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Abstract 

Background:  Functional lung MRI techniques are usually associated with time-consuming post-processing, where 
manual lung segmentation represents the most cumbersome part. The aim of this study was to investigate whether 
deep learning-based segmentation of lung images which were scanned by a fast UTE sequence exploiting the stack-
of-spirals trajectory can provide sufficiently good accuracy for the calculation of functional parameters.

Methods:  In this study, lung images were acquired in 20 patients suffering from cystic fibrosis (CF) and 33 healthy 
volunteers, by a fast UTE sequence with a stack-of-spirals trajectory and a minimum echo-time of 0.05 ms. A convo-
lutional neural network was then trained for semantic lung segmentation using 17,713 2D coronal slices, each paired 
with a label obtained from manual segmentation. Subsequently, the network was applied to 4920 independent 2D 
test images and results were compared to a manual segmentation using the Sørensen–Dice similarity coefficient 
(DSC) and the Hausdorff distance (HD). Obtained lung volumes and fractional ventilation values calculated from both 
segmentations were compared using Pearson’s correlation coefficient and Bland Altman analysis.

To investigate generalizability to patients outside the CF collective, in particular to those exhibiting larger consolida-
tions inside the lung, the network was additionally applied to UTE images from four patients with pneumonia and 
one with lung cancer.

Results:  The overall DSC for lung tissue was 0.967 ± 0.076 (mean ± standard deviation) and HD was 4.1 ± 4.4 mm. 
Lung volumes derived from manual and deep learning based segmentations as well as values for fractional ventila-
tion exhibited a high overall correlation (Pearson’s correlation coefficent = 0.99 and 1.00). For the additional cohort 
with unseen pathologies / consolidations, mean DSC was 0.930 ± 0.083, HD = 12.9 ± 16.2 mm and the mean differ-
ence in lung volume was 0.032 ± 0.048 L.

Conclusions:  Deep learning-based image segmentation in stack-of-spirals based lung MRI allows for accurate esti-
mation of lung volumes and fractional ventilation values and promises to replace the time-consuming step of manual 
image segmentation in the future.
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Background
Four of the top ten global causes of deaths in 2016 were 
related to lung diseases: chronic obstructive pulmo-
nary disease (COPD), lower respiratory tract infections, 
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cancer and tuberculosis [1]. Imaging of the lungs thereby 
represents an important diagnostic tool for initial diagno-
sis and disease management. To date, the gold standard 
methodologies for lung imaging are computed tomogra-
phy (CT) and conventional radiography; however, due to 
constant developments, magnetic resonance (MR) imag-
ing evolves as a promising alternative for radiation-free 
imaging of the lungs [2].

In the last years, several studies investigated the fea-
sibility of MR imaging for assessment of functional 
parameters, i.e. ventilation and/or perfusion [3–8]. Con-
trast-enhanced approaches based on gadolinium chelate 
complexes [8, 9], noble [10, 11] or fluorinated gases [12] 
have been proposed, while Fourier decomposition [3, 13] 
and Self-gated Non-Contrast-Enhanced Functional Lung 
imaging (SENCEFUL) [4, 14] represent methods which 
completely waive the administration of any contrast-
agent. Recently, SENCEFUL was combined with ultra-
short echo time (UTE) imaging [15] to yield higher signal 
gain from lung tissue compared to standard non-UTE 
imaging sequences [16]. Furthermore, a stack-of-spirals 
trajectory [17], as introduced and thoroughly compared 
to the spherical counterpart for lung imaging in Dournes 
et  al. [18], has been applied to significantly shorten the 
overall scan duration for UTE-based functional lung 
MRI [19, 20]. Besides improved scan-times, however, 
post-processing for functional image analysis is cum-
bersome up to now. In particular, lung segmentation is 
required for an overall quantification of functional lung 
parameters like fractional ventilation and the determina-
tion of lung volumes for different breathing states. Due 
to varying signal intensities, image artifacts and non-
isotropic image resolution, automatic approaches based 
on thresholding or region-growing are prone to errors, 
such that tedious and time-consuming manual segmenta-
tion has most commonly been preferred in the past. In 
recent years, semi-automatic approaches [4, 13, 15] were 
proposed to reduce the user interaction and efforts have 
also been made to fully automate the segmentation step 
by constructing and applying a library of manually seg-
mented lung atlases [21].

With the growing success of exploiting machine learn-
ing in general, a plethora of post-processing techniques 
based on artificial neural networks (ANN) has also been 
proposed for medical imaging lately. Since, empirically, 
the human eye seems to be able to discriminate the lung 
parenchyma from other tissues regardless of inhomoge-
neities or image artifacts quite well, and ANNs are par-
ticularly well suited for perceptual tasks, corresponding 
methods have lately been implemented and tested also 
for lung imaging with promising results [22–27].

In this study, a 2D convolutional neural network 
(CNN) was trained and tested for semantic segmentation 

of lung images obtained from stack-of-spirals based UTE 
examinations to significantly shorten and simplify the 
post-processing workload for the fast functional lung MR 
imaging technique proposed in [20].

Methods
The study was approved by the local ethics committee 
and written informed consent was obtained from every 
participant prior to inclusion.

MR imaging and manual image segmentation
An image database was assembled from mid-2018 until 
mid-2019, comprising a total of 25,047 two-dimensional 
MR images of the lung in coronal orientation. The data-
base originates from 53 examinations (33 healthy vol-
unteers, 20 patients suffering from cystic fibrosis (CF)), 
each comprising a 3D coverage of the lung in 5 different 
breathing depths from deep expiration to deep inspira-
tion. Each of these individual respiratory phases was 
acquired in a respective breath-hold of the participant. 
This approach is typically performed to determine lung 
volumes as well as fractional ventilation values as sug-
gested in [20, 28].

All examinations were performed on a clinical 3 T MRI 
scanner (MAGNETOM Prisma, Siemens Healthcare, 
Germany) using a 3D UTE sequence based on a stack-
of-spirals trajectory [17]. The latter applies spiral read-
outs in two dimensions (coronal orientation in our study) 
and phase encoding in the remaining one. UTE contrast 
is enabled by minimizing the length of each individual 
phase encoding gradient, leading to shortest echo-times 
TEmin in the center of k-space and increasing echo-times 
towards higher partitions / values of k. This trajectory is a 
promising faster alternative to koosh-ball-like approaches 
[15], as the latter exhibit extreme and therefore time-
consuming oversampling in the center of k-space. Fur-
thermore, stack-of-spirals allow an anisotropic FOV, such 
that the dorsal–ventral dimension of the thorax can be 
scanned with a smaller FOV than the remaining dimen-
sions. The following imaging parameters were used: 
TEmin = 0.05  ms; TR = 2.35  ms; flip angle = 5°; in-plane 
resolution = 2.3 × 2.3  mm; slice thickness = 2.3  mm; 
number of spiral readouts per partition = 264. The num-
ber of acquired partitions depended on the individual 
thorax size of the subject. In order to scan the whole vol-
ume in one breath hold, 6/8 partial-Fourier imaging was 
used in slice encoding direction resulting in a scan time 
of ~ 14 s per breathing state. SPIRiT [29] was applied for 
image reconstruction (acceleration factor = 2).

The obtained images were segmented manually by an 
experienced user (radiologist with 2 + years of experi-
ence in lung MRI) via an in house-built segmentation 
tool allowing for manual delineation of the lung (ground 
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truth). In the resulting binary 2D masks each pixel was 
assigned either to class ‘lung’ or ‘background’. An exam-
ple of a 2D image and the corresponding manual seg-
mentation is presented in Fig. 1.

Convolutional neural network for semantic segmentation
A 2D convolutional neural network (CNN) was devel-
oped and trained to automatically perform semantic seg-
mentation of UTE lung images. A SegNet architecture 
[30] was implemented in MATLAB (Ver 2019b, Deep 
Learning Toolbox, The MathWorks, Natick, MA, USA), 
and weights were initialized by those from the VGG-16 
network. Exploiting weights from a network trained for 
image-handling—even though, not explicitly for the spe-
cial case targeted here—has been reported to result in 
faster convergence of the training than a random initiali-
zation [31].

The CNN was trained using a subset of 17,713 2D 
images in coronal orientation and corresponding labels 
from manual segmentation. An additional validation 
dataset consisting of 2414 images was used for an unbi-
ased evaluation during training, predominantly to avoid 
overfitting. Adaptive moment estimation (ADAM) was 
used as training optimizer and cross entropy as loss 
function. The initial learning rate was set to 5e−4, with 
a scheduled learning rate drop each 20 epochs with a 
drop factor of 0.95. Class weights were applied to address 
the imbalance of the classes. The CNN was trained for 
588 epochs until the Sørensen-Dice similarity coeffi-
cient (DSC) and cross entropy loss of the validation set 
reached a steady state and validation did not yet indi-
cate overfitting. The final model was then used for seg-
mentation of the test subset. Training and evaluation 

of the network was performed on a personal computer 
(Intel Core i7-3820 CPU @ 3.6 GHz, 64 GB RAM and a 
NVIDIA Titan XP GPU).

Evaluation of segmentation results
The performance of the trained 2D-CNN was evaluated 
by use of 4920 independent 2D test images, which were 
neither part of the training nor the validation data. Test 
data contained examinations from 5 healthy controls and 
5 CF-patients each consisting of 5 different breathing 
states.

Statistical analysis
Global accuracy of the network was assessed by divid-
ing the absolute number of correctly classified pixels by 
the number of all pixels in the dataset. For the two labels 
lung and background, class accuracy was calculated as 
the ratio of correctly classified pixels to the total num-
ber of pixels in that class, according to the ground truth. 
The performance of the network in terms of lung detec-
tion in general was assessed via calculation of the num-
ber of true positive cases (TP, lung tissue detected in both 
manual and automatic approach), true negative cases 
(TN, no lung label in neither of the two approaches), false 
positive cases (FP, lung detected by the network while no 
lung label was drawn by the manual operator) and the 
false negative cases (FN, no lung detected by the network 
while the manual operator detected lung). From these 
numbers, the recall was calculated as TP/(TP + FN) and 
the precision as TP/(TP + FP).

Similarity of the segmentations from the manual oper-
ator and the network was assessed via the Sørensen-
Dice similarity coefficient (DSC) [32] and the Hausdorff 

Fig. 1  Representative morphologic image (left) with superimposed labels of manual segmentation (right)
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distance (HD) [33, 34]. For determining the latter, open 
source software was used ([35] software package down-
loaded from http://​github.​com/​codal​ab/​Evalu​ateSe​gment​
ation). In a DSC sub analysis, the 2D images were binned 
to cover fractions of 10% of the lung from the ventral 
to the dorsal parts of the chest in order to evaluate the 
performance of the CNN across the thorax. Results 
are expressed as means ± standard deviation. To check 
whether the network performs better in one of the two 
groups (healthy controls, CF-patients) values of DSC and 
HD were compared via a Mann–Whitney-U-test.

Obtained values for the lung volume and the fractional 
ventilation were compared via linear regression and a 
Bland–Altman analysis. Fractional ventilation was calcu-
lated as proposed earlier [4, 36], providing values in ml 
gas per ml lung tissue: Briefly, after a registration of all 
breathing states to one intermediate breathing state, sig-
nal intensity during inspiration was subtracted from the 
signal intensity in expiration and the resulting value was 
ultimately divided by the signal intensity in expiration.

Finally, the obtained lung volumes were also compared 
via a Wilcoxon-Singed-Rank-Test to find possible signifi-
cant differences between the two approaches.

Generalizability
In our center, CF has been the main focus of previ-
ous MR-UTE studies. Therefore, annotated images, i.e. 
images and corresponding manual segmentation masks, 
were available for this collective only. To test the net-
work’s performance in patients suffering from other lung 
diseases, in particular in those with large consolidations, 
i.e. substantial changes in image contrast, possibly even 
interrupting the envelope of the lung, additional data-
sets were segmented both, manually and by the trained 
network: four datasets from patients with pneumonia 
and one dataset from a patient with a tumor in the lung. 
Such cases are typically challenging for algorithms based 
on region growing since the growing process would stop 
at the egde of consolidations with high signal intensities. 
In these datasets (488 images in total), only the DSC, HD 
and the lung volume were used for quality assessment 
since data has been obtained in only one breathing state 
and thus, calculation of fractional ventilation was not 
possible.

Results
No significant differences in performance of the convo-
lutional neural network were found between the data-
sets of the healthy controls and the CF-patients. Thus, 
results presented in the following paragraphs represent 
the entire test data set consisting of both, patients and 
controls. The average computation time needed for the 

segmentation of one 2D image was 87 ± 13 ms using the 
hardware described above.

Performance of the CNN on general lung detection
In the test subset of 4920 images, a total of 3298 con-
tained ground truth labels for lung tissue (67%). The 
model ended up with 3292 TP, 1614 TN, 8 FP and 6 FN 
cases. These numbers result in a recall of 99.8% and a 
precision of 99.8% in terms of general lung detection on 
2D lung images from stack-of-spirals based UTE-MRI.

Accuracy of lung detection by the CNN
The global accuracy was 99.9%. Accuracy for labels of 
the lung was 96.9% while for the background, the CNN 
reached a value of 100.0%.

Sørensen–Dice similarity coefficient for lung tissue and 
all 4920 coronal 2D images was 0.967 ± 0.076 with a 95% 
interval of confidence ranging from 0.965 to 0.970.

Figure 2 (left panel) exemplarily shows a coronal slice of 
a 3D UTE MR dataset with the CNN-based segmentation 
superimposed and a direct comparison of the two tech-
niques (right panel, DSC = 0.950). Values for the DSC of 
the different breathing depths are summarized in Table 1. 
In Fig.  3, representative examples of manual segmenta-
tions and according results obtained from model appli-
cation are depicted for comparatively high (DSC: 0.995) 
and low similarity (DSC: 0.874).

Table 2 summarizes the mean DSC values for the dif-
ferent sections of the lungs in bins from the anterior to 
the posterior part. The similarity of the segmentations 
was notably lower in ventral slices of the lung. Except for 
the most ventral section (DSC: 0.957 ± 0.081) all sections 
showed DSC values over 0.960 with a range from 0.960 
to 0.976.

Hausdorff distance is only defined if both datasets con-
tain the label for the class lung. Therefore, the 8 false 
positive and the 6 false negative slices were excluded 
from the calculation of the HD. The obtained values for 
HD are summarized in Table  2. On average, HD was 
4.1 ± 4.4 mm. Like the DSC, HD was larger in the most 
ventral parts (up to 5.3 ± 5.1 mm) and between 3.4 mm 
and 4.3  mm in the sections containing primarily lung. 
Interestingly, in the central section—containing the heart 
in most of the cases—a HD of 5.1 ± 2.1  mm was calcu-
lated while DSC values did not drop significantly here.

Lung volume and ventilation values
By use of the yielded segmentation, the total lung vol-
ume of each breathing depth and each volunteer of the 
test dataset was calculated. Results obtained when apply-
ing the CNN were compared to those based on manual 
post-processing. Linear regression yielded strong corre-
lation (R2 = 0.994, VolCNN = 0.936 * Volman + 0.149) and 

http://github.com/codalab/EvaluateSegmentation
http://github.com/codalab/EvaluateSegmentation
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the Bland–Altman analysis revealed a mean difference 
between manually and automatically obtained lung vol-
umes of -0.084 L and limits of agreement of − 0.243 L 
and 0.076 L. Figure 4 shows a scatterplot and the linear 
regression line including the resulting R2 and equation 
while Fig. 5 presents the Bland–Altman plot for the com-
parison of the obtained lung volumes. The plot in Fig. 5 
indicates a trend towards larger volumes for the manual 
segmentation. However, no significant difference was 
observed (p = 0.60).

Mean ventilation values calculated by means of the 
labels from manual segmentation was 0.12 ± 0.12 ml gas/
ml tissue while CNN-based segmentation delivered val-
ues of 0.12 ± 0.08 ml gas/ml tissue, yielding a strong cor-
relation (R2 = 0.993, VentCNN = 1.003 * Ventman – 0.001). 
The Bland–Altman analysis resulted in a mean difference 
between the two techniques of 0.00 ml gas / ml tissue and 
limits of agreement of − 0.01 and 0.01 ml gas/ml tissue. 
Figure  6 exemplarily presents two fractional ventilation 

maps: a healthy volunteer (left) shows homogenous 
ventilation while the CF-patient (right) presents a more 
heterogeneous ventilation pattern, which is an expected 
behavior according to [20].

Generalizability: datasets with consolidations 
inside the lung
In this additional set, application of the network was ana-
lyzed in a total of 488 images. A lung label was present 
in both manual and CNN-based segmentations of 343 
images. In 11 images, the network detected lung tissue 
while no label was defined by the manual observer. Con-
versely, the network did not detect lung tissue in three 
images where the manual observer set a lung label. In 131 
images no lung was segmented in both cases.

The mean DSC of the 345 images with lung labels 
in both segmentations was 0.930 ± 0.083 and the HD 
yielded 12.9 ± 16.2 mm. The mean difference in lung vol-
ume was 0.032 ± 0.048 L.

Fig. 2  Morphologic image with superimposed labels obtained by applying the proposed model (left, same slice as in Fig. 1) and direct comparison 
of the two labels (right): yellow—manual, blue—automatic, green—consensus (DSC: 0.950)

Table 1  Presented are mean and corresponding standard deviation of the overall dice similarity coefficient and separated for the 
different breathing states

Overall Inspiration Intermediate Expiration

Deep Normal Normal Deep

DSC

 Mean 0.967 0.975 0.974 0.977 0.977 0.978

 std 0.076 0.043 0.048 0.045 0.042 0.036

HD (mm)

 Mean 4.1 4.0 4.4 4.1 4.0 4.4

 std 4.4 0.6 1.3 0.6 0.6 0.9
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Fig. 3  Examples of different segmentation results are presented for direct comparison (upper row, yellow—manual, blue—automatic, green—
consensus). Corresponding anatomic images are presented in the lower row. Left: An almost perfect overlap of the manual and the automatic 
segmentation (DSC: 0.995). Right: A slice near the chest wall with low overlap between manual and deep learning based segmentation (DSC: 0.874)

Table 2  Division of the lung segmentation in parts of 10% starting at the ventral (1) and ending at the most dorsal (10) section. The 
most ventral part delivered a notably smaller mean DSC value with an also larger standard deviation. HD shows a similar behavior with 
higher values in the two most ventral parts

1 2 3 4 5 6 7 8 9 10

DSC

 Mean 0.957 0.964 0.960 0.960 0.970 0.971 0.972 0.976 0.974 0.965

 std 0.081 0.060 0.077 0.090 0.056 0.058 0.053 0.029 0.055 0.077

HD (mm)

 Mean 5.3 4.6 3.8 3.9 3.8 4.2 5.1 4.3 3.4 3.5

 std 5.1 3.4 1.0 1.2 0.9 1.7 2.1 1.5 0.9 0.9
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The first row in Fig.  7 shows an example of a patient 
with consolidations as a consequence of pneumonia after 
stem cell transplantation. In this case, both segmenta-
tions show high similarity according to a DSC of 0.979.

Another example of a different patient is presented in 
the second row of Fig. 7 where the consolidations are cor-
rectly labeled as lung tissue (DSC: 0.992). A slice of the 
same patient was poorly segmented due to consolidations 
with high signal intensity (third row; DSC: 0.868). The 
last row of Fig.  7 shows an example of a patient with a 
tumor disrupting the lung envelope (red circle in the ana-
tomical image). The manual observer as well as the neu-
ral network did not include the solid tumor in the lung 
label resulting in a DSC of 0.947 for this particular image.

Discussion
The trained CNN enabled fully automatic and accu-
rate segmentation in lung images obtained from stack-
of-spirals-based UTE acquisitions. The Sørensen-Dice 
similarity coefficient, the Hausdorff distance as well as 
the strong correlation between manually and automati-
cally derived lung volumes suggest an overall very good 
performance of the new approach with no significant 
drawbacks with respect to the cumbersome manual pro-
cessing applied so far.

Slightly lower DSC values (0.957 ± 0.081) and higher 
HD values (5.3  mm ± 5.1  mm) were computed for the 
ventral part of the lung, however, without a large impact 
on calculation of the entire lung volumes, as reflected 
by a low mean difference between the two techniques 
in the Bland–Altman analysis (Fig. 5). The weaker per-
formance in segmenting the ventral (see Fig.  3, right 
column) parts of the lung might be explained by differ-
ent reasons: Differentiation of pulmonary parenchyma 

Fig. 4  Scatterplot of the lung volumes obtained via the 
convolutional neural network vs. the lung volumes obtained via 
manual segmentation. Circles denote data from healthy volunteers 
while the triangles represent data from the patients suffering from 
cystic fibrosis. Linear regression was performed over all datapoints 
and resulted in a strong correlation

Fig. 5  Bland–Altman-Plot of the comparison between manually and automatically obtained lung volumes. The dotted line represents the mean 
difference (-0.084 L) while the dashed lines define the lower (− 0.243 L) and upper (0.076 L) limit of agreement. Triangles represent data from 
CF-patients and circles denote data from the healthy volunteers



Page 8 of 11Weng et al. BMC Med Imaging           (2021) 21:79 

and thoracic wall is challenging for the human opera-
tor, especially because of partial volume effects and sus-
ceptibility artifacts at the tissue interfaces, which may 
lead to inconsistencies in the training data provided 
by a single manual operator. Secondly, those images of 
the periphery of the lungs are underrepresented in the 
training data, as each dataset comprises a high num-
ber of central slices and only a few slices at the edges, 
which additionally show a higher heterogeneity in their 
overall appearance.

In literature, artificial neural networks with a 3D 
architecture have been implemented and applied 
recently e.g. for the tracking of potential pulmonary 
perfusion biomarkers in chronic obstructive pulmonary 
disease patients [22] and for fully automated lung lobe 
segmentation in volumetric chest computed tomogra-
phy images [24]. Both studies report a good overall per-
formance of the networks (overall DSC 0.934 [22] and 
0.948 [24]) but did not evaluate the performance with 
respect to possible dorsal or ventral inaccuracies leav-
ing this comparison for further studies. In [37], 3D lung 
images were processed by a CNN trained with a tem-
plate-based data augmentation strategy resulting in an 
overall very good DSC of 0.94 ± 0.02.

A previous study specifically focused on reducing the 
Hausdorff distance by means of a tailored loss function 
within the training process of a convolutional neural net-
work [34]. The method was applied for investigations of 
the prostate (2D ultrasound and 3D MRI), the liver (3D 
computed tomography) and the pancreas (3D computed 
tomography). HD distances from 2.6 to 4.3  mm are 
reported which correspond to a comparable performance 
as observed for the method presented here.

In general, performance of a specific network always 
depends on the training data available and generalizabil-
ity is not granted per se. Restricting parameters are sig-
nal-to-noise ratio, resolution, number of dimensions (2D 
vs. 3D) among several others. However, additional train-
ing of an existing model with own data (transfer learning) 
might allow the integration of previously published net-
works into one’s own clinical workflow or research envi-
ronment.Our trained model can be downloaded here: 
https://​github.​com/​expRad/​LungS​egmen​tation.

Limitations
Even though the presented approach resulted in satis-
fying performance for the aimed purpose, with quality 
metrics within the range of the 3D approaches discussed 
above, a 3D CNN architecture might also be advanta-
geous for the application focused in this study. With the 
size of the database acquired so far, however, sample size 
(~ 215 3D images) was estimated to be better suited for 
2D processing, with a lower tendency towards overfit-
ting. We therefore preferred splitting the reconstructed 
3D images into 2D coronal slices, each representing 
a separate dataset for the 2D architecture used in our 
study. Nevertheless, the acquisition and inclusion of new 
cases is ongoing, such that the evaluation of a 3D CNN as 
a potentially better alternative represents an interesting 
study for future work. One additional potential issue of 
a 3D architecture remains the fact that the processing on 
a GPU requires a larger amount of memory, which is not 
always available.

In addition, a variety of alternative 2D architectures 
have been presented for semantic segmentation (Unet 
[38] or other fully convolutional networks [39]). However, 

Fig. 6  Exemplary ventilation maps of a healthy volunteer (left) and a patient with cystic fibrosis (right). The homogeneous appearance throughout 
the healthy lung is in great contrast to the expected heterogenous ventilation pattern of the CF-patient

https://github.com/expRad/LungSegmentation
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a direct comparison of several currently popular archi-
tectures was beyond the scope of our study.

As can be seen in Figs. 1,2 and 3, we did not implement 
a separate step to eliminate vessels from the lung labels as 
performed in [27]. That might impair results for volume 
and ventilation even if the segmentations show high simi-
larity to the manual post processing. However, previous 
studies showed that fractional ventilation can be reason-
ably calculated without a separate vessel extraction [4, 20, 
28].

As already discussed, one crucial point during the 
development of such networks is the need for a sufficient 
amount of data for training, validation and testing. In the 
present study, data from 33 healthy volunteers and 20 CF-
patients was available, which were exclusively scanned on 
the same 3 T scanner with the 3D stack-of-spirals UTE 
sequence protocol. While this led to satisfying results for 
the application targeted here, it might limit the generali-
zation to acquisitions performed on scanners from dif-
ferent vendors, alternative UTE approaches and patient 
cohorts. The latter issue was assessed for our model by 
means of an additional substudy on subjects with pneu-
monia and a tumor in the lung. Overall DSC (0.930) was 
lower compared to the main study, however still within 
the range of earlier publications on automatic semantic 
segmentation of MR lung images. In detail, focal con-
solidations of medium size at the edges of the lung were 
interpreted in accordance between manual operator and 
CNN. Rather severe diffuse infiltrations covering large 
parts of the whole lung with strong changes in contrast 
led to incorrect segmentations by the neural network 
in scattered slices. Taking into account that the training 
data contained no relevant pathologies, these findings for 
extreme cases are not surprising. Nevertheless, the devel-
oped model can be subjected to a corresponding transfer 
learning with additional data to extend its applicability in 
this direction any time.

Conclusions
In conclusion, the investigated convolutional neural net-
work proved its capability for highly accurate segmenta-
tion of lung tissue in time-efficient 3D UTE acquisitions 
based on the stack-of-spirals k-space trajectory. The 
incorporation of the developed and evaluated method 
into the post-processing chain of the described MR-
based functional lung imaging technique reduces manual 
interactions to a minimum and consequently facilitates 
the execution of large-scale studies in this field.
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