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ABSTRACT With declaring the highly transmissible COVID-19 as a pandemic, an unprecedented strain on
healthcare infrastructures worldwide occurred. An enormous shortage in the personal protective equipment
(PPE) and the spare parts (SP) for the mechanical ventilators ensued as a consequence of the failure
of the centralized global supply chains. Additive manufacturing and Industrial Internet of Things (IIoT),
as the pillars of Industry 4.0, arose as the robust noncentralized alternatives. When gathered and properly
managed in the IIoT, 3D Printers (3DPs) can complement and support Healthcare 4.0 to face the current
and future pandemics. Thus, this paper proposes a real-time green allocation and scheduling architecture
designed and dedicated particularly for the large-scale distributed 3D printing tasks (3DPTs) of both PPE
and SPs. Our proposed architecture comprises; a broker (B) and a cluster manager (CM). Dynamic status
check for the 3DPs and admission control for 3DPTs are among the interconnected roles of CM. CM
also performs task allocation and scheduling according to our proposed Online Ascending Load-Balancing
Modified Best-Fit (OALMBF) allocation algorithm and Green Real-time Nesting Priority-Based Adaptive
(GRNPA) scheduling algorithm. The performance of the proposed architecture was investigated under
extremely high-load environments which resulted in a success ratio and a response rate of 99.9667%
and 10.9665 seconds, respectively, for the 3000 3DPTs trial. These results proved the robustness and the
scalability of our architecture that surpasses its state-of-the-art counterparts. Besides respecting the real-time
requirements of the 3DPTs, the proposed architecture improves the utilization of the 3DPs and guarantees
an even workload distribution.

INDEX TERMS 3D printing, COVID-19, Healthcare 4.0, IIoT, Industry 4.0, nesting, scheduling.

I. INTRODUCTION
COVID-19, a highly infectious disease with pneumonia-like
symptoms caused by the novel severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2), was declared as a global
pandemic by the World Health Organization (WHO) only
after three months into 2020. This virus is of the genus
Betacoronavirus (β-CoV) that caused the two recent previous
outbreaks of Severe Acute Respiratory Syndrome (SARS)
and Middle East Respiratory Syndrome (MERS) [1]–[9].

With its rapid transmissibility and the nonexistence
of a clinically approved vaccine or antiviral drug,
COVID-19 took aback the worldwide scientific, medical, and
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industrial communities. Globally, containment and mitiga-
tion are considered the keystones in managing this pandemic.
With varying degrees of success in suppressing and eradi-
cating this pandemic, most of the countries of the world are
facing severe disruptions in the medical and economic sectors
[1], [3].

Globally, health organizations are recommending social or
physical distancing in order to flatten the curve of the new
infections and thus avoiding the deluge of healthcare systems.
Unfortunately, the results of this practice may take weeks to
arise. Moreover, despite the technology and experience levels
that each healthcare system has reached, the huge and rapid
upsurge in the number of patients overwhelmed the medical
infrastructure worldwide. In normal situations, this challenge
would be faced by preplanned strategies such as stockpiling
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equipment, supplies, and medications. However, the sudden
emergence of the highly infectious COVID-19 caused an
enormous strain on the healthcare systems and hospitals
worldwide to the extent that most of them have reported short-
ages of fundamental equipment such as ventilators for criti-
cally ill patients and personal protective equipment (PPE) for
the front-line healthcare workers which include face shields,
respirators, face masks, gloves, and gowns [10]–[14].

The current situation advocates the employment of Health-
care 4.0 concepts to help alleviate the direct or indirect nega-
tive consequences of the COVID-19 pandemic on the medical
services and thus improving the healthcare provision [4].
Healthcare 4.0 represents the era of smart virtual personalized
medicine and it is inspired by the fourth industrial revolution,
namely, Industry 4.0. Shifting from the conventional hospital-
centric care to a timely, virtual, decentralized care system,
with the help of some concepts of Industry 4.0, is the leading
principle of Healthcare 4.0. This shift is achieved by employ-
ing the emerging technologies of Internet of Things (IoT),
artificial intelligence-enabled diagnostic tools, deep learning,
blockchain, big data, wireless biosensors, wearable devices,
telemedicine, home-based personalized healthcare, remotely
triggered medications, mobile applications, robotics, and bio-
printing of tissues and implants [15]–[24]. Integrating and
implementing the suitable concepts of Healthcare 4.0 to face
the COVID-19 crisis would help in reducing the physical
crowding of patients in hospitals and the physical interac-
tions between patients and physicians. Moreover, it would
help in monitoring, caring, and delivering proper medica-
tions for mild symptoms COVID-19 patients while quaran-
tined or isolated at their own homes, thus making room for
the critically ill COVID-19 patients to be hospitalized. Owing
to implementing some of these concepts, several countries
managed to avoid the surge of the COVID-19 pandemic,
thus saving not only more lives but also their economy as a
consequence [1], [3], [4], [7], [8], [14].

On the other hand, the COVID-19 pandemic has triggered
an unprecedented call for adopting all the newly emerging
technologies of all fields to collaborate and help in this battle.
This unsurpassed situation has proven the effectiveness of
the transformation in the concept of manufacturing from
traditional centralized, long lead-time, large-scale production
to decentralized, distributed, rapid, small-scale, autonomous
production. This shift represents the building block of Indus-
try 4.0. By employing the foundations of Industry 4.0 such as
artificial intelligence, big data analytics, blockchain, Indus-
trial IoT (IIoT), cloud computing, cyber-physical systems,
and additive manufacturing (AM), the current COVID-19
challenges can be tamed [1], [4], [10], [14], [25]–[30].

During the COVID-19 battle, surmounting the critical
shortages of medical supplies arose as a priority. Addi-
tive manufacturing or 3D printing, a fundamental founda-
tion of Industry 4.0, proved its robustness as an alterna-
tive to the traditional global supply chains that failed to
meet the time-critical rapidly growing medical needs. 3D
printing is a distributed, low-cost, on-demand, time-critical

production technique. Employing the 3D printing technique
in this battle led to the rapid scale-up production of PPE
such as face shields, respirators, and face masks [12], [15],
[16]. Moreover, 3D printing participated in manufacturing
spare parts (SPs) for the mechanical ventilators and nasal
swaps [16].

COVID-19 is a battle that must be won. The vulnerability
of the global supply chains that have been exposed, as a result
of their failure in meeting the critically growing demand of
both PPE and SPs, proved to the world the unreliability of this
system. Hence, the world resorted to arm with all the emerg-
ing digital technologies to overcome this crisis. From this per-
spective, this paper proposes employing the pillars of industry
4.0; IIoT, and AM; to gear up Healthcare 4.0 to face the con-
sequences of the current and future pandemics. By gathering
and intelligently managing the distributed 3DPs in the IIoT,
these severe shortages can be defeated. Hence, to the authors’
best knowledge for the first time in literature, a real-time
green 3D printing tasks’ (3DPTs) allocation and scheduling
architecture tailored for the high load environments caused by
the severe shortage of PPE and SPs is proposed. This archi-
tecture is divided into two folds, broker and cluster manager
with each performing several interconnected roles. Besides,
the proposed architecture employs our two built algorithms
for allocating and scheduling large-scale 3D printing tasks,
namely, OnlineAscending Load-balancingModifiedBest-Fit
(OALMBF) allocation algorithm and Green Real-time Nest-
ing Priority-based Adaptive (GRNPA) scheduling algorithm.
Moreover, the proposed architecture not only balances the
workload between the distributed 3D printers (3DPs) but also
maximizes their utilization.

The rest of this paper is arranged as follows. Section 2
reviews the literature. In Section 3 the system model pre-
liminaries are presented and the proposed architecture is
explained. The simulation results are presented in section
4 along with the results of the comparisons with state-of-the-
art architectures. The whole study is concluded in Section 5.

II. RELATED WORK
Due to its high transmissibility, COVID-19 caused a huge
and rapid increase in the number of patients that deluged
the healthcare systems worldwide. The ravage in the medical
infrastructure reached the extent of reporting shortages of
essential medical supplies such as PPE and SPs for the venti-
lators. As a result, the manufacturing sector was put under
huge stress and once again the conventional global supply
chain proved its fragility and unreliability in critical times.
Distributed 3D printing communities and companies collab-
orated to mitigate the negative consequences of the failure of
the global supply chain system [10], [12], [31]–[35]. More-
over, the National Institutes of Health (NIH), Veterans Affairs
(VA), the FDA, and America Makes joined forces to support
the response of the 3D printing communities by establishing
an online repository for sharing the clinically assessed 3D-
printable designs [26], [36]–[38]. Thus, 3D printing proved
its reliability in providing on-demand time-critical parts.
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TABLE 1. Summary of the literature review.

In that light, when the distributed 3D printing services are
gathered and properly managed in the IIoT, the production of
these essential PPE and SPs will be controlled and the aspired
success levels ofmeeting the large-scale 3D printing demands
can be achieved.

In the literature, several papers presented architectures to
manage the distributed 3D printing services in the CMFg
(summarized in Table. 1). These papers studied the allocation
and scheduling of a limited number of static 3D printing
orders. Moreover, these papers proposed printing only one
single part at a time. Zhou et al. [39] proposed a genetic
algorithm-based service matching and selection method for
50 static 3D printing tasks and 100 3D printing service
providers in the CMFg. Attributes of the 3D printing tasks
such as model size, printing accuracy, printing material,
printing cost, printing time, and logistics were included.
In another study by Zhou et al. [40] an improved genetic
algorithm-based 3D printing service scheduling method was
proposed using the same aforementioned matching attributes.
The simulations in their study included 60 static 3D printing
tasks and 50 3D printing service providers. Luo et al. [41]
proposed a bipartite graph-based matching framework for
cloud 3D printing. The matching characteristics of both the
3D printing tasks and the printing resources were included
along with the static and dynamic characteristics of the print-
ers. Their simulations were done on a total number of 100
3D printing tasks and 50 groups of 3D printing resources.
Wu et al. [45] proposed a cloud platform for distributed
3D printing services. Their service evaluation model and
optimization algorithms are based on the fuzzy theory.

On the other hand, 3D printing machines can print more
than one part simultaneously at the same time on the same
build plate/platform, this technique is called nesting. The set
of parts that will be nested and 3D printed at the same time
is called a job. Li et al. [42] explored grouping different
parts received from different customers and allocating them
to a 3D printer to be printed at the same time as a single
job, thus reducing the average printing costs. Two heuristic
algorithms, namely, best fit and adapted best-fit algorithms
were used to find the optimum solution for this problem.
Chergui et al. [43] studied the same problem as well but took
into consideration respecting the delivery times set by the
customers for each part. The authors employed the mixed-
integer linear programming (MILP) model to solve their
scheduling and nesting problems. Moreover, Kucukkoc et al.
[44] explored the same nesting and scheduling problems. The
authors employedMILPmodels to solve the scheduling prob-
lems of single and multiple either identical or non-identical
AM machines while considering minimizing the makespan.

Due to the ongoing COVID-19 crisis and the disruptions
in the global supply chains, that entailed the emergence
of many individual assistance attempts offered by the 3D
printing services within each country worldwide to face this
unprecedented shortage of essential equipment, an urgent call
for a system that can intelligently gather, manage, and control
all these efforts has arisen. In this context, we propose, to the
authors’ best knowledge for the first time in literature, a real-
time green allocation and scheduling architecture for dis-
tributed 3D printing tasks tailored to meet the huge demand
of medical supplies represented by PPE and SPs for the
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mechanical ventilators during the COVID-19 pandemic. The
proposed architecture is divided into two folds, namely, bro-
ker (B), and cluster manager (CM) with each fold performing
several interconnected roles.

Our proposed architecture is noteworthy as it tackles the
following aspects:

1) Proposing a robust noncentralized alternative to the
global supply chains that can withstand high load
situations.

2) Proposing two algorithms for the real-time allocation
and scheduling of the dynamic 3D printing tasks with
evolving scenarios:

a. Online Ascending Load-balancing Modified Best
Fit (OALMBF) allocation algorithm; and

b. Green Real-time Nesting Priority-based Adaptive
(GRNPA) scheduling algorithm.

3) Respecting the real-time requirements of each 3D
printing task.

4) Building and employing an admission control algo-
rithm to ensure the non-violation of the real-time
requirements of all the tasks.

5) Proposing nesting identical 3DPTs received from dif-
ferent demanders while respecting the constraints of
the maximum printing area of each 3D printer and the
real-time requirements for each task.

6) Building and integrating a workload balancing algo-
rithm to ensure the even distribution of the tasks among
the 3D printing services.

7) Improving the utilization of the distributed 3D printers
by integrating working time limits and resting times for
each 3D printer.

8) Building and integrating a dynamic health status check
algorithm for the 3D printers to rapidly compensate for
the potential failure in any 3D printer.

III. THE PROPOSED SYSTEM MODEL
A. SYSTEM MODEL PRELIMINARIES
During the current COVID-19 crisis and its consequences that
caused a huge shortage in PPE and spare parts for themechan-
ical ventilators, the demand for 3D printed alternatives has
been raised. Therefore, this paper proposes a green real-time
allocation and scheduling architecture for the real-time
remote ordering of both PPE and spare parts. Throughout
this paper, a 3DPT will refer to a 3D printing task or an
order submitted to the IIoT system by the demander. The two
terms 3DPT and order will be used interchangeably. Table.
2 presents all the notations and parameters used throughout
this study. Each 3DPT is subdivided into the model type
of the required part and its corresponding attributes. As a
restriction, the system allows the demander to choose only
one model type in each 3DPT. Nevertheless, each demander
can submit more than one order and each order has a specific
model. Along with choosing the model type of the required
3DPT from the database/library of the platform, the demander
specifies its corresponding attributes. These attributes include
the number of the required parts, priority, and the deadline for

TABLE 2. List of notations.

receiving the order. Each demander is allowed to specify any
number of parts within each submitted 3DPT. The longitude
and latitude of the location of the device (laptop, tablet,
mobile) that has been used to place the order will be detected
and used as the delivery address. This detected address is
subject to change or modification by the demander.
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The models that are incorporated in the database/library
are divided into two types categories; protectives, and spare
parts. The protectives category includes different models of
face shields, respirators, ear savers for face masks, nasal
swaps, and sanitizer/soap automatic dispensers. The spare
parts category includes all the models of the needed spare
parts for the mechanical ventilators.

On the other hand, each 3D printer incorporated in the
system is dedicated to print parts from a certain category.
In other words, the 3DPs are divided into two clusters with
each cluster dedicated to print either protectives or spare
parts. Besides, each 3D printer has its specific attributes.
These attributes include its location, time constants (heating
up, cooling down, and taking down), working time limit, and
resting time duration. Moreover, the system’s 3DPs have a
prespecified limit of the maximum number of parts (NPL)
that can be printed simultaneously on the build plate/platform
of each. This limit is specified according to the average
maximum permissible printing volume of the available 3DPs.

Besides, throughout this paper, the process of printing
more than one identical 3DPT simultaneously on the build
plate/platform of any 3DP will be called nesting. Also, the set
of 3DPTs that will be combined and printed in the same batch
will be called a job.

B. THE PROPOSED SYSTEM ARCHITECTURE MODEL
The proposed system, which has an overall running time
complexity of O (n log n), is divided into a broker (B) and a
cluster manager (CM) as illustrated in Fig. 1. This section
provides a detailed description of B and CM.

1) THE BROKER (B)
The broker has three roles as shown in Fig. 2. The first role
of the broker is to divide the submitted 3DPTs which include
a large number of identical models that exceed the system’s
prespecified limit of the maximum number of parts (NPL)
into subtasks. These subtasks are within the system’s 3D
printing volume limit (PVL) and they will all share the
same user-defined attributes of priority, deadline for receiving
the order, and delivery address. The second role is to label
each 3DPT or subtask either to ‘‘be nested’’ or not. The
3DPT or subtask is labeled ‘‘to be nested’’ if the number
of the parts within this order is lower than 90% of the max
predefined limit (NPL). Otherwise, it is labeled ‘‘not to be
nested’’ thus it will be printed as a single job. The third role is
to allocate each 3DPT or subtask to its corresponding cluster
of 3DPs.

2) THE CLUSTER MANAGER (CM)
The cluster manager performs several interconnected roles
which include a dynamic status check for the 3DPs, admis-
sion control, task allocation, and task scheduling and nesting.

a: DYNAMIC STATUS CHECK FOR THE 3DPs
The cluster manager has statistical data about each 3DP in the
system. These data are divided into constants and time chang-
ing values. The constants are the working time limits (WTL)
and the resting time durations (RT). The dynamic values that

FIGURE 1. The proposed system.

change with time are the remaining working times (RWT)
and the working time summations (WTS). According to these
constant and dynamic values, the cluster manager updates the
status of each 3DP at each time tick to be either ‘‘waiting for
3DPTs’’, ‘‘printing a 3DPT’’, ‘‘resting/in maintenance’’, or
‘‘back from rest’’. Besides, the working time summation is
updated by the clustermanager and set to zero and the remain-
ing working time is set to its default value when the 3DP’s
status is ‘‘back from rest’’. Fig. 3. illustrates the algorithm of
the dynamic status check.

b: ADMISSION CONTROL
Our paper proposes a priority-based admission control algo-
rithm. This admission control is not performed once a 3DPT
has been submitted to the system. The cluster manager tem-
porarily accepts all the submitted tasks regardless of their
priorities as there is no prior knowledge of the upcoming
3DPTs or their priorities.

Each 3DP in the system has a ‘‘ReadyQueue’’ that contains
the 3DPTs that are successfully allocated and scheduled and
ready to be printed on this 3DP. Moreover, the cluster man-
ager places the 3DPT that did not find any vacant time slot
in the ‘‘Ready Queues’’ of all the available 3DPs, after its
first allocation and scheduling round, in a ‘‘Global Waiting
Queue’’.

The admission control algorithm, shown in Figs. 4 and 5, is
applied once a task is added to this ‘‘Global Waiting Queue’’
by performing a ‘‘Quick Global Scan’’ to the ‘‘ReadyQueue’’
of each available 3DP to find a 3DPT that demands to print
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FIGURE 2. Flowchart of the proposed broker.

FIGURE 3. The proposed dynamic status check algorithm for the system’s
3DPs.

the same model with the same or higher time requirements
but with a lower priority. If this global scan succeeded, then
the lower priority task will be replaced with the task with the
higher priority. Then, the lower priority task will be rejected.
On the other hand, if the global scan failed, the 3DPT is kept
in the ‘‘Global Waiting Queue’’. The 3DPTs in the Global
Waiting Queue re-enter the allocation and scheduling stages,
which are described in the following sections, to find proper
alternative 3DPs. The admission control algorithm rejects the

FIGURE 4. Flowchart of the proposed admission control algorithm.

3DPTs that are kept in the ‘‘Global Waiting Queue’’ before
approaching their deadline by a sufficient time that enables
the execution of these tasks in any other 3D printing system.

c: TASK ALLOCATION
Fig. 6 illustrates the proposed algorithms for the alloca-
tion, scheduling, and nesting of the 3DPTs. The cluster
manager allocates the received 3DPTs by employing our
proposed online ascending load-balancing modified best
fit (OALMBF) allocation algorithm.

The proposed OALMBF allocation algorithm is a modi-
fication of the Best-Fit Decreasing (BFD) bin-packing algo-
rithm. Bin packing is an NP-hard combinatorial optimization
problem. In bin-packing, the main goal is to pack N items
with sizes in the range [0,1] into the smallest possible num-
ber of bins such that the maximum capacity of each bin is
1 [46]–[52]. In its offline version, all the items are known
from the beginning. On the other hand, in the online version
of this problem, the items appear one at a time and each item
must be assigned to a bin upon its arrival without any prior
knowledge about the next items [46], [47], [53]–[55]. Best
Fit Decreasing (BFD) is one of the heuristic algorithms that
are used to solve this problem in its offline version. In the
BFD, the items are sorted in decreasing order of size, then
each item is assigned to the fullest bin in which it fits [47],
[48], [56], [57]. In this paper, we propose modifications to the
BFD to cope with the online nature of our problem.

In this paper, the items are the 3DPTs and the bins are
the 3DPs. In our proposed OALMBF allocation algorithm,
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FIGURE 5. Flowchart of the proposed ‘‘Quick Global Scan’’ algorithm.

the 3DPTs that come at the same time are arranged in
descending order according to their printing times. Unlike
the ordinary algorithms used to solve the Bin Packing Prob-
lem (BPP) with the goal of minimizing the number of the
used bins, our algorithm is designed to balance the workload
between the available 3DPs in a manner that prevents either
overloading or underloading a certain 3DP. Thus, to achieve
this, the 3DPs are arranged in ascending order according to
their working time summation at each time tick. Once the
system receives a new 3DPT, it is allocated to the first 3DP
in the arranged 3DPs’ list of its corresponding cluster.

d: TASK SCHEDULING AND NESTING
The cluster manager (CM) schedules the received 3DPTs
by employing our proposed Green Real-time Nesting
Priority-based Adaptive (GRNPA) scheduling algorithm. Our
GRNPA scheduling algorithm proposes nesting more than
one 3DPT consisting of identical models to be printed simul-
taneously using the same 3DP as a single job. This nesting
process will be performed under certain constraints:

1) The 3DPT is labeled ‘‘to be nested’’.
2) The different 3DPTs to be nested consist of identical

models.
3) The whole volume needed for printing the job after

adding the 3DPT is within the 3D printing volume
limit (PVL) of the system’s 3DPs.

PV px

jobprev
+ PV 3DPT current ≤ PVL (1)

FIGURE 6. Flowchart of the proposed allocation, scheduling, and nesting
algorithms.

4) The 3DPT has arrived before the printing starting time
of the previous job/task that it will be nested with.

TStartingjobprevpx ≥ TArrival3DPTcurrent (2)

5) The deadlines of the whole tasks included in this job,
after adding this 3DPT, from the first task to the last
task are not violated

jobpxz = {3DPT a + 3DPT b + 3DPT c} (3)

DL jobpxz +3DPT current
≤ ∀DL3DPT a ,DL3DPT b ,DL3DPT c ,DL3DPT current

(4)

6) The working time limit of the 3DP is not breached
WTSpxcurrent = WTSpxprev + TActPrintpx3DPTcurrent

(5)

WTSpxcurrent ≤ WTLpx (6)

If any of the 3DPTs labeled ‘‘to be nested’’ fails tomeet one
of these constraints, the cluster manager places this task in
the ‘‘Semi-ReadyQueue’’ of the first 3DPmeanwhile resends
this 3DPT to the allocation stage. In this reallocation, a search
is done within the alternative 3DPs in the list respectively
to find a suitable alternative job of identical models for this
3DPT to be nested with. If the 3DPT fails to be nested in
any of the jobs of the alternative 3DPs, the cluster manager
transfers this task from the ‘‘Semi-Ready Queue’’ of the
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first allocated 3DP to the ‘‘Ready Queue’’ of the same 3DP
to be scheduled for printing as a new job if the following
constraints are fulfilled:

1) Deadline

TDelvpx3DPTcurrent
≤ DL3DPT current (7)

2) Working time limit (WTL)

WTSpxcurrent = WTSpxprev + Tprintingpx3DPTcurrent
(8)

WTSpxcurrent ≤ WTLpx (9)

If one of these constraints is not fulfilled the cluster
manager places this task in the ‘‘Global Waiting Queue’’.

On the other hand, in scheduling a 3DPT labeled ‘‘not to be
nested’’, this task is successfully allocated and scheduled in
the ‘‘Ready Queue’’ of the first 3DP in the 3DPs’ arranged
list and is printed as a whole new single job if it fulfills
the previously described constraints of deadline and working
time limit. If this 3DPT fails to fulfill any of these constraints,
the cluster manager resends it to the allocator to assign it to
the next 3DP in the arranged list. If all the reallocation trials
fail, then the cluster manager places this task in the ‘‘Global
Waiting Queue’’.

IV. SYSTEM PERFORMANCE EVALUATION
This section explores the performance and scalability of the
proposed architecture. The simulations are done by using
MATLAB R© R2019B. The times employed in these simula-
tions are generated according to the following equations.

1) Arrival time: The task arrival times of the 3DPTs/orders
are generated sequentially according to (10) which
depends on the arrival rate (λ).

Tarrival3DPT = Tarrival3DPT−1 + r
(
1/
λ, σ

)
(10)

where, Tarrival3DPT−1 is the arrival time of the previous

3DPT, and r
(
1/
λ, σ

)
is a Gaussian random number

with mean 1
/
λ and variance σ 2.

2) Deadline: The deadline for each 3DPT is generated
according to (11) which depends on the workload
specification represented by α and ρ.

DL3DPT+1 = DL3DPT +
TDelv3DPT+1

ρ

−

(
r
(
α
TDelv3DPT+1

ρ
, σ

))
(11)

The delivery time TDelv is calculated as in (12) to (17).

TDelv3DPT = TFin3DPT + Tlogist (12)

TFin3DPT = TStarting3DPT + TPrinting3DPT (13)

TPrinting3DPT = TActPrint3DPT + T
px
consts (14)

T pxconsts = T pxwarmup + T
px
coolingdown + T

px
takedown (15)

Tlogist =
Dist3DPTpx

Speed logist
(16)

Dist3DPTpx =

√
(lg3DPT−lgPx )

2
+(lat3DPT−latPx )

2 (17)

In the calculations of the deadline, it has been assumed that
the 3DPT will be printed once it arrives.

TStarting3DPT = Tarrival3DPT

Moreover, the values of the different parameters engaged in
this study are randomly generated within the ranges specified
in table. 2.

The conducted simulations aim at investigating the effect
of changing the following parameters on the performance of
the proposed architecture:

1) Number of 3DPTs: The performance of our proposed
system is tested under extremely high demanding envi-
ronments, for the first time in literature according to
the authors’ best knowledge. Therefore, this parameter
is changed from 400 up to 3000 3DPT.

2) Workload Specification: The traffic load growth rate
(α) is one of the two parameters that represent the
workload specification. The performance of our pro-
posed system is monitored by varying the value of this
parameter from α = 0.4 for the normal workload
situations to α = 0.9 for the high workload situations
while adjusting the initial workload (ρ) at 0.9.

3) Arrival Rate: The performance of our proposed system
is monitored by varying the task arrival rate from λ =

0.25 (a task every four ticks) to λ = 10 (a task every
0.1 tick).

On the other hand, throughout this study, the number
of 3DPs is fixed at 60 printers. All the graphs plot the aver-
age values obtained over 5 runs for each simulation trial.
Performance metrics used throughout this study include:

1) Response Rate (s): The time duration elapsed from
the receipt of a 3DPT to its successful allocation and
scheduling on the ready queue of one of the system’s
3DPs.

2) Success Ratio (%): The ratio of the number of 3DPTs
that have met their predefined deadlines to the total
number of the accepted 3DPTs.

3) Rejection Ratio (%): The ratio of the number of the
rejected 3DPTs to the total number of the submitted
3DPTs.

A. RESPONSE RATE
Increasing the number of 3DPTs increases the response rate
of the proposed architecture as depicted in Fig. 7 10.9665 sec-
onds represents the highest average response rate for our
proposed system at the highest traffic load growth rate
(α = 0.9) and the maximum number of 3DPTs of 3000.
Moreover, as shown in Figs. 8 and 9 the proposed system

copes with the evolving scenarios of the dynamic 3DPTs.
Hence, the average response rate of the proposed architecture
is highly dependent on both the workload specification of the
submitted 3DPTs represented by α and the arrival rate λ of the
3DPTs. Therefore, increasing the traffic load growth rate (α)
increases the response rate to reach an average of 2.0039 sec-
onds per task for the α = 0.9 and 1500 3DPTs trials. On the
contrary, increasing the arrival rate (λ) of the 3DPTs lowers
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FIGURE 7. The effect of increasing the number of 3DPTs on the average
response rate of the proposed system. (ρ = 0.9, α = 0.9, λ = 10).

FIGURE 8. The effect of increasing the traffic load growth rate (α) on the
average response rate of the proposed system. (3DPTs
= 1500, ρ = 0.9, λ = 10).

FIGURE 9. The effect of increasing the arrival rate of the 3DPTs (λ) on the
average response rate of the proposed system. (3DPTs
= 1500, ρ = 0.9, α = 0.4).

the response rate to reach an average of 1.8678 seconds per
task for the λ = 10 and 1500 3DPTs trials.

Fig. 10 shows a comparison between the average response
rate of our proposed system and the average response rate
of the same system when employing each of the First
Fit (FF) algorithm, the Best-Fit (BF) algorithm, and the Best
Fit Decreasing (BFD) algorithm instead of our proposed
OALMBF allocation algorithm. It can be deduced from this
figure that our proposed system has the most rapid response

FIGURE 10. A comparison between the average response rate of the
proposed architecture, the First Fit algorithm, the Best-Fit algorithm, and
the Best Fit Decreasing algorithm. (3DPTs = 2000, ρ = 0.9, α = 0.9,
λ = 10).

FIGURE 11. The effect of increasing both the number of 3DPTs and the
traffic load growth rate (α) on the success ratio of the proposed
architecture. (ρ = 0.9, λ = 10).

FIGURE 12. A comparison between the average success ratio (%) of the
proposed architecture, the First Fit algorithm, the Best-Fit algorithm, and
the Best Fit Decreasing algorithm. (ρ = 0.9, α = 0.9, λ = 10).

when compared to these algorithms. The rapid response prop-
erty of our proposed system nominates it to be implemented
in the IIoT highly dynamic scenarios.

B. SUCCESS RATIO
Fig. 11 shows the effect of increasing both the number
of 3DPTs and the traffic load growth rate (α) on the average
success ratio of the proposed system. At the normal traffic
load growth rate (α = 0.4) increasing the number of the
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FIGURE 13. The effect of increasing both the number of 3DPTs and the
traffic load growth rate (α) on the average number of the rejected 3DPTs.
(ρ = 0.9, λ = 10).

FIGURE 14. The average working time summation (WTS) of each 3DP in
the list of the 3DPs that are dedicated to print protectives. (3DPTs
= 3000, ρ = 0.9, α = 0.9, λ = 10).

3DPTs up to 3000 tasks did not affect the success ratio. How-
ever, increasing the number of the 3DPTs at the high traffic
load growth rate (α = 0.9) led to a slight deterioration in the
success ratio to reach an average of 99.9667% for the 3000
3DPTs trials. However, increasing the arrival rate (λ) does not
affect the average success ratio of the proposed architecture.

Fig. 12 shows a comparison between the average success
ratio of our proposed system which employs our proposed
OALMBF allocation algorithm and the average success ratio
of the same system after replacing the OALMBF allocation
algorithm with other allocation algorithms such as FF, BF,
and BFD. This improvement in the success ratio (%) of our
proposed system, that can be deduced from this figure, high-
lights its robustness especially in extremely high demanding
environments.

C. REJECTION RATIO
As shown in Fig. 13 increasing both the number of 3DPTs
and the traffic load growth rate (α) causes a slight increase
in the average rejection ratio when the number of the 3DPTs
reaches 2500. Increasing the number of 3DPTs up to 3000 did
not cause a further increase. On the contrary, increasing the
arrival rate of the 3DPTs does not affect the rejection ratio of
the proposed architecture.

D. LOAD BALANCING
Fig. 14 shows the average working time summation (WTS)
for each 3DP in the list of the available 3DPs in the spare
parts’ category.WTS represents the distribution of the 3DPTs
on the 3DPs. It can be deduced from this figure that the 3DPTs
are distributed among the 3DPs without either overload-
ing or underloading certain 3DPS. This load balancing has
been achieved as a result of applying our proposed OALMBF
allocation algorithm and the 3DPs’ resting time algorithm

V. CONCLUSION
This paper proposed a real-time green allocation and schedul-
ing architecture tailored for the large-scale 3D printing
demands of PPE and SPs during the current COVID-19 pan-
demic. By employing the pillar of Industry 4.0 represented
by IIoT and AM, the proposed architecture was designed
especially for facing the failure of the centralized global
supply chains that led to a severe shortage in the PPE and
SPs during the current and future crises. Our proposed archi-
tecture is divided into two folds, namely, broker and cluster
manager. Both the broker and the cluster manager perform
several roles. Dynamic status check for the 3DPs, admission
control, task allocation, and task scheduling were among the
interconnected roles of the cluster manager. Besides, this
paper proposed the Online Ascending Load-Balancing Mod-
ified Best-Fit (OALMBF) allocation algorithm and the Green
RealtimeNesting Priority-basedAdaptive (GRNPA) schedul-
ing algorithm. These two algorithms were employed by the
cluster manager in the task allocation and task scheduling
phases. Simulation results proved the robustness and the scal-
ability of our proposed architecture particularly under high
load environments that surpassed its state-of-the-art coun-
terparts. Moreover, our proposed system not only improved
the utilization of the 3DPs but also balanced the work-
load between them. As our study contributes to an evolving
research field, it could be extended by employing various
newly emerging algorithms such as game theory.
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