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Inflammation plays a crucial role in a variety of diseases, including diabetes, arthritis,
asthma, Alzheimer’s disease (AD), acute cerebral stroke, cancer, hypertension, and
myocardial ischemia. Therefore, we need to solve the problem urgently for the study of
inflammation-related diseases. Dihydromyricetin (DHM) is a flavonoid mainly derived from
Nekemias grossedentata (Hand.-Mazz.) J.Wen and Z.L.Nie (N.grossedentata). DHM
possesses many pharmacological effects, including anti-inflammatory (NLRP-3, NF-κB,
cytokines, and neuroinflammation), antioxidant, improving mitochondrial dysfunction, and
regulating autophagy and so on. In this review, we consulted the studies in the recent
20 years and summarized the mechanism of DHM in inflammation-related diseases. In
addition, we also introduced the source, chemical structure, chemical properties, and
toxicity of DHM in this review. We aim to deepen our understanding of DHM on
inflammation-related diseases, clarify the relevant molecular mechanisms, and find out
the problems and solutions that need to be solved urgently. Providing new ideas for DHM
drug research and development, as well as broaden the horizons of clinical treatment of
inflammation-related diseases in this review. Moreover, the failure of clinical transformation
of DHM poses a great challenge for DHM as an inflammation related disease.
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INTRODUCTION

Dihydromyricetin (DHM) is a flavonoid mainly derived from Nekemias grossedentata (Hand.-
Mazz.) J.Wen and Z.L.Nie (N.grossedentata) (Liu et al., 2019a). Flavonoids have multifarious
pharmacological effects, such as antioxidant, anti-inflammatory response, anti-cancer, and anti-
viral as well as neuroprotective effects (Wang et al., 2016a). DHM exists not only in N. grossedentata,
but also in plant food (Wu et al., 2015). There are many inflammatory diseases that affect peoples’
physical and mental health as well as the quality of life. For instance, atherosclerosis (Geovanini and
Libby, 2018), diabetic cardiomyopathy (Li et al., 2019), endothelial dysfunction (Bai et al., 2020),
neurodegenerative diseases (Stephenson et al., 2018), and cancer (Diakos et al., 2014) as well as liver
disease (Yang et al., 2019), and so forth. In addition, DHM has numerous biological effects, including
anti-oxidation, improving mitochondrial dysfunction, and regulating autophagy (Liu et al., 2020),
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especially anti-inflammatory effects (Zhang et al., 2018). This
suggests that DHM exerts its pharmacological effects through the
corresponding molecular mechanisms.

N. GROSSEDENTATA

N. grossedentata has been used as an herbal medicine belonging
to the Parthenocissus inserta f. dubia (Rehder) Rehder J. Arnold
Arbor (Ma et al., 2020) in China for thousands of years.
“Compendium of Vatica rassak (Korth.) Blume Medica”
believed that it had the effect of “regulating the middle and
replenishing qi, promoting blood and promoting qi” (Hu et al.,
2020), which was used as tea (Zhou et al., 2014). It is generally
known as that Calamus rotang L. tea is used as a heat clearing-
herb in traditional Chinese medicine to promote diuresis and
blood circulation (Huang et al., 2018). In addition, N.
grossedentata is common in South China and can also be
eaten (Jia et al., 2020). The leaves (Li et al., 2020) and stems
(Gao et al., 2017) of the N. grossedentata are also known as vine
tea. Its tender stems and leaves are widely used as Citrullus
colocynthis (L.) Schrad. tea. It has been used for herbal tea and
traditional Chinese medicine for hundreds of years. Modern
pharmacological studies have shown that N. grossedentata has
a variety of pharmacological effects, including antioxidative, anti-
inflammatory, and antiviral (Chen et al., 2016) as well as
antithrombotic (Sun et al., 2020). Therefore, N. grossedentata
treated many diseases clinically, such as diabetes (Chen et al.,
2016), pharyngitis, sore throat, and fever associated with colds
(Hou et al., 2015a).

DIHYDROMYRICETIN

DHM (3′, 4′, 5, 5′, 7-Hexahydroxy-2, 3-dihydroflavanonol) was
first discovered from Nekemias meliaefolia in 1940 (Zhang et al.,
2001) (Figure 1). Therefore, DHM is also known as Ampelopsis
japonica (Thunb) Makino (AMP) (Liu et al., 2020). The content

of DHM in N. grossedentata was as high as 30–40% (Liu et al.,
2019a). DHM was also found in Vitis vinifera L., Myrica cerifera
L., Prunus amygdalus Batsch, Ginkgo biloba L., and other plants
(Liu et al., 2020). In addition, studies have confirmed the
existence of DHM in Hovenia dulcis Thunb and Cedrus
deodara (Roxb. ex D.Don) G.Don (Liang et al., 2014a; Liang
et al., 2014b). DHM will degrade in a weak alkaline environment,
especially under the condition of Cu2+ and Fe3+ 25. DHM was
poorly soluble, only soluble in hot water and ethanol (Liu et al.,
2019b). The efficacy of DHM will be affected by its bioavailability
(Feng et al., 2018). The animal experimental data showed that the
bioavailability of DHM in rats was 4.02% (Liu et al., 2017a). The
main metabolic sites of DHM are in the liver and gastrointestinal
tract, and some are absorbed by the blood. Following being
absorbed by the blood, DHM can be distributed throughout
the body (Ding et al., 2021). DHM was characterized by low
bioavailability and unstable chemical properties, which limited
the pharmacology and clinical application of DHM (Tong et al.,
2015). And for DHM, only a few kinds of studies can conclude
that DHM is not toxic (Zhang et al., 2014).

INFLAMMATION AND INFLAMMATORY
DISEASES

Following sterile tissue injury, the positive response of the host to
pathogens is called “inflammation” (Alessandri et al., 2013).
Inflammation is divided into acute inflammation and chronic
inflammation (Arulselvan et al., 2016). When inflammation is
triggered, it leads to the recruitment and activation of neutrophils,
monocytes, macrophages, and other immune cells (He et al.,
2020). Macrophages are the first immune cells affected by the
inflammatory response (Lopez-Castejon, 2020). In addition, the
inflammatory process is regulated by cytokines. Cytokines are
secreted by immune cells (Kirkpatrick and Miller, 2013).
Inflammation is a multi-stage and complex process, involving
a variety of cells as well as signal cascades (Cas et al., 2020). The
types of inflammation include acute inflammation and chronic
inflammation (Arulselvan et al., 2016). In recent years,
inflammation has been a research hotspot. Studies have shown
that there is a complex relationship between inflammation and
inflammatory disease. For example, atherosclerosis, heart failure
(Shirazi et al., 2017), rheumatoid arthritis (Dhingra and Chopra,
2020), neurodegenerative diseases (Baune, 2015), cancer
(Sgambato and Cittadini, 2010), and cardiac arrhythmogenesis
(Yalta and Yalta, 2018). In general, many diseases are associated
with inflammation, so we must pay attention to it.

ANTI-INFLAMMATORY MECHANISM
OF DHM

NLRP-3 and Pyroptosis
Some studies have confirmed that DHM is closely related to
palmitic acid (PA)-induced human umbilical vein endothelial
cells (HUVECs). Hu et al. have clarified that DHM ameliorated
pyroptosis by activating the Nrf2 (NF-E2-related factor 2)

FIGURE 1 | The chemical structure of DHM.
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signaling pathway. DHM inhibited the activation of NLRP-3
by down-regulating mitochondrial reactive oxygen species
(ROS) in PA-induced HUVECs (Hu et al., 2018). DHM
treatment inhibited the activation of caspase-1 and the
expression of IL-1β in the brain of AD mice. This suggested
that DHM inhibited the activation of the NLRP-3 signaling
pathway to improve the inflammatory response in AD (Liu
et al., 2019b). In addition, DHM improved pyroptosis caused
by NLRP-3 in chronic liver injury mice (Cheng et al., 2020).
DHM significantly inhibited cholesterol accumulation and
foam cell formation, improved mitochondrial function,
reduced oxidative stress as well as reduced the activation of
NLRP3 in oxidized low-density lipoprotein (ox-LDL)-
stimulated macrophages in Sirtuin3 (SIRT3) ko mice (Sun
et al., 2021). Studies have shown that NLRP-3 activation
contributed to the development of cardiotoxicity. What is
more, DHM improved myocardial injury by inhibiting the
activation of NLRP-3 20.

Nuclear Factor-κB (NF-κB)
Research confirmed that DHM down-regulated the expression
of the NF-κB signal pathway by directly binding to IκB kinase
(IKK), thereby inhibiting IKK phosphorylation. To sum up,
DHM exerted an antiarthritic effect in collagen-induced
arthritis rats through down-regulation of NF-κB (Wu et al.,
2019a). Tang et al. confirmed by Western blotting that DHM
inhibited tumor necrosis factor-α (TNF-α)-induced
phosphorylation of IKKα/β dose-dependently. The results
suggested that DHM significantly inhibited the expression
of NF-κB, and then inhibited the inflammatory response
(Tang et al., 2016). DHM inhibited the activation of
macrophage by suppressing NF-κB p65 phosphorylation,
IKKβ activity, and IKKα/β phosphorylation in the NF-κB
pathway (Wang et al., 2016b). Similarly, the research results
of Wu et al. showed that DHM inhibited the activation of the
NF-κB pathway by attenuating the phosphorylation of the NF-
κB in rheumatoid arthritis (Wu et al., 2020).

Cytokines
Liu et al. have confirmed that DHM improved the inflammatory
response of the liver and aorta by inhibiting the expression of
TNF-α as well as Interleukin (IL)-6 in LDL receptor-deficient
mice (Liu et al., 2017b). DHM reduced oxidative stress and down-
regulated the levels of TNF-α, IL-6, IL-1β, and cyclooxygenase-2
(COX-2) by activating Nrf2 in rheumatoid arthritis rat (Chu et al.,
2018). Studies have confirmed that there is a close relationship
between inflammation and the liver damage. DHM prevented
TNF-α mediated liver toxicity by inhibiting the expression of
TNF-α through the c-Jun N-terminal kinase (JNK) signaling
pathway (Xie et al., 2015). Wu et al. have explained that the
levels of IL-6 and TNF-α in diabetic cardiomyopathy mice treated
with DHM were significantly reduced (Wu et al., 2017). In
addition, DHM inhibited the expression of inflammatory
factors (IL-6 and TNF-α) in rats with pulmonary hypertension
(PH) (Li et al., 2017). DHM inhibited the expression of IL-4, IL-5,
and IL-13 in alveolar lavage fluid in asthmatic mice (Xu et al.,
2017).

Neuroinflammation
Neuroinflammation plays a significant role in many neurological
diseases, such as depression (Troubat et al., 2021), AD (Calsolaro
and Edison, 2016), stroke (Jayaraj et al., 2019), Parkinson’s
disease (PD) (Kustrimovic et al., 2019), amyotrophic lateral
sclerosis (ALS) (Liu and Wang, 2017), and so on. DHM
down-regulated the level of cytokines via NLRP-3 signaling
pathway in AD mice (Liu et al., 2019a). Studies have
confirmed that DHM effectively improved astrocyte and
microglia mediated neuroinflammation (Wu et al., 2019b).
DHM inhibited neuroinflammation in AD rats through
adenosine 5′-monophosphate activated protein (AMPK)/signal
transducer and activator of transcription 1 (SIRT1) pathway (Liu
et al., 2020). DHM improved depressive symptoms by alleviating
neuroinflammatory response (Ren et al., 2018). DHM inhibited
the inflammatory response, inhibited the secretion of inducible
nitric oxide synthase (iNOS) and COX-2, and attenuated the
activation of NF-κB and TLR4 signals in lipopolysaccharide
(LPS)-induced neuroinflammation (Jing and Li, 2019). DHM
inhibited inflammatory responses via up-regulation of the
AMPK/SIRT1 pathway in AD mice (Sun et al., 2019) (Figure 2).

OTHER MECHANISMS OF DHM EXCEPT
FOR ANTI-INFLAMMATORY

Furthermore, DHM reduced inflammatory response via the JNK
pathway in acute liver injury mice (Wang et al., 2018a). DHM
reversed the metabolic syndrome by upregulating insulin
receptor substrate-1 (IRS-1) (y612) tyrosine phosphorylation
and improving insulin resistance in obese mice (He et al.,
2019). Of note, DHM inhibited the production of melanin by
down-regulating the protein kinase A (PKA), protein kinase C
(PKC), and mitogen-activated protein kinases (MAPK) signaling
pathways in B16F10 cells (Huang et al., 2016). DHM inhibited the
growth of Staphylococcus aureus by destroying the integrity of the
cell wall and increasing the permeability of the cell membrane
(Liang et al., 2020). Studies have shown that DHM promoted
SIRT3 in chondrocytes via the AMPK-peroxisome proliferator-
activated receptor γ coactiva-tor-1 (PGC-1α)-SIRT3 signaling
pathway in osteoarthritis rat (Wang et al., 2018b). DHM
significantly reversed cisplatin-induced nephrotoxicity by
reducing oxidative stress and inhibiting apoptosis (Wu et al.,
2016). Studies have shown that DHM down-regulated
microRNA-34a (miR-34a) in renal tubular epithelial cells by
inhibiting the phosphorylation of p53 (tumor suppressor gene)
induced by transforming growth factor β1 (TGF-β1) (Liu et al.,
2019c). In addition, DHM ameliorated memory impairment
caused by DHM and improves memory impairment caused by
hypobaric hypoxia (Liu et al., 2016). DHM improved oxidative
stress by inhibiting ROS production and increasing nitric oxide
(NO) production in endothelial cells (Hou et al., 2015b). DHM
reduced the production of inflammatory factors in mast cells by
inhibiting signal transducer and activator of transcription 5
(STAT5) and the NF-κB signaling pathways. DHM improved
mast cell proliferation by significantly attenuating IgE-induced
ROS and inhibiting STAT5 phosphorylation in mast cells (Chang
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FIGURE 2 |Anti-inflammatory mechanisms of DHM. Abbreviations: IL-5, Interleukin-5; IL-13, Interleukin-13; IL-4, Interleukin-4; DHM, Dihydromyricetin; Interleukin-
1β; Nrf2, NF-E2-related factor 2; TNF-α, tumor necrosis factor; COX-2, cyclooxygenase-2; JNK, c-Jun N-terminal kinase; iNOS, inducible nitric oxide synthase; STAT,
signal transducer and activator of transcription; NF-κB, Nuclear factor-κB.

FIGURE 3 | Possible mechanisms of DHM in others expect anti-inflammation. Abbreviations: DHM, Dihydromyricetin; NO, nitric oxide; AKT, protein kinase B; PI3K,
Phosphatidylinositol 3-kinase; PGC-1α, peroxisome proliferator-activated receptor γ coactiva-tor-1; IRS-1, ginsulin receptor substrate-1; miR-34a, microRNA-34a;
ROS, reactive oxygen species.
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et al., 2021). DHM improved emodin-induced hepatotoxicity by
inhibiting oxidative stress via the Nrf2 signal pathway in human
hepatocyte cell line L02 74. Studies have confirmed that DHM
improved gentamicin-induced ototoxicity through the PGC-1α/
SIRT3 signaling pathway in house ear institute-organ of corti
(HEI-OC)1 (Han et al., 2020). DHM promoted autophagy and
improved renal interstitial fibrosis in diabetic nephropathy (DN)
by regulating the miR-155-5p/phosphatase and tensin homolog
deleted on chromosome ten (PTEN) signaling pathway and
phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/

mammalian target of rapamycin (mTOR) signaling pathway
(Guo et al., 2020a). Studies have shown that DHM improved
TNF-α-induced endothelial dysfunction by inhibiting miR-21 77.
DHM improved oxidative stress in endothelial cells through
PI3K/Akt/Forkhead box O3 (FoxO3a) pathway (Zhang et al.,
2019). DHM significantly changed the richness and diversity of
the intestinal microbiota and regulated the composition of the
intestinal microbiota (Fan et al., 2018). Studies have shown that
long-term use of DHM attenuated the development of PD-like
behaviors and pathological phenotypes (Guo et al., 2020b). In

FIGURE 4 | The effects and mechanisms on different inflammatory diseases. Abbreviations: AD, Alzheimer’s disease; PH, pulmonary hypertension; IL-1β,
Interleukin-1β; IL-5, Interleukin-5; IL-13, Interleukin-13; IL-4, Interleukin-4; IL-6, Interleukin-6; iNOS, inducible nitric oxide synthase; TNF-α, tumor necrosis factor-α; COX-
2, cyclooxygenase-2; JNK, c-Jun N-terminal kinase; AMPK, Adenosine 5′-monophosphate activated protein; NF-κB, Nuclear factor-κB; DHM, Dihydromyricetin; SIRT,
Sirtuin.

FIGURE 5 | DHM is expected to be a drug for the treatment of various inflammation-related diseases.
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addition, DHM is also a new type of anti-alcoholism drug (Shen
et al., 2012). DHM improved liver function and brain
histopathology in mice with acute liver failure related the
hepatic encephalopathy (Cheng et al., 2021). In addition,
DHM also has anti-thrombotic effects (Chen et al., 2021a)
(Figure 3).

POSSIBLE CROSSTALK BETWEEN
ANTI-INFLAMMATORY AND OTHER
EFFECTS IN DHM
DHM improved TNF-α-induced endothelial dysfunction by
inhibiting miR-21 (Yang et al., 2018). We speculated whether
DHM inhibited a series of inflammatory responses induced by
TNF-α by inhibiting the expression of miR-21. DHM inhibited
inflammatory response via up-regulation of the AMPK/SIRT1
pathway in AD mice (Sun et al., 2019). DHM inhibited
neuroinflammation in AD rats through AMPK/SIRT1 pathway
(Liu et al., 2020). This suggested that in addition to the anti-
inflammatory pathway, DHM mediated other pathways to play
an anti-inflammatory role in inflammatory diseases. DHM
exerted other anti-inflammatory effects through anti-
inflammation. On the contrary, DHM exerted anti-
inflammatory effects via other related signaling pathways. This
is an exciting and interesting crosstalk, which is worthy of in-
depth exploration and discovery in future research.We can knock
out an inflammatory gene by gene knockdown and observe the
changes of other pathways after DHM treatment. Or more
attention should be paid to other related pathways in the
study of inflammatory diseases in DHM.

CLINICAL STUDY OF DIHYDROMYRICETIN

We consulted the studies on DHM in the most recent 20 years,
and we found that the clinical reports on DHMwere very limited.
There were few studies about the anti-inflammatory effect of
DHM in the clinic. Sixty adult patients with nonalcoholic fatty
liver disease underwent a randomized double-blind experiment.
Following DHM treatment, the level of TNF-α and cytokeratin-
18 in serum decreased significantly in this group (Chen et al.,
2021b). In a randomized double-blind trial of 80 patients with
type two diabetes for 1 month, data showed that DHM
supplementation significantly improved renal function
parameters and glycemic control in patients with type two
diabetes mellitus (Ran et al., 2019). We should pay more
attention to DHM in clinical practice. We should explore the
mechanism of DHM through animal and cell experiments to
solve the unsolved problems in the clinic.

CHALLENGES AND DIFFICULTIES OF
DIHYDROMYRICETIN IN CLINIC

Studies have shown that DHM is only 0.2 mg/ml at 25°C, the
solubility of DHM is very low, so DHM cannot be completely

absorbed from the intestine (Ran et al., 2019). Xiang et al.
evaluated the passive diffusion absorption capacity of DHM
through human internal Caco-2 cells. The results showed that
the passive diffusion absorption capacity of DHM was very
poor, and the uptake and transport of DMY depended on time
and concentration. PH value affects DMY uptake but not its
two-way transport (Xiang et al., 2018). Because of its poor
bioavailability and absorption capacity, its clinical application
is limited (Ran et al., 2019). Thus far, many studies have
reported that DHM inhibited the proliferation of many
types of human tumor cells, such as human
cholangiocarcinoma cells (Chen et al., 2020), human
intestinal Caco-2 cells (Xiang et al., 2018), human ovarian
cancer cells (Wang et al., 2019), and human myelomonocytic
lymphoma cells (Feng et al., 2019), and so on. However, there
are few studies on anti-tumor or else pharmacological effects
in vivo or clinic. To better apply DHM in the clinic, improving
the bioavailability and gastrointestinal absorption of DHM is
not only an urgent problem to be solved but also difficult and
challenging for the clinical application of DHM.

DISCUSSION

Numerous studies have shown that inflammation plays a vital
role in a variety of diseases, including diabetes, arthritis,
asthma (Zhong and Shi, 2019), AD, acute cerebral stroke,
cancer, hypertension, and myocardial ischemia (Liu et al.,
2019a; Figure 4). Therefore, the further elucidation of
inflammation-related mechanisms and the development of
anti-inflammatory drugs are urgent problems to be solved.
DHM has been used to treat different diseases for a long time
(Martínez-Coria et al., 2019). This review summarizes the
mechanism of DHM in inflammatory diseases according to
its different effects systematically, focusing on the research
progress of DHM in anti-inflammatory, apoptosis, oxidative
stress, and the effects of various metabolic pathways. In
summary, many research results show that DHM as a
component of natural medicine has a variety of
pharmacological effects. As we all know, numerous diseases
are closely related to inflammation (Medzhitov, 2008).
Therefore, we should pay more attention to the research
and development of anti-inflammatory mechanisms and
anti-inflammatory drugs. DHM has multiple
pharmacological effects, especially anti-inflammatory
pharmacological effects. However, the specific mechanism
and many targets of DHM’s anti-inflammatory
pharmacological effects need to be further studied and
explored. Although a large amount of literature has
prompted us, DHM is a potential drug for the treatment of
inflammation-related diseases (Table 1). Thus far, most
studies on DHM have focused on animal and cell levels,
and it is not common for clinical studies. Although studies
have confirmed that DHM can inhibit the proliferation of a
variety of human tumor cells, it is still limited to the cell level.
This is a problem that demands us to think and solve. In future
research, we should pay attention to the clinical
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transformation of DHM. The bioavailability and chemical
stability of DHM can be improved by changing the dosage
form into the sustained-release mechanism, controlled-release
preparation, or targeted preparation. DHM is an active
compound mainly derived from A.grossedentata. It can also
be combined with other related drugs to make compound
preparations to improve the curative effect and bioavailability.

The clinical transformation of candidate drugs or active
compounds is an urgent problem to be solved in future
research, which is meaningful and valuable life science
research (Liu et al., 2019d; Figure 5).
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