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Deregulated IncRNAs play critical roles in tumorigenesis and tumor progression. NR2F1-AS1 is an antisense IncRNA of NR2F1.
However, the biological function of NR2F1-AS1 in gastric cancer (GC) remains largely unclear. In this study, we revealed that NR2F1-
AS1 and NR2F1 were both positively correlated with the degree of malignancy and predicted poor prognosis in two independent
GC cohorts. Besides, NR2F1-AS1 and NR2F1 can respond to Epithelial-to-mesenchymal transition (EMT) signaling in GC, since their
expression was increased by TGF-beta treatment and decreased after stable overexpression of OVOL2 in GC cell lines. NR2F1-AS1
and NR2F1 were highly co-expressed in pan-tissues and pan-cancers. Depletion of NR2F1-AS1 compromised the expression level of
NR2F1 in GC cells. Furthermore, NR2F1-AS1 knockdown inhibited the proliferation, migration, invasion and G1/S transition of GC
cells. More importantly, transcriptome sequencing revealed a novel ceRNA network composed of NR2F1-AS1, miR-29a-3p, and
VAMP7 in GC. The overexpression of VAMP7 predicted poor prognosis in GC. Rescue assay confirmed that NR2F1-AS1 promotes GC
progression through miR-29a-3p/VAMP7 axis. Our finding highlights that the aberrant expression of NR2F1-AS1 is probably due to
the abnormal EMT signaling in GC. LncRNA NR2F1-AS1 plays crucial roles in GC progression by modulating miR-29a-3p/VAMP7 axis,
suggesting that NR2F1-AS1 may serve as a potential therapeutic target in GC.
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INTRODUCTION

Gastric cancer (GC) is a heterogeneous tumor with the fourth
highest mortality rate worldwide [1]. According to the latest global
cancer burden data report released by the International Agency
for Research on Cancer (IARC), there will be approximately 1.089
million new cases of gastric cancer and 769,000 deaths worldwide
in 2020 [2, 3]. Due to the inconvenience of early diagnosis of GC,
many patients are diagnosed at advanced stages [4]. Therefore, it
is urgent and necessary to develop new biomarkers or strategies
to improve the early diagnosis of GC.

Metastasis is the leading cause of cancer-related deaths,
especially in stomach cancer. In 2015, Cristescu et al. have
reported that GC patients with EMT molecular subtype possess
worst prognosis [5]. Similarly, in 2018, Oh et al. also found that
GC patients with mesenchymal phenotype possessed poorer
prognosis than GC patients with intestinal phenotype [6]. Tumor
metastasis are the result of a complex process that involves local
invasion, intravasation, transport, extravasation, micro-metastasis
formation and colonization [7]. The metastatic cascade is a
multifaceted process, in which EMT mediates the initial
transformation from benign to invasive carcinoma [8]. EMT, an
evolutionarily conserved program of cellular plasticity, allows

polarized, immotile epithelial cells to loosen their cell-cell
adhesion, detach from neighboring cells, and to convert into
motile mesenchymal cells [9]. The occurrence of EMT requires a
variety of extracellular signals, such as transforming growth
factor, fibroblast growth factor, hepatocyte growth factor, and
epidermal growth factor and chemokines [10]. Once the EMT
program is started, remarkable changes would be observed in
the expression of the EMT-related genes [11, 12]. These EMT-
related genes eventually have a profound effect on cell
morphology and function [13, 14]. However, most of the existing
research focuses on the coding genes caused by EMT, and the
biological functions of EMT-related IncRNA are relatively rarely
reported.

In this study, we identified an antisense INcRNA NR2F1-AS1 that
induced by EMT in GC. NR2F1-AS1 was positively correlated with
the degree of malignancy and predicted poor prognosis in two
independent GC cohorts. Transcriptome sequencing revealed a
novel ceRNA network composed of NR2F1-AS1, miR-29a-3p, and
VAMP7 in GC. In vitro experiments confirmed that NR2F1-AS1
promotes GC metastasis through the miR-29a/VAMP7 signal axis.
Therefore, targeting the NR2F1-AS1/miR-29a-3p/VAMP7 axis could
be a new potential strategy for the treatment of GC.
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Fig. 1

The clinical significance of NR2F1-AS1 and NR2F1 was analyzed in the GSE62254 cohort. a Antisense IncRNA NR2F1 has multiple

types of transcripts according to the annotation of NCBI. b Difference in expression levels of NR2F1-AS1 and NR2F1 between intestinal and
diffuse GC tissues. c-e NR2F1 and NR2F1-AS1 expression level in different Pathologic stages, T-stages and Borrmann-stages of GC. f NR2F1 and
NR2F1-AS1 expression level in GC tissues with/without perineural invasion. g NR2F1 and NR2F1-AS1 expression level in GC tissues with
different M-stages. h, i Overexpression of NR2F1 and NR2F1-AS1 predicted poor prognosis in GSE62254 cohort. ****P < 0.0001; ***P < 0.001;

**P<0.01; *P < 0.05.

RESULTS

NR2F1-AS1 and NR2F1 are clinically correlated with poor
prognosis in GC

NR2F1-AS1 is an antisense IncRNA (head-to-head) of NR2F1, also
known as COUP Transcription Factor | (COUPTF1, Fig. 1a). To
explore the biological function of NR2F1 and NR2F1-AS1 in GC, we
first analyzed the correlation between gene expression and the
clinical characteristics and prognosis of GC. Two independent
large cohorts of GC were included in our study, one is the
GSE62254 cohort (n = 300) and the other is the TCGA cohort (n =
373).

After clinical analysis in GSE62254 cohort, we found that NR2F1
and NR2F1-AS1 were highly expressed in diffuse GC (Fig. 1b). GC
patients with relatively high degree of malignancy had higher
expression of NR2F1 and NR2F1-AS1 (Fig. 1c-e). Besides, GC
tissues with Perineural Invasion (PNI) or distant metastasis tended
to possess relatively high expression of NR2F1 and NR2F1-AS1
(Fig. 1f, g). Moreover, GC patients with higher expression of
NR2F1-AS1 and NR2F1 had a shorter OV time and DFS time (Fig.
1h, i). Similarly, we also noted that the expression level of NR2F1
and NR2F1-AS1 showed a significant correlation with the
histopathological type, malignant progression, poor differentia-
tion, and poor prognosis of GC patients from TCGA cohort (Fig.
2a-h). Based on the clinical analysis in two independent GC
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cohort, NR2F1-AS1 and NR2F1 are potential promising biomarkers
that closely associated with malignant progression and prognosis
of GC patients. NR2F1 and NR2F1-AS1 might function oncogenic
roles in GC.

NR2F1-AS1 and NR2F1 are EMT-induced genes in GC
According to the differences of molecular subtypes, GC could be
further divided into four subtypes, including MSS/TP53—, MSS/
TP53+, MSI, and MSS/EMT subtypes [15]. Our previous publication
has identified MAGI2-AS3 as an EMT-related IncRNA in GC [1].
Herein, we confirmed that both NR2F1 and NR2F1-AS1 are EMT-
related genes using the same method, since NR2F1 and NR2F1-
AS1 were highly expressed in the EMT subtype of GC tissues (Fig.
3a). In addition, correlation analysis based on the gene expression
of TCGA cohort showed that the expression of NR2F1 and NR2F1-
AS1 were positively correlated with the expression of mesench-
ymal biomarker genes, but negatively correlated with the
expression of epithelial genes in GC (Fig. 3b, c). These results
together suggested that both NR2F1 and NR2F1-AS1 were related
to EMT signaling in GC.

To further determine whether NR2F1 and NR2F1-AS1 could
respond to the EMT signaling, we observed the expression
alteration of NR2F1-AS1 and NR2F1 in GC cells with epithelial state
or mesenchymal state. TGF-beta is known to be a critical
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Fig. 2 The clinical significance of NR2F1-AS1 and NR2F1 was analyzed in the TCGA cohort. a Difference in expression levels of NR2F1-AS1
and NR2F1 between intestinal and diffuse GC tissues. b, ¢ NR2F1-AS1 and NR2F1 expression level in different T-stages of GC. d, e NR2F1-AS1
and NR2F1 expression level in different Pathologic stages of GC. f Difference in expression levels of NR2F1-AS1 and NR2F1 in GC tissues with
different degrees of differentiation. g, h Overexpression of NR2F1 and NR2F1-AS1 predicted poor prognosis in TCGA cohort. ****P < 0.0001;

***¥P < 0.001; **P < 0.01; *P < 0.05.

extracellular signal that initiates EMT. Herein, we constructed
mesenchymal GC cells by treatment with exogenous TGF-beta
(Fig. 3d). After detecting the gene expression by qRT-PCR, we
found that both NR2F1 and NR2F1-AS1 were significantly
increased after TGF-beta treatment (Fig. 3e, f).

Transcription factor OVOL2 functions as an inducer of MET [16].
Thus, we constructed epithelial-phenotype GC cells by over-
expression of OVOL2. According to the gRT-PCR and RNA-seq
analysis, the GC cell lines with stable overexpression of OVOL2
were successfully constructed by lentiviral method (Fig. 3g, h).
After comparison of gene expression level in GC cell line with/
without overexpression of OVOL2 by RNA-seq and gRT-PCR assay,
the expression of NR2F1-AST and NR2F1 were both found to be
sharply declined in the GC cells overexpression of OVOL2 (Fig.
3i-k), indicating that both NR2F1-AS1 and NR2F1 were EMT
induced genes.

NR2F1-AS1 positively regulates the expression of NR2F1 in GC
The quantitative transcriptomics of the Human Protein Atlas (HPA)
project provides the tissue specificity of all protein-coding genes
and most IncRNAs. According to HPA dataset, NR2F1-AS1 and
NR2F1 showed similar tissue-specific expression patterns (Fig. 4a).
Pan-tissue and Pan-cancer analysis based on the RNA-seq data in
HPA, GTEx and TCGA datasets together showed that NR2F1-AS1
was highly co-expressed with NR2F1 in human tissues (Fig. 4b—d).
In normal stomach tissues and GC tissues, NR2F1 and NR2F1-AS1
were also highly co-expressed as expected (Fig. 4e—-g).

In order to understand the co-expression between NR2F1 and
NR2F1-AS1, we knocked down the expression of NR2F1-AS1 and
overexpressed NR2F1 in GC cell lines, respectively. The NR2F1-AS1
has multiple transcript types due to alternative splicing. According
to the difference of their last exon, NR2F1-AS1 transcripts could be
divided into two groups. Herein, we designed 2 specific siRNAs for
each group of NR2F1-AS1 transcript to avoid off-target effect (Fig.
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4h). The qRT-PCR assay verified that NR2F1-AS1 was successfully
knocked down in GC cell lines (Fig. 4i). Then, we observed a
significant decline in the expression of NR2F1 after knockdown of
NR2F1-AS1 in GC cell lines (Fig. 4j).

Given that NR2F1 acts as a transcription factor, we also
speculated NR2F1-AS1 may be able to be regulated by NR2F1.
Hence, we constructed stably overexpressed of NR2F1 by lentiviral
method (Fig. 4k). However, according to the RNA-seq analysis, we
didn't observe significant changes in the expression of NR2F1-AS1
in the GC cells overexpressing NR2F1, suggesting NR2F1 cannot
regulate NR2F1-AS1 expression in GC. Taken together, the co-
expression between NR2F1 and NR2F1-AS1 might be partly due to
the positive regulation of NR2F1 by NR2F1-AS1.

NR2F1-AS1 promotes proliferation and invasion of GC cells
in vitro

Clinical analysis implied NR2F1-AS1 functioned as an oncogene in
GC. Thus, we used loss-of-function study to further verify the effect
of NR2F1-AS1 on the biological behavior of GC cells. According to
the NR2F1-AS1 knockdown efficiency, we selected two optimal
siRNAs for these in vitro experiments. Cell proliferation assay
showed that NR2F1-AS1 knockdown suppressed the cell growth of
GC cell lines (Fig. 5a). Transwell assay indicated that NR2F1-AS1
knockdown significantly inhibited the cell invasion of GC cell lines
(Fig. 5b, ). The wounding healing assay showed that knockdown
of NR2F1-AS1 hindered the cell migration of GC cell lines (Fig. 5d,
e). Given NR2F1-AS1 knockdown had a significant effect on cell
growth, we further investigated the role of NR2F1-AS1 in cell cycle
progression of GC cells (Fig. 5f). Knockdown of NR2F1-AS1 caused
an obvious G1 arrest in GC cells due to the prolonged G1/S
transition, indicating that NR2F1-AS1 may promote GC prolifera-
tion through accelerating G1/S transition of GC cells. However,
although knockdown of NR2F1-AS1 unexpectedly repressed the
early apoptosis and the late apoptosis of GC cells (Fig. S1), it
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Fig. 3 NR2F1-AS1 and NR2F1 was positively regulated by EMT signaling in GC. a Expression level of NR2F1-AS1 and NR2F1 in the four
subtypes (MSS/TP53—, MSS/TP53+, MSI and EMT) of GC in GSE62254 cohort. b, ¢ Gene expression correlation analysis confirmed that NR2F1-
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should be pointed out that knockdown of NR2F1-AS1 only
inhibited the apoptosis of about 7-9% of GC cells, suggesting
that NR2F1-AS1 regulates GC cell apoptosis locally but not
extensively.

NR2F1-AS1 promotes GC progression through maintaining
VAMP7 overexpression

To explore the molecular mechanism of the cancer-promoting
effect of NR2F1-AS1, transcriptome sequencing (GSE183538) was
performed in the NR2F1-AS1 depleted GC cells. Two different
siRNAs were chosen to avoid target-off effect. After RNA-seq
analysis, the top 100 genes that profoundly affect by NR2F1-AS1
knockdown was shown in the heat plot (|Log2FC| > 1, Fig. 6a). The
volcano plot shows that knockdown of NR2F1-AS1 had the most
significant effect on the expression of VAMP7 gene (Fig. 6b).
Besides, the RNA-seq, gqRT-PCR and immunoblotting assay
together showed that the mRNA level and protein level of VAMP7
were significantly decreased after knockdown of NR2F1-AS1 in GC

SPRINGER NATURE

cell lines (Fig. 6c—e). In addition, NR2F1-AS1 showed a significant
co-expression with VAMP7 in normal stomach tissues (Fig. 6f).
These results together suggested that NR2F1-AS1 played critical
roles in regulating VAMP7 expression in GC.

The biological function of VAMP7 in GC remains largely
unknown to date. To verify whether NR2F1-AS1 promotes GC
progression by regulating the expression of VAMP7, we first
investigated the expression of VAMP7 in normal and stomach
cancer tissues. The results showed that VAMP7 was overexpressed
in GC (Fig. 69). To understand the clinical significance of VAMP7
overexpression, the survival curves were analyzed based on the
GSE62254 cohort. The results showed that overexpression of
VAMP7 predicted poor prognosis in GC (Fig. 6h). These results
implied VAMP7 functions as an oncogene in GC. In other words,
NR2F1-AS1 might promote GC progression through maintaining
VAMP7 overexpression. To verify this possibility, we conducted
rescue experiments in GC cell lines. The rescue experiments
showed that knockdown of VAMP7 alone significantly inhibited

Cell Death and Disease (2022)13:84
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the growth of GC cells, and knockdown of VAMP7 and NR2F1-AS1
deepened the inhibition of cell growth by NR2F1-AS1 knockdown
alone (Fig. 6i).

NR2F1-AS1 functions as a ceRNA to regulate VAMP7
expression by sponging miR-29a

The biological function of IncRNA is closely related to its
subcellular location [17]. Therefore, RNA Fish assays was con-
ducted in GC cells. The results revealed that NR2F1-AS1 transcripts
were distributed in the nucleus and cytoplasm of SGC7901 cells
(Fig. 7a). Besides, the nuclear-cytoplasmic RNA fractionation assay
followed by gRT-PCR showed that more than half of NR2F1-AS1
transcripts were located in the cytoplasm of GC cell lines (Fig. 7b).
GO analysis showed that NR2F1-AST mainly functions in
cytoplasm (Fig. 7c).

Emerging studies have reported the biological function of
NR2F1-AS1 in cancers. Most of the studies showed that NR2F1-AS1
promoted tumor progression by function as a ceRNA in breast
cancer [18], thyroid cancer [19], and lung cancer [20]. Our
subcellular localization and GO analysis also suggested that
NR2F1-AS1 had the basic conditions for exerting ceRNA roles.
Therefore, we analyzed the miRNAs that might be sponged by
NR2F1-AS1 and the miRNAs that predicted to target VAMP7. After
taking the intersection, we found that NR2F1-AS1 may regulate
VAMP7 expression by sponging miR-29a/b/c and miR-218 (Fig.
7d). However, survival analysis showed that miR-218 predicted
poor prognosis in GC, while only miR-29a predicted favorable
prognosis in GC (Fig. 7e). Besides, increasing studies have reported
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the tumor-suppressive role of miR-29a-3p in GC. Knockdown of
NR2F1-AS1 significantly increased the expression level of miR-29a-
3p in GC cell lines (Fig. 7f). Taken together, we considered NR2F1-
AS1 might regulate VAMP7 expression by sponging miR-29a-3p in
GC. Therefore, we investigated the effect of miR-29a-3p on the
expression level of VAMP7 in GC. The results showed that VAMP7
was downregulated in the GC cells transfecting with miR-29a
mimics, but was upregulated in the GC cells transfecting with miR-
29a inhibitors (Fig. 7g, h). Moreover, dual-luciferase reporter assay
and rescue assay together confirmed that miR-29a-3p repressed
cell proliferation by targeting VAMP7 in GC (Fig. 7i, j). Additionally,
both NR2F1-AS1 and VAMP7 showed a significant negative
correlation with miR-29a in the TCGA cohort (Fig. 7k, I), suggesting
there is a novel ceRNA network composed of NR2F1-AS1, miR-29a-
3p and VAMP7 in GC.

In summary, IncRNA NR2F1-AS1 acts as a sponge for miR-29a-3p
and promotes GC progression through regulating miR-29a-3p/
VAMP7 axis. Additionally, NR2F1-AS1 was positively regulated by
EMT signaling. Once abnormal EMT signaling occurs, it will lead to
a significant up-regulation of NR2F1-AS1, leading to the deregu-
lated ceRNA network and aberrant VAMP7 expression, and
ultimately promoting the malignant progression of GC (Fig. 8).

DISCUSSION

Large number of non-coding RNAs (ncRNA) and protein-coding
genes have been found to be dysregulated in tumors or other
diseases. In the past decades, the mechanism of dysregulated
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Fig. 5 NR2F1-AS knockdown affected cell proliferation, invasion and G1/S transition in GC cell lines. a The proliferation of GC cells was
determined by MTT assay. b, ¢ The transwell invasion of GC cells was examined after knockdown of NR2F1-AS1 in GC cell lines. d, e The
migration of GC cells was examined by wound healing assay after knockdown of NR2F1-AS1 in GC cell lines. f The effect of NR2F1-AS1 on cell
cycle progression was investigated by flow cytometry. NR2F1-AS1 positively regulated the G1/S transition of the cell cycle in GC. **P < 0.0001.

ncRNAs has received little attention. Recently, increasing studies
have reported ncRNAs can regulate tumor progression through
forming ceRNA networks [21]. The components in ceRNA network
are usually interrelated. Aberrant expression of any network
component may derail complex regulatory circuits and ultimately
result in tumorigenesis and metastasis [22]. Therefore, identifica-
tion of ceRNA network is essential to understand how cancer-
related genes are dysregulated, thereby improving disease
prognosis. Since ceRNA network can at least partially explain
how cancer-related genes are dysregulated, exploring and
identifying novel ceRNA networks is essential to improve the
prognosis of the disease.

In the present study, we identified a novel ceRNA network
composed of NR2F1-AS1, miR-29a-3p, and VAMP7 in GC by
transcriptome sequencing. Clinical analysis revealed that NR2F1-
AS1 showed a significant correlation with the degree of
malignancy and predicted poor prognosis in two independent

SPRINGER NATURE

GC cohorts. Loss-of-function studies indicated that NR2F1-AS1
promotes the proliferation, migration and invasion of GC cells.
Similarly, VAMP7, a novel target gene of miR-29a-3p, was
overexpressed and predicted poor prognosis in GC (Fig. 6g-I).
Rescue assay has further confirmed that NR2F1-AS1 promotes GC
progression through miR-29a/VAMP7 axis. In other words, during
the current ceRNA network, NR2F1-AST and VAMP7 played
oncogenic roles in GC, while increasing studies have reported
that miR-29a-3p exerted tumor-suppressive roles in GC [23-26].
Taken together, this deregulated ceRNA network plays critical
roles in regulating GC progression.

Divergent IncRNAs usually co-expressed with nearby protein-
coding genes [27]. On the one hand, the antisense IncRNA shares
a promoter with neighboring genes, which causes them to be
regulated by the same transcription factors [28]. On the other
hand, emerging evidences reported that the antisense IncRNA and
neighboring genes can be stabilized together by forming

Cell Death and Disease (2022)13:84
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Fig. 6 NR2F1-AS1 promotes GC progression through maintaining VAMP7 overexpression. a The heat map reveals the top 100 differentially
expressed genes after NR2F1-AS1 knockdown. b The differentially expressed genes (|Log2FC| > 1, P < 0.05) after NR2F1-AS1 depletion were
shown in the volcano plot. ¢ The transcripts abundance of VAMP7 after NR2F1-AS1 knockdown. d, e The mRNA level and protein level of
VAMP7 were determined after knockdown of NR2F1-AS1. f High co-expression between NR2F1-AS1 and VAMP7 was observed in stomach
tissues. g GEPIA analysis revealed that VAMP7 was upregulated in stomach cancer tissues. h Survival analysis indicated that GC patients with
relatively high expression of VAMP7 had shorter overall and disease-free survival time. i Rescue assay confirmed that NR2F1-AS1 knockdown
inhibited GC progression through regulating VAMP7 expression. **P < 0.01.

RNA-RNA duplex with the overlapping sequences of their
transcripts [21, 29]. In addition, accumulating evidences showed
that antisense IncRNAs can participate the transcription of nearby
genes by recruiting transcription-related proteins or affecting
R-loop formation, or regulating the methylation of enhancers [30-
33]. Herein, we also observed a high co-expression between
NR2F1-AS1 and NR2F1 in pan-cancer and pan-tissue. Given that
NR2F1-AS and NR2F1 were together induced by EMT signaling
(Fig. 3) and depletion of NR2F1-AS1 inhibited NR2F1 expression
(Fig. 4), we considered that the co-expression between NR2F1-AS1
and NR2F1 was because they share the promoter and the
transcriptional regulation of NR2F1-AS1 on NR2F1. Interestingly, a
recent study has reported that NR2F1-AS1 expression was induced
by NR2F1 in esophageal squamous cell carcinoma [34]. However,
according to our gRT-PCR and RNA-seq analysis, NR2F1 over-
expression has no obvious effect on the expression of NR2F1-AS1
in GC (Fig. 4k).

The relationship between EMT and NR2F1/NR2F1-AS1 has not
been reported yet. Our previous work has identified a EMT-

Cell Death and Disease (2022)13:84

related IncRNA MAGI2-AS3 in GC [1]. In this study, we further
identified both NR2F1 and NR2F1-AS1 as EMT-induced genes in
GC, since NR2F-AS1 and NR2F1 were both positively regulated
by EMT signaling. Consistent with our findings, Feng et al. also
reported that NR2F1 is greatly declined in GC cells that silenced
Twist1, a well-known EMT-related transcription factor (EMT-TF)
[35]. These findings together suggested NR2F1 was positively
regulated by EMT signaling. However, after analysis of RNA-seq
data of NR2F1-AS1 knockdown, we found NR2F1-AS1 knock-
down has no significant effect on the expression of EMT-related
biomarker genes, such as E-cadherin, Vimentin, and ZEB1.
However, the specific role of NR2F1 during the EMT process
remains to be further explored in GC.

CONCLUSIONS

LncRNA NR2F1-AS1 and NR2F1 predicted poor prognosis in GC.
Both NR2F1-AS1 and NR2F1 are identified to be EMT-induced
genes in GC. The co-expression of NR2F1 and NR2F1-AS1 may be
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Fig. 7 NR2F1-AS1 acted as a sponge of miR-29a-3p to regulate

VAMP7 expression. a The subcellular distribution of NR2F1-AS1 in

SGC7901 cells. b NR2F1-AS1 transcripts were located in cytoplasm and nucleus of GC cells. ¢ GO analysis confirmed NR2F1-AS1 knockdown
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Both NR2F1-AS1 and VAMP7 showed a significant negative expression correlation with miR-29a-3p in the GC cohort from TCGA. **P < 0.01.

partly due to the regulation of NR2F1 by NR2F1-AS1. A novel
ceRNA network composed of NR2F1-AS1, miR-29a-3p, and VAMP7
was identified in GC. Our finding highlights that oncogenic IncRNA
NR2F1-AS1 promotes GC metastasis through regulating miR-29a/
VAMP?7 signal axis.

SPRINGER NATURE

MATERIALS AND METHODS

Microarray data analysis of GSE62254 and pan-cancer analysis
in TCGA

The gene expression data in GSE62254 used in this study was downloaded
from the NCBI web server. The clinical information of GC patients in
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GSE62254 cohort was download as we described previously [12]. RNA-Seq
data of 407 gastric cancer samples and the correlated clinical information
of 443 gastric cancer samples were downloaded from the Cancer Genome
Atlas (TCGA). Expression level of each gene was calculated from log2 of its
upper quartile FPKM (FPKM-UQ) value.

Cell transfection and establishment of cell lines

Human gastric cancer cell lines were purchased from GeneChem
(Shanghai, China). The siRNAs listed in Table S1 were designed and
synthesized by Genepharma (Shanghai, China). The lentiviruses for
overexpression of NR2F1 and OVOL2 in GC cell lines were purchased
from GeneChem (Shanghai, China). For TGF-beta treatment, 10 ng/ml
recombinant TGF-B1 (cat. no. HZ-1011; Proteintech, Wuhan, China) was
added to the medium. GC cells were cultured for at 37 °C as usual. At the
indicated time points, the cells were harvested for mRNA and protein
analysis as well as for other assays.

RNA sequencing

The total RNA in GC cells was extracted to perform RNA sequencing (RNA-
seq). A total amount of 1.5 ug RNA per sample was used as input material for
the RNA sample preparations. The whole step of library construction and
sequencing was performed at Shanghai Lifegenes Technology Co., Ltd. The
RNA-seq data was uploaded in Table S2. The GEO accession number is
GSE183538.

Subcellular location of IncRNA

The Nuclear/cytoplasmic RNA isolation and RNA FISH assay was conducted as
we previously described [21]. For Nuclear/cytoplasmic RNA isolation,
cytoplasm RNA and nuclear RNA were extracted using the nuclear-
cytoplasmic separation kit (BB-36021-2, BestBio, China). After Quantitative
RT-PCR, comparative AC; method was used to examine the relative
distribution of RNA. For RNA FISH assay, The 5’FAM-NR2F1-AS1 probes were
designed and synthesized by Sangon Biotech (Shanghai). After incubation
and hybridization, images were taken with a confocal microscope (Zeiss).

RNA isolation and quantitative RT-PCR

Total RNA was extracted using Trizol reagent (Invitrogen, USA). Reverse
transcription was performed to obtain cDNA by using the PrimeScript™ RT
reagent Kit (Perfect Real Time, Takara). The qPCR protocol was using One Step
TB Green PrimeScriptT'Vl RT-PCR Kit Il (Takara) according to the manufacturer's
instructions. The gPCR analysis was conducted on Bio-Rad CFX Manager 3.1
real-time PCR system. All the primers listed in Table S1 were synthesized by
Wcgene Biotech (Shanghai, China). RNU6B (U6) and ACTB were used as
internal controls. Each gene was run in triplicate. Relative fold changes of gene
expression were calculated using the comparative 22Ct method. All primers
listed in Table S1 were synthesized by Wcgene Biotech (Shanghai, China).

Western blot assay
Gastric cancer cells were lysed in RIPA buffer added 1mM PMSF.
Approximately 100 ug of total protein was electrophoresed through 10%
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SDS polyacrylamide gels and were then transferred to a PVDF membrane. After
blocking with 5% skimmed milk at 4 °C for 1 h, the membrane was incubated
with primary antibody at 4 °C overnights. The blots were then washed and
incubated with horseradish peroxidase (HRP)-conjugated secondary antibody
(1:10,000, Earthox) for 1.5 h at room temperature. Detection was performed by
using a SuperLumia ECL HRP Substrate Kit (Abbkine) and visualized using a
Bio-Rad Imaging System (USA). The VAMP7 antibody used in this study was
purchased from ABclonal (A18698, Wuhan, China).

Dual luciferase reporter assay

The wildtype and mutant NR2F1-AS1 fragment were amplified by PCR and
ligated into the pEZX-FRO1-dual luciferase reporter vector (GeneCopoeia, USA).
GC cells were seeded into 12-well-tissue plates 24 h before transfection, and
then co-transfected with 5ng siRNA and 1 mg plasmid using the Lipofecta-
mine 2000 Reagent (Invitrogen), according to the manufacturer’s instructions.
After another 48 h, cells were assayed using the Dual-Luciferase reporter assay
system kit (GeneCopoeia, USA). All experiments were performed in triplicate
and data were pooled from three independent experiments.

Flow cytometry assay

After 48 h transfected with siRNAs and corresponding negative control
siRNAs, SGC7901, and AGS cells were collected and performed cell cycle
assay and cell apoptosis assay in accordance with the manufacture’s
protocol (BB-4104, BestBio, China). Flow cytometry assays were performed
on the CytoFLEX machine (Beckman, USA). The cell cycle and cell apoptosis
distribution were quantified using the CytExpert software.

Statistical analysis

For gene expression analysis of different subtypes of GC, the P values were
estimated using Mann-Whitney nonparametric test. Survival curves were
calculated using the Kaplan-Meier method, and differences between the
curves were analyzed using the log-rank test. All the rest of the
experiments were used unpaired t-test or one-way ANOVA test. For all
experiments, a minimum of triplicates per group and repetition of at least
three times was applied to achieve reproducibility. All the gene expression
correlation analysis were used spearman test. The regression line was
generated by corresponding R package. All tests with P values less than
0.05 considered statistically significant.

DATA AVAILABILITY
The datasets generated during the current study are available in the GEO repository
(GSE183538).
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