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SUMMARY
Elucidating regulatory relationships between transcription factors (TFs) and target genes is fundamental to understanding how cells con-

trol their identity and behavior. Unfortunately, existing computational gene regulatory network (GRN) reconstruction methods are

imprecise, computationally burdensome, and fail to reveal dynamic regulatory topologies. Here, we present Epoch, a reconstruction

tool that uses single-cell transcriptomics to accurately infer dynamic networks.We apply Epoch to identify the dynamic networks under-

pinning directed differentiation of mouse embryonic stem cells (ESCs) guided by multiple signaling pathways, and we demonstrate that

modulating these pathways drives topological changes that bias cell fate potential. We also find that Peg3 rewires the pluripotency

network to favor mesoderm specification. By integrating signaling pathways with GRNs, we trace howWnt activation and PI3K suppres-

sion governmesoderm and endoderm specification, respectively. Finally, we identify regulatory circuits of patterning and axis formation

that distinguish in vitro and in vivo mesoderm specification.
INTRODUCTION

Gene regulatory networks (GRNs) model the regulatory

relationship between a set of regulators, or transcription

factors (TFs), and their target genes. The topology of these

networks, defined by edges that map regulatory interac-

tions between TFs and targets, offers a molecular-level

view of a controlled system in which genes work together

as part of a framework to accomplish specific cell functions

(Karlebach and Shamir, 2008; Le Novère, 2015). Uncover-

ing the topology of these GRNs is fundamental in

answering a number of questions, including understand-

ing how cellular identity is maintained and established

(Davidson and Erwin, 2006), elucidating mechanisms of

disease caused by dysfunctional gene regulation (Morgan

et al., 2020; Qin et al., 2019), and finding novel drug targets

among others (Carro et al., 2010). In the context of cell fate

engineering, the mapping of GRNs would enable the iden-

tification of TFs required to activate the expression of target

genes so as to control cell fate transitions or cell behavior

(Cahan et al., 2021; Rackham et al., 2016). Unfortunately,

how best to map these relationships remains both an

experimental and a computational challenge.

Experimental approaches, including chromatin immu-

noprecipitation sequencing (ChIP-seq), have identified

regulatory targets and TF binding site motifs in certain

cell lines and cell types. Similarly, chromatin accessibility

assays that detect TF-binding site (TFBS) footprints, such

as assay for transposase-accessible chromatin with high-

throughput sequencing (ATAC-seq) (Buenrostro et al.,
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2013), enable the inference of regulatory networks. Howev-

er, these approaches are limited in scope (e.g., ATAC-

defined networks are limited to TFs with known motifs)

and scalability (e.g., it is infeasible to perform ChIP-seq

for all TFs in all cell types). Therefore, computational

methods to infer GRNs are needed. Methods that leverage

advances in data collection andmachine learning to enable

the statistical inference of GRNs via gene expression data

include those based on information theory (Faith et al.,

2007; Margolin et al., 2006; Meyer et al., 2007), ensemble

learning (Huynh-Thu et al., 2010), Bayesian theory (Harte-

mink, 2005; Yu et al., 2004), and ordinary differential equa-

tions (ODEs) (di Bernardo et al., 2005). Unfortunately, the

tools developed to date suffer from several drawbacks,

including low precision and sensitivity. The leading con-

tributors to poor performance include difficulty in distin-

guishing direct from indirect interactions (Marbach et al.,

2010), the confounding effects of Simpson’s paradox (Trap-

nell, 2015), and the fact that bulk derived data does not

offer perturbation sufficient to detect regulatory relation-

ships (Stark et al., 2003). Attempts to ameliorate these by

aggregation across methods have achieved modest success

(Marbach et al., 2012).

With the advent of single-cell RNA-seq (scRNA-seq)

(Klein et al., 2015; Macosko et al., 2015; Zheng et al.,

2017), computational techniques have emerged that try

to take advantage of the resolution offered by single-cell

transcriptomics to infer GRN structures (Aibar et al.,

2017; Matsumoto et al., 2017; Qiu et al., 2020). To date,

these methods suffer from limitations similar to those of
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Figure 1. Effector activity on static and dynamic networks
Given a static GRN, manipulating signaling activity may result in an effector guiding cell state via two possibilities: directly, the effector
may regulate a set of fate-specific genes, or indirectly, the effector may regulate a set of TFs that further regulate the same fate-specific
genes. Both cases result in the activation of the same program. Alternatively, given a dynamic network, the state space of possible cell
fates increases since the result of effector activity is dependent on a changing network topology. As a result, multiple sets of genetic
programs may be regulated through the same signaling mechanism. Furthermore, these shifts in GRN topology maybe be induced by the
signaling activity itself.
their bulk counterparts, including low precision and sensi-

tivity (Chen and Mar, 2018) and high computational

burden, which limits users’ ability to hone analysis

through iterative application (Bonnaffoux et al., 2019). In

addition to higher resolution and access to more perturba-

tions, single-cell data allow for computational modeling of

dynamic processes, such as differentiation, by ordering

cells along a trajectory following linear or more complex

graph structures (Haghverdi et al., 2016; Qiu et al., 2011;

Street et al., 2018; Trapnell et al., 2014). While many new

scRNA-seq GRN methods use pseudotemporal analysis to

aid in reconstruction, they are limited in their ability to

explain how network topology evolves over time. We

define a dynamic topology as one that changes the edge-

level regulatory relationships between TFs and targets

over time, which thereby increases the number of reach-

able cell states (Figure 1). This implies that for a given TF-

target relationship, themodulation of the TF in a particular

context or time point would lead to changes in target

expression, but modulation of the same TF in another

context or time point would not lead to changes in target

expression. The dynamic and noncommutative nature of

regulatory networks permits independent control of ge-

netic programs that would otherwise be simultaneously

activated with non-sequential, or combinatorial, logic (Let-
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sou and Cai, 2016). Such shifts in network topology can

arise for several reasons, including the presence or absence

of co-factors, epigenomic modifications, or changes in

chromatin accessibility. Thus, for GRNs to more accurately

model the emergence of distinct cell fates, they must

encapsulate this dynamic behavior of changingGRN topol-

ogy. Moreover, because GRN topology dictates how a cell

responds to perturbation, uncovering the dynamic GRN

aids in understanding how the landscape of reachable

cell states changes over time, which has implications in

the quest to engineer cell fate.

For those reasons, we developed a computational GRN

reconstruction tool called Epoch, which uses single-cell

transcriptomics to efficiently reconstruct dynamic net-

works. There are several features that distinguish Epoch

from other methods: first, reconstruction is limited to

dynamically expressed genes. Second, Epoch uses an

optional ‘‘cross-weighting’’ strategy to reduce false posi-

tive interactions. Third, Epoch divides pseudotime into

epochs, or discrete time periods, extracts a dynamic

network, and predicts the most influential regulators in

driving topology changes. Finally, Epoch includes a num-

ber of functionalities to aid in network analysis and com-

parison, including the integration of GRNs with major

signaling pathways and subsequent tracing through the
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Figure 2. Epoch workflow and benchmarking
(A) Epoch relies on a 3-step process to reconstruct dynamic network structures: (1) extraction of dynamic genes and CLR, (2) application of
cross-weighting, and (3) extraction of the dynamic network.
(B) BEELINE benchmarking on synthetic data. Epoch using mutual information (MI) and Pearson, denoted by ‘‘MI’’ and ‘‘P,’’ respectively. ‘‘X’’
indicates the use of cross-weighting. The red line indicates the median AUPR of the best-performing method, Epoch using MI + cross-
weighting on size 5,000 cell datasets. Kruskal-Wallis p < 2.2 3 10�16. See also Figures S2 and S3.
GRN of the shortest paths from signaling effectors to

selected target genes. We compared the performance of

Epoch to commonly used computational GRN reconstruc-

tion tools using synthetically generated data, in vivo

mouse muscle development data, and in vitro directed dif-

ferentiation data. To demonstrate the utility of Epoch, we

applied it to mouse embryonic stem cells (ESCs) undergo-

ing directed differentiation to measure the extent to

which signaling pathways influence cell fate by altering

GRN topology rather than by direct regulation of pathway

effectors (Figure 1).
RESULTS

Epoch relies on single-cell analysis techniques to infer

dynamic network structures

Epoch takes as minimum input processed single-cell tran-

scriptomic data and pseudotime or equivalent annotation

from any trajectory inference method (Figure 2A). Its first

step is to limit reconstruction to dynamically expressed

genes to focus on genes playing an active role in cell state

changes. To accomplish this, Epoch models gene expres-

sion across pseudotime using a generalized additive model.
Stem Cell Reports j Vol. 17 j 427–442 j February 8, 2022 429



Upon filtering the data for dynamically expressed genes,

Epoch reconstructs an initial static network via a CLR-like

(Context Likelihood of Relatedness) method, using either

Pearson correlation or mutual information (MI) to infer in-

teractions (Faith et al., 2007).

In an optional step, which we have called ‘‘cross-weight-

ing,’’ Epoch next refines the network via a cross-correla-

tion-based weighting scheme. This helps to reduce false

positives that may result from indirect interactions or

that represent non-logical interactions, ultimately

improving precision (Figure S1A). In this step, the expres-

sion profiles over pseudotime for each TF-target pair are

aligned and progressively shifted to determine an average

offset value at which maximum correlation is achieved be-

tween the two profiles. A graded-decline weighting factor is

computed based on this offset, and it is used to negatively

weight interactions that are less likely to be true positives.

Once a static network has been inferred, Epoch extracts a

dynamic network. This begins with Epoch breaking down

pseudotime into epochs, based on pseudotime, cell

ordering, k-means or hierarchical clustering, sliding win-

dow similarity, or user-defined assignment. With the

exception of user-defined assignment, all methods of

defining epochs are, to some extent, automated, with

epoch definitions learned directly from the data. Genes

are assigned to epochs based on their activity along pseudo-

time. Epoch then fractures the static network into a dy-

namic one, composed of ‘‘epoch networks,’’ representing

active interactions within a particular epoch, and ‘‘transi-

tion networks,’’ describing how an epoch network transi-

tions into a subsequent epoch network.

As Epoch was initially built with the improvement of cell

fate engineering protocols in mind, we included in the

framework network analysis and comparison capabilities.

For example, Epoch will identify influential TFs within a

given static or dynamic network by extracting top regula-

tors that appear to have the most influence on network

state. Specifically, Epoch ranks TFs by PageRank (Brin and

Page, 1998) in the context of their epoch networks, and

will also look for TFs that simultaneously score high in

betweenness and degree centralities as compared to all of

the other TFs. In addition, Epoch can integratemajor signal

transduction pathways with reconstructed networks. This

can be used to determine the shortest paths through the

networks from pathway effectors to groups of specified

target genes, allowing users to identify topologies capable

of activating or repressing specific groups of genes.

Finally, Epoch is modularly designed such that it can be

broken into individual steps and flexibly merged and

used with any trajectory inference, network reconstruc-

tion, and network refinement tools.

To assess the performance of Epoch in reconstructing

static networks, we benchmarked it against multiple varia-
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tions of CLR (Faith et al., 2007) and GENIE3 (Huynh-Thu

et al., 2010) (including the original methods themselves

and variations in which the methods were embedded

within the Epoch framework) on in vivo, in vitro, and in sil-

ico datasets (Figure S2; Note S1). Our results indicated that

key steps in the Epoch framework improved overall static

network reconstruction, as limiting reconstruction to

dynamically expressed genes and applying the cross-

weighting scheme both led to increased fold improvement

in area under the precision-recall curve (AUPR) over

random.We further compared Epoch to recently developed

GRN reconstruction methods designed for single-cell data.

We used the benchmarking platform BEELINE (Pratapa

et al., 2020) to assess the performance of Epoch against

11 other single-cell methods across synthetic and curated

datasets (Figures 2B and S3). Our results demonstrated

that Epoch with cross-weighting outperformed all other

methods based on AUPR and execution time.

scRNA-seq of early in vitro mouse ESC-directed

differentiation

With the goal of exploring the dynamic GRN topology un-

derlying lineage specification in gastrulation, we collected

scRNA-seq data from days (d) 0 through 4 of in vitro

mESC-directed differentiation guided by four separate

treatments encouraging primitive streak formation (Fig-

ure 3A). Briefly, cells were allowed to differentiate in

serum-free differentiation media before being treated

with 1 of 4 treatments on d2: Wnt3a and activin A alone

(WA), or with one of Bmp4 (WAB), GSK inhibitor (WAG),

or Noggin (WAN). Multiple rounds of differentiation were

staggered such that we could harvest samples representa-

tive of d0–d4 at one time for sequencing using the

MULTI-seq protocol (McGinnis et al., 2019). After barcode

classification, samples were preprocessed using the

SCANPYpipeline (Wolf et al., 2018), and RNAvelocity anal-

ysis was performed (Bergen et al., 2020; La Manno et al.,

2018) (Figures 3B and 3C).

We detected three distinct lineages, neuroectoderm

(based on Sox1 expression), mesoderm (Mesp1), and endo-

derm (Foxa2), a result confirmed by comparison to gastru-

lation data with SingleCellNet (SCN) (Tan and Cahan,

2019) (Figures 3D and S4; Table S1; Note S2). RNA velocity

additionally supported our cluster annotations. We found

that themajority of the differentiating cells transitioned to-

ward the neuroectoderm (clusters ‘0,20, ‘0,30, 4, 2, 5, 9),
with smaller populations transitioning toward mesoderm

(cluster 8) and endoderm (clusters ‘7,10 and ‘7,00).
We observed differences between induction treatments

in terms of the distribution of cells among the different

populations (Figures 3E and 3F). Notably, cells treated

with WAG exhibited a stunted trajectory toward neuroec-

toderm but a fuller trajectory toward mesoderm. This was
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Figure 3. mESC in vitro-directed differentiation
(A) Directed differentiation protocol. Cells were harvested from d0 through d4 samples for MULTI-seq.
(B and C) Clustering (B) and (C) RNA velocity for MULTI-seq data.
(D) Select marker gene expression. See also Figure S4C.
(E) Cell populations by treatment.
(F) Quantification of cell fate distribution based on treatment comparing mesendoderm and neuroectoderm, endoderm and mesoderm,
cluster ‘7,00 and ‘7,10 along endoderm fate, and cluster distribution along neuroectoderm fate.
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in contrast to cells treated with the remaining three treat-

ments (WAB,WAN, andWA), in which very few cells differ-

entiated toward mesodermal fate, but instead exhibited

strong neuroectodermal or endodermal commitment.

Furthermore, while WAB andWA cells tended to transition

into cluster ‘7,00 (furthest along endodermal develop-

ment),WAN andWAG cells weremore likely to stay in clus-

ter ‘7,10.
We applied Epoch to reconstruct the networks underly-

ing the data, using latent time (Bergen et al., 2020) to order

cells. Latent time was divided into three epochs, a dynamic

network was extracted for each lineage, and top regulators

were extracted via PageRank and Betweenness-Degree (Fig-

ure S5; Table S2; Note S3).

Peg3 is a central regulator in mesodermal WAG

networks

We next asked why WAG-treated cells had the greatest

propensity for mesoderm fate. We hypothesized that

treatment-specific GRNs underpinned differences in fate

potential among treatments. To explore this hypothesis,

we reconstructed and compared dynamic networks for

each treatment along the mesodermal path (which we

refer to as the treatment-specific networks: WAG, WAB,

WAN, and WA networks), and we compared these against

the full reconstructed mesoderm network, which is recon-

structed from all cells regardless of treatment, and which

we refer to as the mesoderm network.

We sought to identify regulators that drive differences in

mesoderm reachability between the treatments. We per-

formed community detection on epoch 2, epoch 3, and

their transition of the mesoderm network and identified

distinct TF communities, or modules (Figures 4A and

S6A). We assessed the activity of each module by looking

at the average expression of member genes across latent

time for each treatment (members predicted to be repressed

were not included in the average so as not to improperly

depress this measure of activity) (Figures 4B and S6B). At

least three modules exhibited strong activation in the

WAG treatment, but were inactive or weakly activated in

the remaining three treatments. The TFs in these modules

were Peg3, Lhx1, Hoxb2, Foxc1, Tshz1, Meis2, Mesp1, Tbx6,

Foxc2, Prrx2, Meox1, and Notch1. Upon extracting the dif-

ferential network, defined as the network containing the

interactions that are more specific to a treatment network

by edge weight (see supplemental experimental proced-

ures), between WAG and WA, we identified the top differ-

ential regulators of these TFs themselves (Figures 4C and

S6C). Interestingly, Peg3 was an upstream regulator of the

majority of these TFs in the WAG treatment, but had a

negligible role in the WA treatment.

The central influence of Peg3 in the WAG network

implied a pathway linking glycogen synthase kinase 3
432 Stem Cell Reports j Vol. 17 j 427–442 j February 8, 2022
(GSK3) inhibition, Peg3 expression, and mesodermal gene

expression. GSK3 contributes to DNA methylation at im-

printed loci, including Peg3, in mESCs via Dnmt3a (Mere-

dith et al., 2015), potentially mediated by N-Myc (Popkie

et al., 2010). Consistent with amodel whereby GSK3main-

tains repressive methylation of Peg3 via Dnmt3a activity,

we found that Dnmt3a and Peg3 expression were largely

mutually exclusive, and there was low-to-no Dnmt3a

expression in theWAG-treated cells (Figure S6D). This phe-

nomenon occurs in vivo, too, as we found a relatively high

expression of Dnmt3a in epiblast cells, which was tapered

in primitive streak and mesodermal cells (Figure 4D) from

a single-cell mouse gastrulation dataset (Grosswendt

et al., 2020). In contrast, Peg3 expression was low in

epiblast and increased in the primitive streak, mirroring

our in vitro data, and suggesting that Peg3 may have a role

in orchestrating the exit of pluripotency and specification

of mesodermal fate in vivo.

Tracing signaling cascades to germ layer

transcriptional programs

We next sought to trace pathways from signaling effectors

to the activation of mesodermal fate. To determine which

signal transduction pathways were active and when along

the mesodermal trajectory, we computed the average

expression of targets of 18 signaling effector TFs (available

as part of the Epoch framework) across latent time broken

downby treatment. As expected, targets of theWnt effector

Lef1 were activated early in WAG, whereas targets of the

transforming growth factor-b (TGF-b)/bone morphoge-

netic protein (BMP) effector Smad4 were activated to the

highest extent and longest duration in WAB (Figure 5A).

Notch targets were activated in WAB, WAN, and WA, but

not in WAG, along the mesodermal lineage (and weakly

activated along the neuroectodermal lineage), consistent

with the role of Notch in specifying neuroectodermal fate

in the neuroectoderm-mesendoderm fate decision (An-

droutsellis-Theotokis et al., 2006; Aubert et al., 2002).

Because Wnt signaling is essential for mesodermal fate,

we looked for paths connecting Wnt effectors to the TFs

in the WAG-specific modules defined previously. We

computed the shortest paths from targets of Wnt effectors

to the module TFs in each treatment-specific dynamic

network (using edge lengths inversely proportional to the

cross-weighted score) (Figure 5B), finding that no paths

from Wnt to many of the module TFs existed in WAB,

WAN, and WA.

Our signaling effector target analysis also revealed

increased Foxo1 activity in WAB-, WAN-, and WA-treated

cells as compared to WAG-treated cells, indicating the sup-

pression of phosphatidylinositol 3-kinase (PI3K) signaling

along the WAB, WAN, and WA trajectories (Figure 5A). The

establishment of definitive endoderm (DE) requires the
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Figure 4. Mesodermal network analysis
(A) The epoch 3 subnetwork of the mesodermal dynamic GRN. TFs are colored by community and faded by betweenness. Blue and red edges
represent activating and repressive edges, respectively.
(B) Average community expression over time by treatment along the mesodermal path. Communities shown (each row) are from the epoch
2 subnetwork (yellow), transition (green), and epoch 3 subnetwork (aqua).
(C) The epoch 3 differential network between WAG and WA. Interactions in this network represent edges present in the WAG mesodermal
network that are not present in the WA mesodermal network. TFs are colored by community and faded by betweenness. Blue and red edges
represent activating and repressive edges, respectively.
(D) Peg3 and Dnmt3a expression in a sampled portion of relevant cell types in gastrulation data adapted from Grosswendt et al. (2020).
Peg3 ANOVA p < 2 3 10�16, Dnmt3a ANOVA p < 2 3 10�16.
suppression of PI3K signaling (McLean et al., 2007; Yu et al.,

2015), and in induced pluripotent stem cell (iPSC)-

DE differentiation Foxo1 binds to DE-formation-related

genes and its inhibition impedes DE establishment (Nord

et al., 2020). We therefore hypothesized that a second fate

choice between mesodermal and endodermal fates further

exacerbated the uneven mesodermal fate preference be-

tween the treatments. Our analysis indicates that in the
mesodermal-endodermal fate choice, the majority of

WAG-treated cells differentiate toward the mesoderm in

contrast toWAN andWA inwhich cells preferentially differ-

entiate toward DE. WAB-treated cells exhibited a mixed po-

tential split roughly equally along the two paths.

We sought to elucidate a possible explanation for the role

of Foxo1 in this fate choice by searching for the shortest

paths toward a set of endodermal genes. Specifically,
Stem Cell Reports j Vol. 17 j 427–442 j February 8, 2022 433
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Figure 5. Integrating signaling effectors and tracing paths to target genes
(A) Average expression of targets of signaling effectors by treatment over time. Pathway and effector are labeled on each row.
(B) Shortest path analysis showing length of shortest paths from Wnt effector targets (each row) to mesodermal target genes (each
column) within treatment-specific networks. Path lengths are normalized against average path length within a network. Blue and red
indicate paths that activate and repress the target gene, respectively. If such a path does not exist, then it has length of infinity and is
therefore white.
(C) The epoch 3 subnetwork of the endodermal dynamic network. TFs are colored by community and faded by betweenness. Blue and red
edges represent activating and repressive edges, respectively.
(D) Shortest path analysis showing length of shortest paths from PI3K suppression (targets of Foxo1 activation) (each row) to endodermal
genes (each column) within treatment-specific networks. As before, path lengths are normalized against average path length within a
network. Blue and red indicate activation and repression of the target gene, respectively. If a path does not exist, it has length of infinity
and is therefore white.
similar to the previous mesodermal analysis, we applied

community detection to the full endodermal network

and identified the cluster containing Sox17 and Foxa2,

known master regulators of endodermal fate (Figure 5C).

This cluster included the TFs Sox17, Foxa2, Bmp2, Cited1,

Foxa1, Gata6, Hhex, Lhx1, and Tcf7l2. For each treatment-

specific network, we computed the shortest paths from

Foxo1 targets to these genes (Figure 5D). We found that

many of these regulators, including both Sox17 and

Foxa2, were not reachable from Foxo1 in theWAGnetwork,

consistent with the observation that WAG-treated cells

preferentially differentiated toward mesodermal fate over
434 Stem Cell Reports j Vol. 17 j 427–442 j February 8, 2022
endodermal fate. Interestingly, Foxa2 was not reachable

in the WAN network, although Sox17 was. We believe

this may explain the differences in the distribution of cells

between the endodermal clusters ‘7,10 and ‘7,00. Of the cells

that specify endodermal fate, WA- and WAB-treated cells

more fully transitioned into cluster ‘7,00. In contrast,

WAN-treated cells remained mostly in cluster ‘7,10 and

were less likely to differentiate further into ‘7,00 . Previous
studies in directed differentiation of human ESCs toward

DE have implicated a regulatory role of Sox17 in establish-

ing DE to be upstream of Foxa2, the loss of which impairs

foregut and subsequent hepatic endoderm differentiation
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Figure 6. Similarity of targets of TFs in different treatments
(A) Jaccard similarity of targets of 72 TFs. The targets of each TF in a treatment are compared to those in the other 3 treatments (light
blue). As a baseline (turquoise), targets of each TF in bootstrapped reconstructed networks within a treatment are pairwise compared. All
pairs p < 2 3 10�16.
(B) The 13 TFs selected for GSEA and their average pairwise Jaccard similarity among the treatment-specific networks.
(C) Summarized results of performing GSEA on targets of TFs in (B). Heatmap shows rankings (top 10 shown) based on the frequency a term
is considered enriched among the 13 TFs (1 = most frequently enriched term).
(Genga et al., 2019). This is consistent with our cell-type

annotations of cluster ‘7,10 (definitive endoderm) and

‘7,00 (gut endoderm), and offers a possible mechanism of

the discrepancy in cell fate preferences between treat-

ments. These results demonstrate that WAB, WAN, and

WA networks do not allow for the activation of mesoderm

programs from their cognate effectors, but instead

assume topologies that are preferential for endodermal

fate, implying profound structural changes in the networks

that underlie the treatment-specific differences we see in

cell fate. Furthermore, this analysis provides a basis for

identifying which signaling pathways must be targeted

for directing certain fate transitions—for example, through

an exhaustive search of effector targets.
TF-target gene differences among treatments

illuminate rewiring of network topology by signaling

pathways

Given the apparent restructuring of GRN topology by

signaling activity, we aimed to understand the extent to

which network-wide topology changes were responsible for

differences in cell fate potential between treatments. To
answer this, we performed two analyses focusing on the dif-

ferences in targets of TFs across the four treatment networks.

First, we asked whether TFs actively expressed in all four

treatments regulated the same set of target genes. To this

end, we focused on the treatment-specific networks along

the mesodermal path, and narrowed our analysis to the

72 TFs that were active in all 4 treatments during d3 or

d4. We quantified the overlap between the targets of each

TF in a pairwise comparison of the treatments using the Jac-

card similarity (Figure 6A). As a baseline, we implemented a

bootstrapping method in which we reconstructed 10 net-

works for each treatment (using 400 sampled cells each);

for each TF, we calculated the average Jaccard similarity of

its targets among pairwise comparisons of the recon-

structed networks within a treatment. This gave us a base-

line, or expected, Jaccard similarity for each TF in each

treatment. Overall, we found that overwhelmingly, target

differences between treatments were significantly greater

than the baselines, indicating vast network topology differ-

ences among the treatment networks.

Second, we asked whether these differences in predicted

targets had functional consequences in affecting fate po-

tential. To this end, we focused on the 13 TFs among the
Stem Cell Reports j Vol. 17 j 427–442 j February 8, 2022 435



72 mentioned above that exhibited the largest differences

in predicted targets between treatments (Figure 6B). For

each treatment, we performed gene set enrichment anal-

ysis (GSEA) on the predicted targets of these TFs (Figure 6C).

In line with our observations, we found enrichment for

heart development and mesoderm formation in only the

WAG treatment, despite the fact that the networks we

analyzed were reconstructed along the mesodermal path.

Our results are consistent with previous literature that

hinted at environment-based differences in the fate poten-

tial of mESCs in that Esrrb/Nanog double knockdown im-

pedes self-renewal in 2i alone but not in the presence of

2i and leukemia inhibitory factor (LIF) (Dunn et al.,

2014). These results support our hypothesis that manipu-

lating signaling activity results in a topological restructur-

ing of the GRN, ultimately guiding cell fate potential.

Patterning and neuroectoderm programs drive

differences between in vivo and in vitro gastrulation

and mesoderm specification

Finally, we aimed to understand the extent to which our

in vitro mESC-derived mesodermal cells established a GRN

resembling that of their in vivo counterparts. To this end,

we sampled 250 cells from previously published gastrula-

tion stage embryos for each of 4 annotated populations

that corresponded to our in vitromesoderm lineage popula-

tions: Epiblast, Primitive streak early, Primitive streak late,

and Mesoderm presomitic. We then used Epoch to recon-

struct an in vivo dynamic network from these sampled

data. After reconstruction, we extracted the top regulators

in each epoch (Figure 7A). Of the 22 unique top regulators

in epochs 2 and 3, at least 17 have known roles in guiding

exit from pluripotency, mesoderm specification, or somito-

genesis (Note S4), corroborating the usefulness of Epoch in

identifying important TFs driving dynamic processes. Of

note, Peg3 ranked highly in epoch 2 of the in vivo network,

bolstering our earlier prediction of Peg3 as an orchestrator

of the pluripotent-to-mesodermal fate transition in vitro

and in vivo.

Substantial differences between top regulators of the

in vivo and in vitro networks suggested broader topology dif-

ferences. Thus, we further applied the signaling pathway

tracing analysis to the in vivo network. Analogous to the

in vitro networks, we looked for paths connecting Wnt ef-

fectors to the same TFs in the in vitroWAG-specificmodules

(Figure 7B). As expected, all of the TFs were reachable.

Furthermore, Wnt activation and these target TFs were

highly connected, with paths existing from almost every

effector target to every TF, implying the existence of robust

and coordinated control over this mesoderm module.

Finally, we sought to directly compare the topological

and functional differences between the in vivo and in vitro

mesoderm networks. To directly compare topological dif-
436 Stem Cell Reports j Vol. 17 j 427–442 j February 8, 2022
ferences, we applied a threshold to both networks, keeping

the top 2% of non-zero-weighted edges in each. We then

extracted the differential network corresponding to the

in vivo-specific interactions and the differential network

corresponding to the in vitro-specific interactions (data

not shown). We performed community detection on

both and measured the activity of each resulting module

by assessing the average expression ofmember genes across

time in the in vivo and in vitro data (Figures S7A and S7B).

Of the in vivo-specific modules, three had low or insignif-

icant activation in the in vitro data, despite being strongly

activated in the in vivo data. To understand the functional

consequences of this, we applied GSEA to each of these

modules (Figures 7C and S7C). Two modules showed

enrichment for multiple pathways related to patterning

and axis specification. Thus, a large but not unexpected dif-

ference between the in vivo and in vitro mesoderms is the

lack of activation of patterning programs in the in vitro

ESC-derived mesodermal cells.

Conversely, of the in vitro-specific modules, we isolated

those that had low or insignificant activation in the in vivo

data but were strongly activated in the in vitro data. Within

the first epoch, three communities satisfied this criterion.

We hypothesized that differences in this early epoch could

drive fate differences between the two networks at a later

time. GSEA on these modules revealed that one was en-

riched for the positive regulation of stem cell proliferation

and the regulation of mRNA splicing, while another was

enriched for terms related to fluid shear stress, DNA

methylation, and male gonad development (Table S3).

Meanwhile, GSEA on in vitro-specificmodules from the sec-

ond and third epochs revealed the underlying activation of

neural-related programs in the in vitro ESC-derived meso-

derm (Figures 7C and S7D). Most of the modules were en-

riched for neuroectoderm processes, implying that the

in vitro differentiated cells failed to completely inhibit the

default neuroectoderm lineage and instead retained a

network topology capable of activating at least portions

of neuroectoderm programs. This aligns with our observa-

tion that the majority of the in vitro-differentiated cells

tended toward the neuroectoderm lineage. Our results sug-

gest that to more efficiently produce mesodermal cells,

emphasis should be placed on disrupting network module

topologies responsible for neural programs.

DISCUSSION

Here, we presented a GRN reconstruction tool, Epoch,

which leverages single-cell transcriptomics and efficiently

infers dynamic network structures. We show that it outper-

forms methods designed for bulk and single-cell GRN

reconstruction in both synthetically generated and real-

world datasets. It is computationally efficient, facilitating
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Figure 7. Comparison to in vivo gastrulation and mesoderm specification
(A) Top regulators of each epoch in the in vivo mesoderm network as predicted by PageRank and Betweenness-Degree.
(B) Shortest path analysis showing length of shortest paths from Wnt effector targets (each row) to mesodermal target genes (each
column) in the in vivo network. Path lengths are normalized against average path length in the network. Blue and red indicate paths that
activate and repress the target gene, respectively. If such a path does not exist, then it has length of infinity and is white.
(C) Top 10 enriched terms for in vivo- and in vitro-specific modules based on the Combined Score from Enrichr GSEA analysis. See also
Figure S7.
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the optimization of network topology or iterative simula-

tions of changes in network structure. Finally, the utility

of Epoch is enhanced by its flexibility; there are no strict re-

quirements on the flavor of pseudotemporal input, and its

workflow is structured in discrete steps, allowing users to

pick and choose or substitute portions of the workflow,

making it straightforward to incorporate emerging analysis

techniques into the framework of Epoch.

To demonstrate the practical utility of Epoch, we applied

it to scRNA-seq data from d0 through d4 in in vitro mESC-

directed differentiation undergoing 4 treatments (WAG,

WAB, WAN, and WA). This analysis revealed several topo-

logical features that are likely to play important roles in

specifying germ layer fate during directed differentiation.

First,we identified a set ofPeg3-controlledTFmodules that

promote mesoderm emergence, which were preferentially

activated in WAG. This, coupled with prior data linking

GSK3 to the regulation of imprinted genes (Meredith et al.,

2015), preferential expression of Peg3 in mesoderm and so-

mites (Kuroiwa et al., 1996), and the inhibitory influence

of Peg3 on pluripotency and reprogramming (Theka et al.,

2017), implicatePeg3asacandidate to improve theefficiency

of directed differentiation toward mesodermal fates.

Second, by integrating Epoch-reconstructed dynamic

GRNs with signaling pathways, we were able to trace paths

from signaling effectors throughGRNs to the regulation of

germ-layer-specific gene batteries. This revealed not only

direct targets of signal pathways but also broad

network remodeling that altered accessibility to targets,

thereby honing the capacity and potential for distinct

fates. Specifically, we found that paths fromWnt signaling

effectors to mesodermal programs were confined to the

WAG network. Similarly, we found condition-specific

paths between the suppression of PI3K signaling, subse-

quent Foxo1 activation, and endoderm specification.

Collectively, these analyses supported our hypothesis

that signaling-induced topological differences altered the

cell fate landscape, resulting in distinct propensities for

each germ layer. Thenature of these topological differences

remains unclear. One possibility is direct alteration of the

epigenomic state, and thus GRN, by signaling pathways.

We point to the reported effect of GSK over Peg3 methyl-

ation as an example of such a phenomenon. Further

studies to elucidate differences in epigenomic states be-

tweenmESCs undergoing directed differentiation bymod-

ulation of distinct signaling pathways will aid in clarifying

whether such a mechanism is in play.

Finally, we explored how in vivo versus in vitro mesoderm

specification GRNs compare, revealing two broad GRN dif-

ferences. First, the in vivo GRN established patterning and

axis-specification programs that were lacking in the in vitro

network, consistent with incomplete recapitulation of the

self-organization present in in vivo gastrulation (ten Berge
438 Stem Cell Reports j Vol. 17 j 427–442 j February 8, 2022
et al., 2008; Glykofrydis et al., 2021). Second, the in vitro

GRN retained a topology partially favorable for neuroecto-

derm development, suggesting that the cells undergoing

in vitro-directed differentiation incompletely suppressed

the neuroectoderm fate. Overall, this analysis suggests that

guiding cells toward a more faithful mesodermal fate at a

higher rate will likely require steps to disrupt the retention

of neuroectoderm-favoring networks while promoting the

establishment of appropriate patterning-related programs.

Our results ultimately suggest a model of differentiation

that is driven by the activation of genetic programs and

honed by network topology changes. In other words,

signaling-induced restructuring of GRNs alters the fate po-

tential landscape, which allows for independent control of

multiple genetic programs and thereby increases the diver-

sity of reachable cell states. In the case of mESC-directed

differentiation, GRN topology clearly restricted the poten-

tial of cells toward specific fates, resulting in different pro-

pensities for mesoderm, endoderm, and neuroectoderm

depending on treatment. Finally, while it may be the case

that both signaling activities described (i.e., the effector

regulation of distinct targets and the restructuring of

network topology) occur concurrently, it is ultimately diffi-

cult to resolve their relative timing.

Themethodology presented here, available in the R pack-

age Epoch, is broadly applicable to any biological question

that benefits from uncovering dynamic regulatory net-

works, their comparisons, and their interfacing with

signaling pathways. In particular, Epoch can be used to un-

derstand cell fate transitions at branch points in lineage tra-

jectories, to uncover key regulators driving these decisions,

and to trace paths from signal transduction events to the

activation or repression of transcriptional programs. Such

an approach provides a powerful strategy to not only eluci-

date dynamic, multiscale processes in development but

also to identify signaling pathways tomodulate for the pur-

poses of directing cell identity transitions in vitro.

EXPERIMENTAL PROCEDURES

Epoch workflow
Epoch takes as input processed (normalized and log-transformed)

single-cell transcriptomic data and accompanying pseudotime

(or equivalent) annotation. The Epoch workflow is based on three

strategies: (1) the extraction of dynamically expressed genes and

subsequent static reconstructionwithCLR, (2) network refinement

using a cross-correlation based strategy called cross-weighting, and

(3) the extraction of a dynamic network and the subsequent iden-

tification of top regulators.

Identification of dynamically expressed genes
Limiting network reconstruction to dynamically expressed genes

serves two purposes. First, it focuses the network on interactions

that more likely play a role in the observed biological process.



Second, it reduces the instances of false positive interactions and

improves precision by limiting possible edges between temporally

variable genes. To select for such genes, Epoch models individual

genes across the annotated pseudotime using a generalized addi-

tive model (GAM). Specifically, Epoch uses the ‘gam’ package

(Gaussian family, LOESS smooth pseudotime) to fit a model for

each gene using the backfitting algorithm. Genes are considered

dynamic based on the significance of the smooth term (pseudo-

time). Alternatively, users can specify finding dynamic genes via

TradeSeq (Van den Berge et al., 2020), a recently developed tool

that identifies dynamic changes in gene expression via a GAM

based on the negative binomial distribution.

Cross-weighting
After inferring an initial network structure, Epoch can apply cross-

weighting. The objective of this step is to negatively weight edges

in the initial network that are unlikely to be true interactions,

whichmay, for example, be representative of indirect interactions.

To this end, for every TF-target pair in the initial network, Epoch

computes cross-correlation across a given lag time (defaults to

one-fifth of total pseudotime). After ordering the lag times by

decreasing correlation, Epoch computes an offset value in which

maximum correlation is achieved, defined by default as the top

one-third of the ranked lag times. Finally, Epoch scores the offset

values of each interaction:

weight =

8<
:

1
0
�x=ðwmax � wminÞ+1

x%wmin

xRwmax

else

where the offset, x, is computed as described, and maximum and

minimum windows can be altered by the user if desired. Z-scores

from the initial network are weighted accordingly, ultimately

filtering out false positives. At this step, Epoch will return an ap-

pended GRN table, including the offset value and new weighted

score for each interaction.

Default parameters for cross-weighting are specified within

Epoch, and were chosen based on empirical improvements in per-

formance across synthetic and real datasets (ranging in number of

genes, number of cells, and simple trajectory types). For example,

we found that optimal lag time varied to some extent with dataset

size, with larger datasets requiring a larger lag time to catch target

response to regulator expression changes (Figure S1E). Smaller lag

times tended to correlate with decreased AUPR, likely because the

lag time was not sufficient to catch the point of maximum cross-

correlation. AUPR also begins to gradually decrease at larger lag

times, although this effect is much less pronounced. We found

that our default lag (set to one-fifth of the dataset size) resulted

in high AUPR across various datasets. Similarly, we also examined

various minimum and maximum windows and found that our

default values resulted in optimal AUPR (Figure S1F) across datasets

of varying sizes. However, users may want to modify these param-

eters to increase or decrease the leniency of the weighting for a

number of reasons, such aswhen applying Epoch tomore complex

trajectories with large numbers or more complex state changes

(and, correspondingly, a large number of epochs). In this case,

we would recommend finding optimal lag and window in an anal-

ogous method. Specifically, this would entail designing a modular
network (and corresponding GRN) representative of the more

complex trajectory, using this network to simulate synthetic data-

sets, and performing a parameter sweep to optimize reconstruction

AUPR. Synthetic network design and simulation for both simple

and complex trajectories can be done via platforms such as Dyn-

gen (Cannoodt et al., 2021).
Dynamic network extraction
Epoch will extract a dynamic network from the reconstructed

static network. Specifically, the process begins by breaking pseudo-

time into epochs. A number of options are available to users to

accomplish this. Briefly, Epoch can define the epochs based on

pseudotime, equal cell ordering (resulting in equal number of cells

per epoch), k-means or hierarchical clustering, sliding window

similarity, or user-definedmanual assignment.With the exception

of user-defined assignment and sliding window similarity, the

number of epochs is specified by the user, and can be determined

by examining the heatmap of gene expression across pseudotime

and estimating the rough number of expression states represented

in the data. We recommend smoothing the data to aid in heatmap

visualization, which can be done through Epoch. Alternatively, it

is unnecessary to supply the number of epochs if using the similar-

ity method, which will automatically detect epochs based on cor-

relation between groups of cells along a sliding window across

pseudotime. After epochs are defined, Epoch will assign genes to

epochs, based on their activity along pseudotime. In brief, this is

either based on activity (i.e., genes active in any epochs will be as-

signed to those epochs) or on differential expression (i.e., genes are

assigned based on whether they are differentially expressed in an

epoch). Specifically, if genes are assigned by activity, Epoch will

compute, for each gene, a threshold against which average expres-

sion of the gene in an epoch is compared. This threshold can be

modified by user input. If, instead, genes are assigned by differen-

tial expression, a p-value threshold is used to determine assign-

ments. Finally, ‘‘orphan genes,’’ which we define as dynamically

expressed genes that are not assigned to any epoch, are assigned

to the epoch in which their average expression is maximum.

Based on these assignments, Epoch will fracture the static

network into a dynamic one composed of epoch networks and

transition networks. Specifically, an edge between regulator and

target gene appears in an epoch network if the regulator is assigned

to that epoch. Furthermore, an edgewill appear in a transition sub-

network under two conditions: (1) For an activating edge, the

target is not active in the source epoch, the target is active in the

subsequent epoch, and the regulator is active, or (2) for a repressive

edge, the target is active in the source epoch, is not active in the

subsequent epoch, and the regulator is active. Following this

step, Epoch will return a dynamic network represented by a list

of individual GRN tables. This includes the epoch networks or

essentially the dynamic network, as well as transition networks

that describe how an epoch network may transition into a subse-

quent epoch network.
Top regulator prediction
Epoch uses two graph theoretic methods to predict the ‘‘top regu-

lators,’’ the TFs that appear to have the most influence in driving

changes in or maintaining topology. First, Epoch will rank
Stem Cell Reports j Vol. 17 j 427–442 j February 8, 2022 439



regulators by weighted PageRank. In brief, the PageRank centrality

measures the importance of nodes in a network based on the num-

ber and quality of links of which a node is a part. In essence, the

most influential nodes are likely to interact with many influential

nodes. Second, Epoch will rank regulators by the product of

normalized betweenness and normalized degree. Here, the

assumption is that the most influential nodes are likely to be tra-

versed by many shortest paths (and thus have high betweenness)

and interact with many other nodes (and thus have high degree).

In Epoch, PageRank, betweenness, and degree centralities are im-

plemented through the ‘igraph’ package. By default, cross-

weighted edge weights are used, but can be further specified by

the user. In both top regulator prediction methods, Epoch will re-

turn ranked lists of nodes and further specify their corresponding

PageRank or normalized betweenness, normalized degree, and

betweenness-degree product.

Data and code availability
Epoch is available as a package in R, and code and tutorials can be

found at https://github.com/pcahan1/epoch. Data are available at

GEO under accession number GEO: GSE177051.
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