Comparisons of overall survival (OS) between the high- and low-risk groups. (B)
Distribution of survival time among patients with different outcomes. (C) Distribution of increasing risk scores in high- and low-risk groups. (D) Heatmap of the 14-gene
expression profiles in high- and low-risk groups. (E)ROCs of models with sex, stage, and PRS as variables in the test set s, respectively. (F)Nomogram to predict the 1-,
2-, and 3-years survival rates of patients in the test set by using sex, stage, and risk score as variables, respectively.
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Table S5). These results provide new insights into mutation
biomarkers and immunotherapeutic targets. To understand the
effects of these mutations on LUAD development, we conducted
a cluster analysis and identified 11 signatures of de novo
mutation (S1-S11) (Supplementary Figures S7A,B). Among
them, S2, S3, S4, and S5 were similar to the curated signatures in
COSMIC (Supplementary Figure S7C; Supplementary Table
S6). S2 was related to DNA mismatch repair deficiency
(dMMR), S3 was related to APOBEC (apolipoprotein B
mRNA editing enzyme catalytic polypeptide-like), S4 was

related to age, and S5 was related to tobacco mutagens. The
contributions of S2, S3, S4, S5, S10, and S11 in the high-risk
group were higher than those in the low-risk group (Cochran-
Armitage trend test, p < 0.05) (Supplementary Figure S7D).

The Predictive Potential of the PRS Model
for Immunotherapy Benefits
In the subsequent analysis, we examined the ability of the PRS
model to predict the response to immunotherapy in Asian

FIGURE 5 | Comparisons of clinical, immune, and molecular features between high- and low-risk patients in the training set. (A) Associations of three
immunophenotypes with 10 variables. Fisher’s exact test was used for categorical variables: age, sex, pathological stage, tumor size (T), lymph node metastasis (N), and
distant metastasis (M). Wilcoxon test was used for continuous variables: MSI, TMB, IPS, and PRS. (B)GSEA (C2: curated gene sets, CP: KEGG) showed that the five top
pathways upregulated in the high-risk group were cell cycle, DNA replication, homologous recombination, mismatch repair, and p53 signal pathway (left). The five
top pathways upregulated in the low-risk group were ABC transporters, B cell receptor signaling pathway, cell adhesion molecules (CAMs), histidine metabolism, and
mTOR signaling pathway (right). (C) Comparisons of TMBs and IPSs between high- and low-risk patients. (D) The positive correlation between TMB and PRS is shown
on the left. The negative correlation between IPS and PRS is shown on the right. (E) Comparisons of Observed/Expected NeoAgs and Predicted NeoAgs between high-
and low-risk patients. The symbol “ns” represents there is no significant difference between the two groups.
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patients. A total of 27 NSCLC patients (GSE135222) who
received anti-PD-1/PD-L1 immunotherapy were selected.
On the basis of the cut-off values in this study, the patients
were divided into high-risk and low-risk groups. Survival
analysis showed that low-risk patients had better OS than
high-risk ones (Log-rank test, p < 0.05, Supplementary Figure
S8A). Another dataset of NSCLC patients (GSE126044) who
were also treated by anti-PD-1/PD-L1 immunotherapy
showed that the PRSs of those who responded to
immunotherapy were significantly lower than those who did
not respond (Wilcoxon test, p < 0.05, Supplementary Figure
S8B). The results of these two datasets indicated that the PRS
model was also a good predictor for the efficacy of
immunotherapy.

The Prognostic Potential of the PRS Model
for NJDT Patients
Finally, the clinical (Supplementary Table S7) and mRNA
sequencing data (Supplementary Table S8) of NJDT patients
were analyzed by the PRS model and IPS algorithm
(Supplementary Material S1). The PRSs of tumor samples
were significantly higher than those of normal samples
(Wilcoxon test, p < 0.01) (Supplementary Figure S9A);
Among the tumor samples, 16 and 26 cases were categorized
into the high- and low-risk groups, respectively. When the
clinicopathological features were compared, the immune scores
(calculated by ESTIMATE) and IPSs of the high-risk group were
lower (Figure 6A), and EGFR mutations of high-risk patients
were more frequent. In addition, patients with EGFR mutations

FIGURE 6 | Feature analysis and PFS comparisons of NJDT patients in different PRS subgroups. (A) Comparison of the variables between high- and low-risk
patients. Fisher’s exact test was used for categorical variables: sex, age, smoking, KRASmutation, EGFRmutations, tumor size (T), lymph nodemetastasis (N). Wilcoxon
test was used for continuous variables: maximum tumor diameter (MTD), IPS, PRS, Immune Score, and TIICs. (B) Comparisons of IPSs and PRSs between EGFR
mutation and wild-type patients. (C) Heatmaps of MMR and APOBEC genes in high- and low-risk patients. (D) Comparisons of PFS between high- and low-risk
patients.

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 8501019

Gao et al. Immunotyping and Prognostic Model

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


had higher PRSs and lower IPSs than wild-type (WT) patients
(Wilcoxon test, p < 0.05) (Figure 6B). But KRAS mutations did
not showed the similar phenomenon. These results may suggest
that the immunity state against tumor of WT patients was
superior to that of mutant patients. Considering the mutation
results in the training set, we compared the expression of MMR
and APOBEC proteins. PMS1 was upregulated in the high-risk
group, while APOBEC3A, C, D and G were upregulated in the
low-risk group (Wilcoxon test, p < 0.05) (Figure 6C,
Supplementary Table S9). Most checkpoints of patients in the
low-risk group were higher than those in the high-risk group
(Supplementary Figure S9B), and the immune-related pathways
in the low-risk group were also upregulated (Supplementary
Figure S9C). Furthermore, although the difference between
groups was not statistically significant, the low-risk patients
had better PFS than high-risk patients (Figure 6D).

DISCUSSION

TIME has been frequently reported to play an important role in
the occurrence and development of LUAD. The evaluation of the
dynamic changes in TIME to determine mechanisms underlying
tumorigenesis and potential therapeutic targets is of great
significance. In our research, the infiltration levels of TIICs in
TIME were strongly correlated with patient outcomes. The
patients in the Immunity_H group, who had more TIICs and
stronger anti-tumor immunoactivity, also had better prognoses.
The patients in the Immunity_L group, of whom nearly all
mature TIICs were at low levels, did not trigger adequate
immune response against LUAD and had worse prognoses.
However, it was interesting that the patients in the
Immunity_M group, with the worst OS, showed a deficiency
of innate immune cells (DC, macrophages and NK cells), but a
high level of CD8+T cells. Numerous studies have indicated that
NK cells have a definite antitumor effect in the lung cancer
(Bhome et al., 2015) and dendritic cells (DCs), as powerful
antigen-presenting cells, play important roles in inducing the
immune response of CD8+T cells (Hegde et al., 2020; Maier et al.,
2020). However, studies on the role of CD8+T cells in TIME have
yielded different conclusions. Some reports suggest that the
number of these cells is positively correlated with the
treatment response and survival of NSCLC patients (Donnem
et al., 2015; Rashed et al., 2017). In contrast, recent studies have
shown that only approximately 10% of tumor-infiltrating T cells
in the TIME of NSCLC patients can recognize surrounding tumor
cells, while the rest are “bystander T cells”, which lack response to
tumor antigens and are involved in tumor immune escape and
progression (Scheper et al., 2019). In addition, Immunity_M
showed more Treg cells and higher expressions of CTLA4 and
PD-1. The CTLA4 expressed on Treg cells can mediate the
downregulation of costimulatory molecules of DCs, reduce DC
activation, and enhance the immunosuppressive activity of Treg
cells (Chen et al., 2017). The dysfunction of T cells is positively
correlated with a high expression of PD-1 (Thommen et al.,
2015). These two factors of abnormal T cells and checkpoints
might jointly contribute to the worst prognoses of patients in the

Immunity_M group, whereas due to the increased CTLA4 and
PD-1, they are likely to get more benefits from immunotherapy.

An interesting phenomenon was revealed by analysis of
mutation characteristics between high- and low-risk patients
in the training set. Somatic mutations in tumor may produce
targeted neoantigens recognized by major histocompatibility
complex (MHC) (Schumacher and Schreiber, 2015). TMB, as
an indicator of somatic mutation in cancer, was lower in the low-
risk group, but the predictive amount and proportion of
neoantigens were higher. It suggested that although high-risk
patients showed more mutations, they did not produce more
neoantigens to induce adequate immune response against tumor.
The phenomenon may be related to the unsatisfactory infiltration
of TIICs and indicate less benefits from immunotherapy.
Subsequent analyses on other East Asian patients who received
anti-PD-1/PD-L1 immunotherapy repeated the consequence of
less benefits from treatment in their high-risk groups. On the
other hand, when the PRS model was used to evaluate early-stage
LUAD patients, it could not only predict better TIME, but also
demonstrate potentials for early LUAD diagnose. Furthermore,
EGFR mutations were more frequent in high-risk patients, and it
suggests that EGFR mutation may be associated with
immunosuppression in NSCLC (Dong et al., 2017; Gainor
et al., 2016). Although we did not detect more details of
somatic mutations in these patients, abnormal MMR and
APOBEC expressions suggest that there are more mutation
differences between high- and low-risk patients, and these
differences are also expected to be biomarkers for early
diagnosis and prognosis prediction of LUAD.

In previous studies, several immune-related prognostic
models of NSCLC based on TCGA datasets have been
reported (Chen et al., 2021; Liu et al., 2020; Luo et al., 2020;
Song et al., 2020). Some researchers divided TCGA data into the
training and test sets, and obtained a prognostic model based on
immune genes. The areas under the curves (AUCs) of the model
were 0.74 for 3-years OS and 0.70 for 5-years OS in the training
set. In the test set, they were 0.676 and 0.523, respectively (Yi
et al., 2021a). In our research, AUCs of the PRS model were 0.706
for 3-years OS and 0.710 for 5-years OS in the training set. In the
test set, they were 0.636 and 0.631 (Supplementary Figures
S6C,D), respectively. The PRS model were performed by the
external validation of GEO datasets and had more extensive
and stable accuracy and sensitivity in prognostic prediction for
LUAD patients. The 14 IDEGs of PRS model are involved in
immune cell receptors, inflammatory factors, biological
enzymes, gene transcription and blood coagulation. Some of
these genes are deeply related to immune environment and
immunotherapy. F12 (coagulation factor XII) regulates a range
of innate immune cells (Barbasz and Kozik, 2009; Vorlova et al.,
2017), and promotes the differentiation of naive Th cells into
TH17 cells (Gobel et al., 2016). LIFR (leukemia inhibitory
factor receptor subunit alpha) mediates interleukin-6
signaling and is involved in immune regulation (Wang et al.,
2020). TLR8 (Toll-like receptor 8) initiates juvenile T cells,
promotes the secretion of various cytokines by DCs and is
involved in the regulation of tumor immune microenvironment
(Tran et al., 2019), while FGF2 (fibroblast growth factor 2) is
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involved in the Wnt/β-catenin, TGF-β and PI3K/Akt pathways
to affect the development of LUAD (Dai et al., 2019). TGF-β is
an important signaling in promoting cancer metastasis,
impairing the functions of immune cells and facilitating
immune evasion (Batlle and Massague, 2019). Recently, the
anti- TGF-β/PD-L1 bispecific antibody YM101 has reported to
effectively overcome treatment resistance and exhibit a
superior antitumor activity of non-inflamed tumors (Yi
et al., 2021b). The antibody can promote the formation of
“hot tumor” in increasing adaptive TIICs and DCs, regulating
the ratio of M1/M2, and enhancing cytokine production in
T cells. (Yi et al., 2021c). Our research also illustrated the
balance of innate and adaptive immune cells and the
recognization of T cells by surrounding tumor cells are the
keys to improving prognosis and immunotherapy of LUAD.
The PRS model may be applied to the predict suitability and
efficacy of antibody YM101.

In conclusion, our study provided the risk model, which
showed the good predictive ability for the prognosis and
therapeutic benefits of LUAD. The exploration based on
immunotyping revealed more immune characteristics and
molecular mechanisms related to prognosis, and laid a
foundation for further research on diagnosis, immunotherapy
and drug development. Nevertheless, this study had many
limitations, we will further improve the applicability of the
PRS model for domestic patients, and conduct more biological
experiments to verify the functions and pathways of IDEGs. We
hope that our research will facilitate the diagnosis, risk
stratification, prognostication, and treatment decision-making
for LUAD patients.
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Supplementary Figure S1 | Twenty-four types of TIICs between normal and tumor
samples were analyzed in the training and test set. Principal component analysis
(PCA) of 24 TIICs between normal and tumor samples in the training set (A) and test
set (B). The level comparison of 24 TIICs between normal and tumor samples in the
training set (C) and test set (D)

Supplementary Figure S2 | OS comparison and hierarchical cluster analysis of
TIICs of different groups in the training set. (A) OS comparisons of patients in the
low- and high-level groups for immune score (left), stromal score (middle), and tumor
purity (right). (B) Hierarchical cluster analysis of patients in the training set based on
the TIICs. Immunity_H group in green, Immnuty_M group in red and Immnuty_L
group in blue were shown.

Supplementary Figure S3 | Comparison of the levels of 24 TIICs of tumor samples
in each immunophenotype. (A) The levels of the innate immune cells were compared
among three different immunophenotypes. (B) The levels of the adaptive immune
cells were compared among three different immunophenotypes. The symbol “ns”
represents there is no significant difference between the two groups.

Supplementary Figure S4 | Comparison of the levels of 21 immune cells and
expressions of checkpoints and HLA-related genes in each immunophenotype. (A)
The levels of 21 immune cells analyzed by CIBERSORT were compared between
Immunity_H and Immunity_M. (B) The levels of 21 immune cells analyzed by
CIBERSORT were compared between Immunity_H and Immunity_L. (C) The
expressions of checkpoints and HLA-related genes were compared between
Immunity_H and Immunity_M. (B) The expressions of checkpoints and HLA-
related genes were compared between Immunity_H and Immunity_L. The
symbol “ns” represents there is no significant difference between the two groups.

Supplementary Figure S5 | Comparisons of clinical and molecular features and
immunophenotypic differentially expressed genes (IDEGs) among the three
immunophenotypes in the training set. (A) Association of the three
immunophenotypes with 10 variables. Fisher’s exact test was used for
categorical variables: age, gender, pathological stage, tumor size (T), lymph
node metastasis (N) and distant metastasis (M); Kruskal-Wallis test was used for
continuous variables: MSI, TMB, IPS and Risk Score. (B) GSEA (C2: curated gene
sets, CP: KEGG) revealed the pathways that were significantly upregulated in
various immunophenotypes, compared with normal samples. (C) GSEA (C2:
curated gene sets, CP: KEGG) revealed the pathways that were significantly
downregulated in various immunophenotypes, compared with normal samples.
(D) Comparison of significant enrichment pathways in tumor samples between
Immunity_H and Immunity_M (E) Comparison of significant enrichment pathways in
tumor samples between Immunity_H and Immunity_L (F) 421 immunophenotypic
differentially expressed genes (IDEGs) were obtained by intersection of DEGs_NT,
DEGs_HM and DEGs_HL. (G) Gene Ontology (GO) analysis of IDEGs
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Supplementary Figure S6 | Construction of prognostic risk score (PRS) model
analyzed by LASSO regression and comparison of DFS, DSS, and PFS between the
high- and low-risk patients in the training set. (A) Tuning parameter (λ) and deviance
in the LASSO regression (left). The partial likelihood deviance was plotted versus log
(λ). The dotted vertical lines were drawn at the optimal values by using the minimum
and 1-SE criteria. Fourteen features with the smallest binomial deviance were
selected. LASSO coefficient profiles of texture features (right). Each line
represented a variable with the regression coefficient on the vertical axis and the
logarithm of λ on the abscissa. A 10-fold cross-validation was used in the log (λ)
sequence to select 14 variables with non-zero coefficients. (B) Comparisons of
disease-free survival (DFS) (left), disease-specific survival (DSS) (middle), and
progression-free survival (PFS) (right) of high- and low-risk patients in the training
set. (C) Time-dependent receiver operating characteristic curves of 3- and 5-year
survival in the training set (left) and test set (right).

Supplementary Figure S7 | Identification and comparison of de novo mutational
signatures in the training set. (A) Upper image, residual sum of square (RSS) of the
signature number selection. Lower image, percentage of variance explained in the
signature number selection. (B) Cosine similarity between 30 cosmic signatures
(horizontal axis) and 11 de novo signatures (vertical axis) in the training set. (C)

Contributions of point mutations of de novo mutation signatures (S1−S11) in the
training set. (D) Comparison of the contributions of de novo mutation signatures
(S1−S11) between the high- and low-risk groups

Supplementary Figure S8 | Prediction of the prognostic risk score (PRS) model for
immunotherapy benefits of patients. (A) Comparisons of overall survival (OS)
between the high- and low-risk patients in GSE135222. (B) Comparisons of
PRSs of the responders and non-responders treated by immunotherapy in
GSE126044.

Supplementary Figure S9 | Analysis of PRSs, checkpoints, HLA-related
genes, and enrichment pathways of NJDT patients. (A) Comparison of
PRSs between normal and tumor samples of NJDT patients. (B) The
expressions of checkpoints and HLA-related genes were compared
between high- and low-risk patients. (C) GSEA (C2: curated gene sets, CP:
KEGG) showed that the five top pathways (antigen processing and
presentation, cell adhesion molecules [CAMs], chemokine signaling
pathway, cytokine receptor interaction, and natural killer cell-mediated
cytotoxicity) were unregulated in the low-risk group. The symbol “ns”
represents there is no significant difference between the two groups.
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