research communications

Received 5 August 2014 Accepted 28 August 2014

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; Co^{II} complex; Schiff base ligand; pyridine-2-carbaldehyde; anthranilic acid; hydrogen bonding

CCDC reference: 1021534 Supporting information: this article has supporting information at journals.iucr.org/e

OPEN 👌 ACCESS

Crystal structure of bis(2-{[(pyridin-2-yl)methylidene]amino}benzoato- $\kappa^3 N, N', O$)cobalt(II) N, N-dimethylformamide sesquisolvate

Elena A. Buvaylo, a Vladimir N. Kokozay, a Olga Yu. Vassilyeva $^{\rm a\ast}$ and Brian W. Skelton $^{\rm b}$

^aDepartment of Inorganic Chemistry, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, Kyiv 01601, Ukraine, and ^bCentre for Microscopy, Characterisation and Analysis, M313, University of Western Australia, Perth, WA 6009, Australia. *Correspondence e-mail: vassilyeva@univ.kiev.ua

The title compound, $[Co(C_{13}H_9N_2O_2)_2]\cdot 1.5C_3H_7NO$, is formed as a neutral Co^{II} complex with dimethylformamide (DMF) solvent molecules. The Co^{II} atom has a distorted O_2N_4 octahedral coordination sphere defined by two tridentate anionic Schiff base ligands with the O atoms being *cis*. The coordination sphere around the Co^{II} atom is geometrically different from that reported for the co-crystal $[Co(C_{13}H_9N_2O_2)_2]\cdot AA\cdot H_2O$ (AA is anthranilic acid). One of the DMF solvent molecules was modelled as being disordered about a crystallographic inversion centre with half-occupancy. The crystal structure is made up from alternating layers of complex molecules and DMF molecules parallel to (010). C-H···O hydrogen-bonding interactions between the complex molecules and the solvent molecules consolidate the crystal packing.

1. Chemical context

Metal complexes containing Schiff bases are the most fundamental chelating systems in coordination chemistry. Their interesting chemical and physical properties and their wideranging applications in numerous scientific areas have been explored widely (Vigato *et al.*, 2012). During the last few years, we have investigated the chemistry of 3*d* metal complexes of Schiff base ligands with the aim of preparing mono- and heterometallic polynuclear compounds.

Recently, we have investigated the coordination behaviour of the tridentate carboxylate Schiff base ligand 2-*N*-(2'pyridylimine)benzoic acid (HL), which results from the condensation between pyridine-2-carbaldehyde and anthranilic acid (AA) and reported the cation–anion complex $CrL_2NO_3 \cdot H_2O$ (Buvaylo *et al.*, 2014*a*) and co-crystals of ML_2

Figure 1

The molecular structure of the title complex, showing the atomnumbering scheme. Non-H atoms are shown as displacement ellipsoids at the 50% probability level.

(M = Co, Ni, Zn) and anthranilic acid (Buvaylo *et al.*, 2014*b*). The respective compounds were prepared by *in situ* Schiff base synthesis. ML_2 molecules of the isotypic $\text{Co}L_2 \cdot \text{AA} \cdot \text{H}_2\text{O}$ and $\text{Ni}L_2 \cdot \text{AA} \cdot \text{H}_2\text{O}$ co-crystals retained the intramolecular distances M - (N,O) as found in the structure of the 'native' Schiff base metal complex $\text{Ni}L_2 \cdot \text{H}_2\text{O}$ (Mukhopadhyay & Pal, 2005). The crystal packing of the co-crystals was described as an insertion of the organic molecules between the layers of ML_2 complexes as they occur in the reported $\text{Ni}L_2 \cdot \text{H}_2\text{O}$ structure.

The title compound, $[Co(C_{13}H_9N_2O_2)_2]\cdot 1.5C_3H_7NO$, was prepared similarly to the co-crystals (Buvaylo *et al.*, 2014*b*) but using additional $[Cd(CH_3COO)_2]\cdot 2H_2O$ in an attempt to prepare a heterometallic compound with HL. The obtained crystals, however, did not appear to contain anthranilic acid molecules or cadmium.

2. Structural commentary

The asymmetric unit of the title compound consists of one neutral CoL_2 molecule and 1.5 dimethylformamide (DMF) solvent molecules, of which one is fully ordered, the other being disordered about a crystallographic inversion centre. The CoL_2 molecule has no crystallographically imposed symmetry. The ligand molecules are deprotonated at the carboxylato oxygen atom and coordinate to the Co^{II} atom

 Table 1

 Selected bond lengths (Å).

Table 2

Co1-O41	2.0072 (12)	Co1-N10	2.1189 (13)
Co1-O21	2.0181 (13)	Co1-N31	2.1358 (14)
Co1-N30	2.1057 (13)	Co1-N11	2.1498 (14)

Table	4				
Hydro	gen-hond	geometry	(Å	°)	

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C10-H10\cdots O42^{i}$	0.95	2.46	3.393 (2)	169
$C102 - H10E \cdot \cdot \cdot O42^{ii}$	0.98	2.46	3.369 (3)	154
C16-H16···O101	0.95	2.41	3.326 (3)	163
$C201 - H20C \cdot \cdot \cdot O22^{iii}$	0.98	1.97	2.819 (10)	143
$C23-H23\cdots O42^{i}$	0.95	2.60	3.454 (2)	150
$C30-H30\cdots O22^{iv}$	0.95	2.42	3.344 (3)	163
$C36{-}H36{\cdots}O201^v$	0.95	2.54	3.235 (13)	130

Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) -x + 1, -y + 1, -z + 1; (iii) x, y - 1, z; (iv) -x + 1, -y + 2, -z + 2; (v) x, y + 1, z.

through the azomethine, pyridine-N and carboxylato-O atoms in such a way that the metal atom is octahedrally surrounded by two anionic ligands with *cis* O atoms (Fig. 1, Table 1). The octahedral geometry is severely distorted: the Co–(N,O) distances fall in the range 2.0072 (12)–2.1498 (14) Å, the *trans* angles at the Co^{II} ion lie in the range 161.53 (6)–177.35 (5), the *cis* angles vary from 77.91 (5) to 103.70 (5)°. Surprisingly, the coordination geometry around the Co^{II} ion is markedly different from that of CoL₂·AA·H₂O (Buvaylo *et al.*, 2014*b*) where the Co–(N,O) distances range from 1.990 (2) to 2.088 (18) Å, and the *trans* and *cis* angles at the Co^{II} ion vary from 167.96 (6) to 176.95 (7) and from 80.93 (7) to 98.81 (7)°, respectively. The reason for such a discrepancy could be the absence of classical hydrogen bonds in the title compound in

Figure 2

Packing diagram showing alternating layers of $[CoL_2]$ and DMF molecules. CH hydrogens have been omitted for clarity.

research communications

Table 3Experimental details.

Crystal data	
Chemical formula	$[Co(C_{13}H_9N_2O_2)_2] \cdot 1.5C_3H_7NO$
$M_{ m r}$	619.02
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	100
<i>a</i> , <i>b</i> , <i>c</i> (Å)	8.4361 (6), 13.2603 (10), 13.8664 (10)
$lpha,eta,\gamma$ (°)	110.061 (7), 103.559 (6), 101.430 (6)
$V(Å^3)$	1348.9 (2)
Z	2
Radiation type	Μο Κα
$\mu (\mathrm{mm}^{-1})^{1}$	0.69
Crystal size (mm)	$0.40\times0.30\times0.18$
Data collection	
Diffractometer	Oxford Diffraction Xcalibur
Absorption correction	Analytical [<i>CrysAlis PRO</i> (Agilent, 2011) using an expression derived by Clark & Reid (1995)]
T_{\min}, T_{\max}	0.821, 0.898
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	33209, 10748, 8599
R _{int}	0.036
$(\sin \theta / \lambda)_{\max} (\mathring{A}^{-1})$	0.787
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.048, 0.127, 1.05
No. of reflections	10748
No. of parameters	410
No. of restraints	35
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.74, -0.54

Computer programs: CrysAlis PRO (Agilent, 2011), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976), DIAMOND (Brandenburg, 1999) and publCIF (Westrip, 2010).

contrast to the co-crystal $CoL_2 \cdot AA \cdot H_2O$. A metal site with mixed (Co/Cd) occupancy for the title compound was ruled out by the refinement.

3. Supramolecular features

The crystal lattice is built of alternating layers of complex CoL_2 molecules and DMF molecules parallel to (010) (Fig. 2). Neighbouring CoL_2 molecules within a layer are related by an inversion centre with $Co\cdots Co$ separations of 6.8713 (6) and 6.9985 (6) Å. Weak $C-H\cdots O$ hydrogen-bonding interactions between the complex molecules and the solvent molecules lead to a consolidation of the crystal packing.

4. Synthesis and crystallization

The Schiff base ligand HL was prepared by refluxing pyridine-2-carbaldehyde (0.38 ml, 4 mmol) with anthranilic acid (0.55 g, 4 mmol) in 20 ml methanol for half an hour. The resultant yellow solution was left in open air overnight and used without further purification.

To a stirred DMF solution (5 ml) of $Cd(CH_3COO)_2 \cdot 2H_2O$ (0.53 g, 2 mmol) in a 50 ml conic flask, HL (0.21 g, 4 mmol) in methanol from the previous preparation was added. The

solution was magnetically stirred at 323 K for 20 minutes and a yellow precipitate of a Cd complex formed. $Co(CH_3COO)_{2}$ -4H₂O (0.25 g, 1 mmol) in DMF (10 ml) was added to the reaction mixture after a week. The mixture was stirred magnetically at 323 K for an hour, however, the yellow precipitate did not dissolve and was filtered off. The resulting red–brown solution was left to evaporate at room temperature. Red–brown block-like crystals of the title compound formed the next day. They were collected by filter-suction, washed with dry isopropanol and finally dried *in vacuo* (yield: 23% based on cobalt salt). Analysis for $C_{26}H_{18}CoN_4O_4$ -1.5 C_3H_7NO calculated (%) C: 59.18 H: 4.64 N: 12.45 Co: 9.52. Found (%) C: 59.33 H: 4.49 N: 12.41 Co: 9.76. Spectroscopic data (IR, KBr) are available as an additional Figure in the supporting information.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The refinement of the metal occupancy as part Co and part Cd gave 100% Co. One solvent DMF molecule was modelled as being disordered about a crystallographic inversion centre with resulting half-occupancy and with geometries restrained to ideal values. All hydrogen atoms were placed at calculated positions and refined by use of the riding-model approximation, with $U_{iso}(H) = 1.2U_{eq}$ of the parent C atom.

Acknowledgements

This work was partly supported by the State Fund for Fundamental Researches of Ukraine (project 54.3/005). The authors acknowledge the facilities, scientific and technical assistance of the Australian Microscopy & Microanalysis Research Facility at the Centre for Microscopy, Characterization & Analysis, the University of Western Australia, a facility funded by the University, State and Commonwealth Governments.

References

- Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Brandenburg, K. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Buvaylo, E. A., Kokozay, V. N., Rubini, K., Vassilyeva, O. Yu. & Skelton, B. W. (2014b). J. Mol. Struct. 1072, 129–136.
- Buvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Y. & Skelton, B. W. (2014a). Acta Cryst. E70, m136.
- Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.
- Johnson, C. K. (1976). ORTEPH. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Mukhopadhyay, A. & Pal, S. (2005). J. Chem. Crystallogr. 35, 737-744.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Vigato, P. A., Peruzzo, V. & Tamburini, S. (2012). *Coord. Chem. Rev.* **256**, 953–1114.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2014). E70, 164-166 [doi:10.1107/S1600536814019485]

Crystal structure of bis(2-{[(pyridin-2-yl)methylidene]amino}benzoato- $\kappa^3 N, N', O$)cobalt(II) N, N-dimethylformamide sesquisolvate

Elena A. Buvaylo, Vladimir N. Kokozay, Olga Yu. Vassilyeva and Brian W. Skelton

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2011); cell refinement: *CrysAlis PRO* (Agilent, 2011); data reduction: *CrysAlis PRO* (Agilent, 2011); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPII* (Johnson, 1976) and *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *publCIF* (Westrip, 2010).

$Bis(2-\{[(pyridin-2-yl)methylidene]amino\}benzoato-\kappa^3N, N', O)cobalt(II) N, N-dimethylformamide sesquisolvate$

 $[Co(C_{13}H_9N_2O_2)_2] \cdot 1.5C_3H_7NO$ $M_r = 619.02$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 8.4361 (6) Å b = 13.2603 (10) Å c = 13.8664 (10) Å a = 110.061 (7)° $\beta = 103.559$ (6)° $\gamma = 101.430$ (6)° V = 1348.9 (2) Å³

Data collection

Oxford Diffraction Xcalibur diffractometer Graphite monochromator Detector resolution: 16.0009 pixels mm⁻¹ ω scans Absorption correction: analytical [*CrysAlis PRO* (Agilent, 2011) using an expression derived by Clark & Reid (1995)] $T_{\min} = 0.821, T_{\max} = 0.898$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.127$ S = 1.0510748 reflections 410 parameters Z = 2 F(000) = 642 $D_x = 1.524 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 10672 reflections $\theta = 2.8-34.5^{\circ}$ $\mu = 0.69 \text{ mm}^{-1}$ T = 100 KBlock, red-brown $0.40 \times 0.30 \times 0.18 \text{ mm}$

33209 measured reflections 10748 independent reflections 8599 reflections with $I > 2\sigma(I)$ $R_{int} = 0.036$ $\theta_{max} = 34^\circ, \ \theta_{min} = 2.8^\circ$ $h = -12 \rightarrow 13$ $k = -20 \rightarrow 19$ $l = -21 \rightarrow 21$

35 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} = 0.006$
$w = 1/[\sigma^2(F_o^2) + (0.0594P)^2 + 0.4745P]$	$\Delta \rho_{\rm max} = 0.74 \text{ e } \text{\AA}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta \rho_{\rm min} = -0.54 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger. One solvent dmf molecule was modelled as being disordered about a crystallographic inversion centre. The geometries were restrained to ideal values.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Col	0.50566 (3)	0.996180 (17)	0.747260 (16)	0.01696 (6)	
N11	0.28320 (17)	0.91486 (12)	0.60369 (11)	0.0197 (2)	
C12	0.2706 (2)	0.97508 (14)	0.54251 (12)	0.0194 (3)	
C13	0.1383 (2)	0.93697 (15)	0.44446 (14)	0.0255 (3)	
H13	0.1345	0.9792	0.4012	0.031*	
C14	0.0121 (2)	0.83562 (17)	0.41152 (15)	0.0307 (4)	
H14	-0.0801	0.8077	0.3453	0.037*	
C15	0.0221 (2)	0.77579 (16)	0.47596 (15)	0.0289 (4)	
H15	-0.0645	0.7073	0.4556	0.035*	
C16	0.1607 (2)	0.81754 (15)	0.57109 (14)	0.0245 (3)	
H16	0.1687	0.7755	0.6144	0.029*	
C10	0.4017 (2)	1.08481 (13)	0.58651 (12)	0.0192 (3)	
H10	0.4017	1.131	0.5472	0.023*	
N10	0.51714 (16)	1.11742 (11)	0.67961 (10)	0.0170 (2)	
C21	0.7536 (2)	1.26504 (14)	0.83458 (12)	0.0205 (3)	
C22	0.65025 (19)	1.22222 (13)	0.72478 (12)	0.0174 (3)	
C23	0.6816 (2)	1.28292 (14)	0.66229 (13)	0.0240 (3)	
H23	0.6106	1.2552	0.5888	0.029*	
C24	0.8144 (2)	1.38261 (15)	0.70634 (14)	0.0277 (3)	
H24	0.833	1.4234	0.6634	0.033*	
C25	0.9208 (2)	1.42328 (16)	0.81350 (15)	0.0285 (4)	
H25	1.0149	1.4901	0.8431	0.034*	
C26	0.8883 (2)	1.36573 (15)	0.87639 (14)	0.0269 (3)	
H26	0.9591	1.3952	0.9501	0.032*	
C20	0.7319 (2)	1.21453 (15)	0.91605 (13)	0.0240 (3)	
O21	0.69029 (16)	1.10880 (10)	0.88645 (9)	0.0232 (2)	
O22	0.7636 (3)	1.28251 (13)	1.01092 (11)	0.0475 (4)	
N31	0.31332 (17)	1.02612 (12)	0.82016 (11)	0.0203 (2)	
C32	0.2642 (2)	0.94913 (14)	0.85884 (12)	0.0197 (3)	
C33	0.1204 (2)	0.93994 (16)	0.89184 (13)	0.0257 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H33	0.0913	0.8875	0.9222	0.031*	
C34	0.0202 (2)	1.00887 (17)	0.87943 (13)	0.0284 (4)	
H34	-0.0811	1.0023	0.8986	0.034*	
C35	0.0694 (2)	1.08726 (17)	0.83884 (13)	0.0270 (3)	
H35	0.0025	1.1352	0.8296	0.032*	
C36	0.2188 (2)	1.09467 (16)	0.81177 (13)	0.0245 (3)	
H36	0.255	1.1504	0.7864	0.029*	
C30	0.3667 (2)	0.87175 (14)	0.85948 (12)	0.0205 (3)	
H30	0.3484	0.821	0.8931	0.025*	
N30	0.48205 (17)	0.87471 (11)	0.81309 (10)	0.0181 (2)	
C41	0.6719 (2)	0.78101 (13)	0.73476 (12)	0.0207 (3)	
C42	0.5915 (2)	0.80600 (13)	0.81452 (12)	0.0199 (3)	
C43	0.6270(2)	0.76728 (15)	0.89722 (14)	0.0271 (3)	
H43	0.5707	0.7825	0.9501	0.033*	
C44	0.7429 (3)	0.70727 (16)	0.90256 (15)	0.0329 (4)	
H44	0.7668	0.6823	0.9594	0.039*	
C45	0.8246 (3)	0.68328 (15)	0.82488 (15)	0.0313 (4)	
H45	0.9061	0.6434	0.8293	0.038*	
C46	0.7858 (2)	0.71809 (14)	0.74084 (14)	0.0261 (3)	
H46	0.838	0.6987	0.6861	0.031*	
C40	0.6515 (2)	0.81957 (14)	0.64211 (13)	0.0214 (3)	
O41	0.63573 (16)	0.91724 (11)	0.65820 (10)	0.0244 (2)	
O42	0.6581 (2)	0.75447 (12)	0.55549 (10)	0.0344 (3)	
C101	0.2797 (3)	0.5260 (2)	0.53693 (17)	0.0462 (6)	
H10A	0.1781	0.5472	0.5112	0.069*	
H10B	0.2719	0.4523	0.4839	0.069*	
H10C	0.3825	0.5826	0.5457	0.069*	
C102	0.4048 (3)	0.4635 (2)	0.6791 (2)	0.0492 (6)	
H10D	0.5229	0.5046	0.6912	0.074*	
H10E	0.3748	0.3864	0.6245	0.074*	
H10F	0.3947	0.4615	0.7475	0.074*	
N101	0.2892 (2)	0.52022 (14)	0.64083 (13)	0.0314 (3)	
C103	0.2097 (2)	0.57619 (16)	0.70349 (15)	0.0292 (4)	
H103	0.2267	0.5737	0.7728	0.035*	
O101	0.1172 (2)	0.63017 (13)	0.68000 (13)	0.0384 (3)	
C201	0.6583 (8)	0.4774 (8)	1.0471 (4)	0.074 (2)	0.5
H20A	0.6872	0.5372	1.1196	0.11*	0.5
H20B	0.7402	0.4981	1.0122	0.11*	0.5
H20C	0.6635	0.4067	1.0537	0.11*	0.5
C202	0.4086 (11)	0.5472 (7)	1.0070 (9)	0.094 (3)	0.5
H20D	0.4843	0.62	1.0193	0.141*	0.5
H20E	0.3758	0.5541	1.0718	0.141*	0.5
H20F	0.3056	0.5245	0.9445	0.141*	0.5
N201	0.4968 (10)	0.4635 (6)	0.9856 (6)	0.0754 (17)	0.5
C203	0.4235 (7)	0.3681 (6)	0.9046 (5)	0.0535 (12)	0.5
H203	0.4778	0.312	0.8829	0.064*	0.5
O201	0.2772 (15)	0.3581 (9)	0.8592 (9)	0.211 (4)	0.5

supporting information

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Col	0.01868 (10)	0.01863 (11)	0.01563 (10)	0.00464 (7)	0.00591 (7)	0.00978 (8)
N11	0.0208 (6)	0.0218 (6)	0.0165 (5)	0.0045 (5)	0.0054 (5)	0.0092 (5)
C12	0.0192 (6)	0.0232 (7)	0.0163 (6)	0.0063 (5)	0.0056 (5)	0.0091 (5)
C13	0.0258 (8)	0.0286 (8)	0.0208 (7)	0.0062 (6)	0.0038 (6)	0.0123 (6)
C14	0.0247 (8)	0.0347 (10)	0.0249 (8)	0.0029 (7)	-0.0012 (6)	0.0127 (7)
C15	0.0231 (8)	0.0294 (9)	0.0267 (8)	-0.0005 (6)	0.0024 (6)	0.0112 (7)
C16	0.0243 (7)	0.0252 (8)	0.0224 (7)	0.0019 (6)	0.0055 (6)	0.0124 (6)
C10	0.0223 (7)	0.0213 (7)	0.0171 (6)	0.0071 (5)	0.0075 (5)	0.0107 (5)
N10	0.0191 (6)	0.0183 (6)	0.0157 (5)	0.0061 (5)	0.0067 (4)	0.0084 (5)
C21	0.0247 (7)	0.0207 (7)	0.0176 (6)	0.0041 (6)	0.0087 (5)	0.0102 (5)
C22	0.0207 (6)	0.0172 (6)	0.0170 (6)	0.0059 (5)	0.0082 (5)	0.0087 (5)
223	0.0317 (8)	0.0237 (8)	0.0182 (7)	0.0058 (6)	0.0082 (6)	0.0120 (6)
C24	0.0372 (9)	0.0241 (8)	0.0243 (8)	0.0040 (7)	0.0110 (7)	0.0149 (7)
C25	0.0335 (9)	0.0239 (8)	0.0271 (8)	0.0017 (7)	0.0096 (7)	0.0133 (7)
C26	0.0305 (8)	0.0235 (8)	0.0213 (7)	-0.0004 (6)	0.0046 (6)	0.0102 (6)
C20	0.0273 (8)	0.0249 (8)	0.0182 (7)	0.0017 (6)	0.0070 (6)	0.0108 (6)
021	0.0260 (6)	0.0228 (6)	0.0201 (5)	0.0040 (4)	0.0039 (4)	0.0123 (4)
022	0.0860 (13)	0.0276 (7)	0.0186 (6)	-0.0018 (8)	0.0160 (7)	0.0088 (5)
N31	0.0203 (6)	0.0258 (7)	0.0176 (6)	0.0068 (5)	0.0067 (5)	0.0118 (5)
C32	0.0200 (7)	0.0224 (7)	0.0140 (6)	0.0021 (5)	0.0055 (5)	0.0068 (5)
C33	0.0246 (8)	0.0298 (8)	0.0192 (7)	0.0005 (6)	0.0102 (6)	0.0082 (6)
C34	0.0200 (7)	0.0399 (10)	0.0181 (7)	0.0039 (7)	0.0076 (6)	0.0056 (7)
C35	0.0238 (8)	0.0385 (10)	0.0179 (7)	0.0132 (7)	0.0063 (6)	0.0089 (7)
C36	0.0252 (8)	0.0333 (9)	0.0208 (7)	0.0130 (7)	0.0092 (6)	0.0143 (7)
C30	0.0245 (7)	0.0208 (7)	0.0145 (6)	0.0023 (6)	0.0056 (5)	0.0086 (5)
N30	0.0202 (6)	0.0179 (6)	0.0139 (5)	0.0025 (5)	0.0033 (4)	0.0071 (4)
C41	0.0233 (7)	0.0172 (7)	0.0171 (6)	0.0034 (5)	0.0027 (5)	0.0060 (5)
C42	0.0233 (7)	0.0165 (6)	0.0158 (6)	0.0035 (5)	0.0019 (5)	0.0063 (5)
C43	0.0380 (9)	0.0236 (8)	0.0184 (7)	0.0082 (7)	0.0044 (6)	0.0108 (6)
C44	0.0454 (11)	0.0269 (9)	0.0228 (8)	0.0134 (8)	0.0002 (7)	0.0121 (7)
C45	0.0380 (10)	0.0210 (8)	0.0285 (8)	0.0120 (7)	0.0002 (7)	0.0082 (7)
C46	0.0278 (8)	0.0207 (7)	0.0236 (7)	0.0071 (6)	0.0033 (6)	0.0056 (6)
C40	0.0207 (7)	0.0247 (8)	0.0191 (7)	0.0066 (6)	0.0062 (5)	0.0098 (6)
041	0.0304 (6)	0.0269 (6)	0.0244 (6)	0.0114 (5)	0.0145 (5)	0.0153 (5)
042	0.0531 (9)	0.0341 (7)	0.0206 (6)	0.0208 (7)	0.0145 (6)	0.0107 (5)
C101	0.0517 (13)	0.0484 (13)	0.0279 (9)	0.0014 (11)	0.0207 (10)	0.0063 (9)
C102	0.0334 (11)	0.0434 (13)	0.0490 (13)	0.0134 (10)	0.0020 (10)	0.0004 (11)
N101	0.0294 (8)	0.0303 (8)	0.0251 (7)	0.0033 (6)	0.0089 (6)	0.0035 (6)
C103	0.0306 (9)	0.0291 (9)	0.0251 (8)	0.0031 (7)	0.0119 (7)	0.0094 (7)
O101	0.0432 (8)	0.0358 (8)	0.0400 (8)	0.0142 (7)	0.0170 (7)	0.0165 (7)
C201	0.036 (3)	0.148 (6)	0.030 (2)	0.033 (3)	0.004 (2)	0.031 (3)
C202	0.055 (4)	0.078 (5)	0.136 (6)	0.025 (4)	0.035 (5)	0.024 (5)
N201	0.049 (2)	0.115 (4)	0.071 (3)	0.016 (4)	0.020 (3)	0.053 (4)
C203	0.043 (3)	0.079 (4)	0.056 (3)	0.033 (3)	0.019 (2)	0.039 (3)
O201	0.227 (7)	0.144 (6)	0.183 (7)	0.017 (6)	0.015 (6)	0.032 (6)

Geometric parameters (Å, °)

Co1—O41	2.0072 (12)	C35—C36	1.392 (2)
Co1—O21	2.0181 (13)	C35—H35	0.9500
Co1—N30	2.1057 (13)	C36—H36	0.9500
Co1—N10	2.1189 (13)	C30—N30	1.288 (2)
Co1—N31	2.1358 (14)	C30—H30	0.9500
Co1—N11	2.1498 (14)	N30—C42	1.421 (2)
N11—C16	1.338 (2)	C41—C46	1.398 (2)
N11—C16	1.338 (2)	C41—C42	1.409 (2)
N11—C12	1.351 (2)	C41—C40	1.524 (2)
C12—C13	1.394 (2)	C42—C43	1.404 (2)
C12—C10	1.466 (2)	C43—C44	1.382 (3)
C13—C14	1.390 (3)	C43—H43	0.9500
С13—Н13	0.9500	C44—C45	1.392 (3)
C14—C15	1.383 (3)	C44—H44	0.9500
C14—H14	0.9500	C45—C46	1.389 (3)
C15—C16	1.390 (2)	C45—H45	0.9500
С15—Н15	0.9500	C46—H46	0.9500
С16—Н16	0.9500	C40—O42	1.237 (2)
C10—N10	1.289 (2)	C40—O41	1.276 (2)
C10—H10	0.9500	C101—N101	1.453 (3)
N10-C22	1.428 (2)	C101—H10A	0.9800
C21—C26	1.403 (2)	C101—H10B	0.9800
C21—C22	1.410 (2)	C101—H10C	0.9800
C21—C20	1.525 (2)	C102—N101	1.456 (3)
C22—C23	1.404 (2)	C102—H10D	0.9800
C23—C24	1.384 (2)	C102—H10E	0.9800
С23—Н23	0.9500	C102—H10F	0.9800
C24—C25	1.392 (3)	N101—C103	1.336 (2)
C24—H24	0.9500	C103—O101	1.221 (2)
C25—C26	1.380 (2)	C103—H103	0.9500
С25—Н25	0.9500	C201—N201	1.366 (9)
С26—Н26	0.9500	C201—H20A	0.9800
C20—O22	1.241 (2)	C201—H20B	0.9800
C20—O21	1.265 (2)	C201—H20C	0.9800
N31—C36	1.339 (2)	C202—N201	1.442 (10)
N31—C32	1.347 (2)	C202—H20D	0.9800
C32—C33	1.391 (2)	C202—H20E	0.9800
C32—C30	1.468 (2)	C202—H20F	0.9800
С33—С34	1.387 (3)	N201—C203	1.278 (9)
С33—Н33	0.9500	C203—O201	1.204 (11)
C34—C35	1.382 (3)	C203—H203	0.9500
С34—Н34	0.9500		
O41—Co1—O21	103.70 (5)	C33—C32—C30	121.74 (15)
O41—Co1—N30	89.97 (5)	C34—C33—C32	118.64 (16)
O21—Co1—N30	90.57 (5)	C34—C33—H33	120.7

0.41 0.1 3110	01.01.(5)	632 632 1122	100 7
041—Co1—N10	91.81 (5)	С32—С33—Н33	120.7
O21—Co1—N10	90.92 (5)	C35—C34—C33	119.31 (15)
N30—Co1—N10	177.35 (5)	С35—С34—Н34	120.3
O41—Co1—N31	161.53 (6)	С33—С34—Н34	120.3
O21—Co1—N31	90.55 (5)	C34—C35—C36	118.72 (17)
N30-Co1-N31	78.03 (5)	С34—С35—Н35	120.6
N10-Co1-N31	99.76 (5)	С36—С35—Н35	120.6
O41—Co1—N11	87.74 (5)	N31—C36—C35	122.40 (16)
O21—Co1—N11	164.36 (5)	N31—C36—H36	118.8
N30—Co1—N11	100.20 (5)	С35—С36—Н36	118.8
N10-Co1-N11	77.91 (5)	N30-C30-C32	118.03 (14)
N31—Co1—N11	80.75 (5)	N30-C30-H30	121.0
C16-N11-C12	118 76 (14)	C_{32} C_{30} H_{30}	121.0
C16 $N11$ $C12$	128 75 (11)	C_{30} N ₃₀ C_{42}	121.3
C12 N11 $C01$	112 47 (10)	C_{30} N30 C_{12}	121.33(11) 114.82(11)
N11 C12 C13	112.47(10) 122.22(15)	$C_{30} = 100 = C_{01}$	114.02(11) 123.70(10)
N11-C12-C13	122.22(13) 116(10(12))	$C_{42} = 1030 = C01$	123.70(10)
N11 - C12 - C10	110.19(15) 121.57(15)	C46 - C41 - C42	116.31(13)
C13 - C12 - C10	121.57 (15)	C40 - C41 - C40	115.46 (15)
C14-C13-C12	118.33 (16)	C42 - C41 - C40	126.01 (15)
C14—C13—H13	120.8	C43 - C42 - C41	119.54 (16)
С12—С13—Н13	120.8	C43—C42—N30	120.99 (15)
C15—C14—C13	119.39 (16)	C41—C42—N30	119.40 (14)
C15—C14—H14	120.3	C44—C43—C42	120.71 (17)
C13—C14—H14	120.3	C44—C43—H43	119.6
C14—C15—C16	118.94 (17)	C42—C43—H43	119.6
C14—C15—H15	120.5	C43—C44—C45	120.18 (17)
C16—C15—H15	120.5	C43—C44—H44	119.9
N11—C16—C15	122.28 (16)	C45—C44—H44	119.9
N11—C16—H16	118.9	C46—C45—C44	119.41 (17)
C15—C16—H16	118.9	C46—C45—H45	120.3
N10-C10-C12	118.75 (14)	C44—C45—H45	120.3
N10-C10-H10	120.6	C45—C46—C41	121.60 (17)
C12—C10—H10	120.6	C45—C46—H46	119.2
C10 - N10 - C22	120.97 (13)	C41—C46—H46	119.2
C10 $N10$ $C22$	114 38 (11)	042 - C40 - 041	123 49 (15)
C^{22} N10 Col	124 31 (10)	042 - C40 - C41	116 99 (15)
C_{22} C_{21} C_{22}	1124.31(10) 11832(14)	$O_{41} C_{40} C_{41}$	110.99(13)
$C_{20} = C_{21} = C_{22}$	116.32(14) 115.12(14)	$C_{40} = C_{40} = C_{41}$	119.40(14) 127.25(11)
$C_{20} = C_{21} = C_{20}$	115.15(14) 12(.52(14))	$V_{40} = 041 = 001$	127.55 (11)
$C_{22} = C_{21} = C_{20}$	120.52 (14)	NIOI—CIOI—HIOA	109.5
$C_{23} = C_{22} = C_{21}$	119.32 (14)	NI01—CI01—HI0B	109.5
C23—C22—N10	121.59 (14)	H10A—C101—H10B	109.5
C21—C22—N10	119.08 (13)	N101—C101—H10C	109.5
C24—C23—C22	120.89 (15)	H10A—C101—H10C	109.5
C24—C23—H23	119.6	H10B—C101—H10C	109.5
C22—C23—H23	119.6	N101—C102—H10D	109.5
C23—C24—C25	120.10 (15)	N101—C102—H10E	109.5
C23—C24—H24	120.0	H10D—C102—H10E	109.5
C25—C24—H24	120.0	N101—C102—H10F	109.5

C26 C25 C24	110 40 (17)	U10D $C102$ $U10E$	100 5
0.20-0.23-0.24	119.40 (17)	П10D—С102—П10F	109.3
C26—C25—H25	120.3	H10E—C102—H10F	109.5
C24—C25—H25	120.3	C103—N101—C101	120.47 (19)
C25—C26—C21	121.91 (16)	C103—N101—C102	121.65 (18)
C25—C26—H26	119.0	C101—N101—C102	117.44 (19)
C21—C26—H26	119.0	O101—C103—N101	126.04 (18)
O22—C20—O21	123.53 (15)	O101—C103—H103	117.0
O22—C20—C21	116.35 (15)	N101—C103—H103	117.0
O21—C20—C21	120.06 (14)	C203—N201—C201	115.3 (7)
C20—O21—Co1	124.57 (11)	C203—N201—C202	120.1 (8)
C36—N31—C32	118.68 (14)	C201—N201—C202	124.6 (7)
C36—N31—Co1	127.42 (11)	O201—C203—N201	111.9 (8)
C32—N31—Co1	112.43 (11)	O201—C203—H203	124.1
N31—C32—C33	122.15 (16)	N201—C203—H203	124.1
N31—C32—C30	116.05 (13)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	<i>D</i> —H··· <i>A</i>
C10—H10…O42 ⁱ	0.95	2.46	3.393 (2)	169
C102—H10 <i>E</i> ···O42 ⁱⁱ	0.98	2.46	3.369 (3)	154
C16—H16…O101	0.95	2.41	3.326 (3)	163
C201—H20C···O22 ⁱⁱⁱ	0.98	1.97	2.819 (10)	143
C23—H23…O42 ⁱ	0.95	2.60	3.454 (2)	150
C30—H30····O22 ^{iv}	0.95	2.42	3.344 (3)	163
C36—H36…O201 ^v	0.95	2.54	3.235 (13)	130

Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x, y-1, z; (iv) -x+1, -y+2, -z+2; (v) x, y+1, z.