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Abstract: Background: Fusobacterium nucleatum, which is associated with periodontitis and gingivitis,
has been detected in colorectal cancer (CRC). Methods: We evaluated the bactericidal effect of
deep ultraviolet (DUV) light-emitting diode (LED) light therapy on F. nucleatum both qualitatively
and quantitatively. Two DUV-LEDs with peak wavelengths of 265 and 280-nm were used. DNA
damage to F. nucleatum was evaluated by the production of cyclobutane pyrimidine dimers (CPD) and
pyrimidine (6–4) pyrimidone photoproducts (6–4PP). Results: DUV-LEDs showed a bactericidal effect
on F. nucleatum. No colony growth was observed after 3 min of either 265 nm or 280 nm DUV-LED
irradiation. The survival rates of F. nucleatum under 265 nm DUV-LED light irradiation dropped to
0.0014% for 10 s and to 0% for 20 s irradiation. Similarly, the survival rate of F. nucleatum under 280 nm
DUV-LED light irradiation dropped to 0.00044% for 10 s and 0% for 20 s irradiation. The irradiance at
the distance of 35 mm from the DUV-LED was 0.265 mW/cm2 for the 265 nm LED and 0.415 mW/cm2

for the 280 nm LED. Thus, the radiant energy for lethality was 5.3 mJ/cm2 for the 265 nm LED and
8.3 mJ/cm2 for the 280 nm LED. Amounts of CPD and 6–4PP in F. nucleatum irradiated with 265 nm
DUV-LED light were 6.548 ng/µg and 1.333 ng/µg, respectively. Conclusions: DUV-LED light
exerted a bactericidal effect on F. nucleatum by causing the formation of pyrimidine dimers indicative
of DNA damage. Thus, DUV-LED light therapy may have the potential to prevent CRC.

Keywords: colorectal cancer; deep ultraviolet; DNA damage; Fusobacterium nucleatum;
light-emitting diode

1. Introduction

The development of gastrointestinal cancer involves lifestyle factors such as alcohol
use, smoking [1], obesity [2], and eating habits [3] as well as certain infectious diseases [4].
The International Agency for Research Cancer (IARC) identified Helicobacter pylori as
a definite oncogenic factor for gastric cancer from epidemiological studies in 1994 [5],
and eradication therapy for H. pylori has been shown to suppress the development of
metachronous gastric cancers [6,7]. Unlike gastric cancer, the mortality rate from colorectal
cancer (CRC) has increased significantly in Japan, and thus effective methods to prevent
CRC are required.

Gut dysbiosis has been associated with the development of CRC [8]. Recent studies
have identified Fusobacterium nucleatum (F. nucleatum), Streptococcus bovis, enterotoxigenic
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Bacteroides fragilis, Enterococcus faecalis, Escherichia coli, and Peptostreptococcus anaerobius as
CRC candidate pathogens [9]. F. nucleatum has been reported to be detected in CRC [10].
Fusobacterium is an anaerobic Gram-negative bacillus present in the oral cavity and digestive
tract of healthy individuals [11], and F. nucleatum is associated with oral inflammatory
diseases such as periodontitis and gingivitis [12–14]. In 2012, Kostic et al. characterized the
composition of the microbiota in colorectal carcinoma using whole genome sequencing and
showed that Fusobacterium sequences were enriched in carcinomas [15]. Castellarin et al.
also found that only F. nucleatum was significantly increased in CRC tumors relative to
control specimens by using RNA sequencing [16]. Mima et al. reported that the amount of
F. nucleatum DNA in CRC tissue is associated with shorter survival [17], and Yamaoka et al.
found that it may potentially serve as a prognostic biomarker [18]. Thus, accumulating
evidence suggests that F. nucleatum is associated with the development and progression of
CRC in humans.

Several studies have revealed a mechanism by which F. nucleatum contributes to
CRC development. Rubinstein et al. showed that FadA adhesin on F. nucleatum binds
to E-cadherin and activates β-catenin signaling in CRC cells, and then, CRC growth is
induced by transcription of c-Myc and cyclin-D1 [19]. Yang et al. showed that CRC cell
lines infected with F. nucleatum formed larger tumors more rapidly in nude mice than did
uninfected cells. Infection of cells with F. nucleatum increased the expression of miR21 by
activating TLR4 signaling to MYD88, leading to the activation of nuclear factor NFκB [20].
Yu et al. found that F. nucleatum was abundant in CRC tissues of patients with recurrence
after chemotherapy. F. nucleatum targeted TLR4 and MYD88 innate immune signaling and
specific microRNAs to activate the autophagy pathway and alter CRC chemotherapeutic
response [21]. Gur et al. found that the Fap2 protein of F. nucleatum directly interacted
with T-cell immunoglobulin and the ITIM domain (TIGIT), leading to the inhibition of
NK cell cytotoxicity [22]. F. nucleatum adheres to and invades CRC cells and then induces
oncogenic and inflammatory responses to stimulate their growth.

We have considered deep ultraviolet (DUV) light-emitting diode (LED) light therapy
for the treatment of F. nucleatum. Because F. nucleatum forms a biofilm in the periodontal
pocket, injection of an antibacterial agent does not provide a sufficient bactericidal effect,
and infection often recurs [23]. LEDs are semiconductor devices that emit light and are
ideal for downsizing equipment [24]. Recently, LEDs that can emit ultraviolet light have
been developed [25], and we have confirmed that DUV-LEDs have various bactericidal
effects against bacteria and fungi in vitro [26]. In the present study, the bactericidal effect
of DUV-LEDs on F. nucleatum was examined.

2. Materials and Methods
2.1. Fusobacterium nucleatum Strain and Growth Conditions

F. nucleatum (ATCC 25586) and Escherichia coli (NBRC3972) were purchased from
NITE Biological Resource Center (NBRC). The frozen bacterial stock of F. nucleatum was
cultivated in Gifu Anaerobic Medium (GAM) agar in an anaeropack at 37 ◦C for 72 h. E. coli
were cultured on heart infusion agar (Eiken Kagaku Co., Ltd., Tokyo, Japan) at 37 ◦C for
16 h. Then, cell suspensions were prepared using phosphate-buffered saline (PBS).

2.2. Irradiation by DUV-LEDs

Two DUV-LEDs with peak wavelengths of 265 and 280-nm (VPS131 (265-nm LED)
and VPS161 (280-nm LED), NIKKISO CO., LTD., Tokyo, Japan) were used (Figure 1). Total
radiant flux of the DUV-LEDs was 9.4 mW for the 265 nm and 17.0 mW for the 280 nm
wavelength. As the half-power angle of the LEDs was 130 degrees, we set the distance
between the LED and the plate at 35 mm, which enabled uniform DUV-LED illumination
(Figure 2). The rated current for the 265 nm LEDs set by the company is 350 mA. We used
a direct current-regulated power supply in constant current mode (PW36-1.5AD, TEXIO
TECHNOLOGY CORPORATION, Yokohama, Japan). The current was set to 350 mA
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or 50 mA to irradiate LED light. Irradiance was measured with an MCPD-9800 array
spectrometer (Otsuka Electronics, Osaka, Japan).
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2.3. Qualitative Test of Bactericidal Effect on Agar Medium Surface by DUV-LED Light

The suspension of F. nucleatum was adjusted to 1 McFarland turbidity standard with
PBS and then spread on GAM agar plates (diameter, 35 mm) with a cotton swab. We
conducted time series tests with irradiation times of 0, 10, 20, 30, 60, and 180 s. Colonies of
F. nucleatum were observed after anaerobic cultivation for 6 days. As the non-irradiated con-
trol, F. nucleatum was left in the air for the same time periods as the DUV-LED irradiation.

2.4. Quantitative Test of Bactericidal Effect of DUV-LED Light

Bactericidal effects were determined using a colony-forming assay. The cell suspension
of F. nucleatum was adjusted to 1.0 × 106 colony forming units (CFU)/mL. One milliliter
of cell suspension was dispensed onto a 35 mm dish and irradiated by DUV-LED light.
We conducted time series tests with irradiation times of 0, 10, 20, and 30 s. Then, 10 µL of
10-fold serial dilutions of the cell suspension was plated onto GAM agar in quadruplicate,
and the plates were incubated at 37 ◦C for 6 days. Thereafter, the number of colonies was
counted, and survival rate was expressed as a percentage of the non-irradiated control.
The experiment was performed three times, and the average percentage of surviving
F. nucleatum was evaluated [27,28].

2.5. Cytotoxicity of Human Keratinocytes by DUV-LED

HaCaT cells, a spontaneously immortalized human keratinocyte line, were cultured
in Dulbecco’s Modified Eagle Medium—high glucose (4.5 g/L) with L-glutamine and with
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sodium pyruvate (Capricorn) supplemented with 10% fetal bovine serum. HaCaT cells
(4.0 × 105/dish) were seeded in 35 mm dishes and cultured at 37 ◦C in 5% CO2 for 24 h.
The cells were then washed twice with PBS, after which we immediately irradiated the cells
with DUV-LED light. Two milliliters of fresh medium was added, and the mixture was
cultured for 24 h. Then, the cells were harvested, and cell viability was evaluated by trypan
blue dye exclusion assay. The number of viable cells was counted, and the survival rate was
expressed as a percentage of the non-irradiated control. The experiment was performed
three times, and the average percentage of surviving HaCaT cells was evaluated.

2.6. CPD and 6–4PP Quantification by ELISA

The DNA damage in F. nucleatum was evaluated based on the production of cyclobu-
tane pyrimidine dimers (CPD) and pyrimidine (6–4) pyrimidone photoproducts (6–4PP)
with an OxiSelect™ UV-Induced DNA Damage ELISA Kit (CELL BIOLABS Inc., San Diego,
CA, USA). The bacterial suspension was adjusted to a 2 McFarland turbidity standard.
Then, 2 mL of the suspension was dispensed onto a 35 mm dish, followed by DUV-LED
light irradiation for 30 s. DNA was extracted from 1.8 mL of the bacterial solutions with a
QIAamp DNA FFPE Tissue Kit (QIAGEN, Venlo, The Netherlands). The ELISA procedure
was performed according to the manufacturer’s protocol. We used DNA samples from
E. coli irradiated by DUV from a UV lamp as a positive control and DNA samples from
F. nucleatum cultured without DUV irradiation as a negative control. The UV lamp (GL-15,
Toshiba, Japan) was installed in a safety cabinet (Panasonic Healthcare, Tokyo, Japan).

2.7. Statistics

Differences in survival rates between the 265 nm DUV-LED and 280 nm DUV-LED
were analyzed by t-test using StatFlex Ver.6.0 (Artech Co., Ltd., Osaka, Japan).

3. Results
3.1. Qualitative Test of Bactericidal Effect on Agar Medium Surface by DUV-LED Light

DUV-LEDs with peak wavelengths of 265 and 280-nm showed similar bactericidal
effect on F. nucleatum cultured on an agar medium surface in a time-dependent manner. No
colony growth was observed after 180 s of either 265 nm or 280 nm DUV-LED irradiation
(Figure 3). In this experiment, even if the sterilized dish was returned to the culture, no
bacterial growth was observed. We confirmed that an increase in the ambient temperature
was not observed when we supplied a current of 350 mA to the DUV-LEDs.
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3.2. Quantitative Test of Bactericidal Effect by DUV-LED Light

When we supplied a current of 350 mA to the DUV-LED, the survival rate of F.
nucleatum under 265 nm DUV-LED light irradiation dropped to 0.0014% for 10 s and to 0%
(below limit of detection) for 20 s irradiation. Similarly, the survival rate of F. nucleatum
under 280 nm DUV-LED light irradiation dropped to 0.00044% for 10 s and 0% (below limit
of detection) for 20 s irradiation (Figure 4). When 50 mA was supplied to the DUV-LED,
the survival rates of F. nucleatum under 265 nm DUV-LED light irradiation were 45.34% for
10 s and 16.13% for 20 s irradiation. Whereas those of F. nucleatum under 280 nm DUV-LED
light irradiation were 54.72% for 10 s and 21.34% for 20 s irradiation (Figure 4). There was
no significant difference in the survival rates of F. nucleatum between the 265 nm DUV-LED
and 280 nm DUV-LED irradiations. To confirm the presence of any surviving bacteria,
0.5 mL of these residual suspensions was cultured in liquid medium, but no F. nucleatum
growth was observed.
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When we supplied a current of 350 mA to the DUV-LED, the irradiance at the distance
of 35 mm from the DUV-LED was 0.265 mW/cm2 for the 265 nm LED and 0.415 mW/cm2

for the 280 nm LED. The irradiation time under 265 nm and 280 nm DUV-LED light for
which the survival rates were 0% was 20 s. Thus, the radiant energy for lethality was
5.3 mJ/cm2 for the 265 nm LED and 8.3 mJ/cm2 for the 280 nm LED.

3.3. Evaluation of HaCaT Cell Damage by DUV-LED Light

When we supplied a current of 350 mA to the DUV-LED, the survival rates of HaCaT
cells under 265 nm DUV-LED light irradiation were 4.38% for 10 s and 2.08% for 20 s
irradiation. Similarly, the survival rates of HaCaT cells under 280 nm DUV-LED light
irradiation dropped to 3.31% for 10 s and 2.26% for 20 s irradiation (Figure 5). When 50 mA
was supplied to the DUV-LED, the survival rates of HaCaT cells under 265 nm DUV-LED
light irradiation were 90.14% for 10 s and 48.29% for 20 s irradiation, whereas those of
HaCaT cells under 280 nm DUV-LED light irradiation were 90.06% for 10 s and 47.76%
for 20 s irradiation (Figure 5). There was no significant difference in the survival rates of
HaCaT cells between the 265 nm and 280 nm DUV-LED irradiations.
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3.4. Detection of DUV-LED Light-Induced DNA Damage by Formation of CPD and 6–4PP

CPD and 6–4PP were detected by ELISA in the DNA samples from F. nucleatum
irradiated with DUV-LED light. The respective amounts of CPD and 6–4PP in F. nucleatum
irradiated with 265 nm DUV-LED were 6.548 ng/µg and 1.333 ng/µg, whereas those in
F. nucleatum irradiated with 280 nm DUV-LED were 7.963 ng/µg and 1.593 ng/µg. As a
control, we prepared E. coli irradiated with the UV lamp. The respective amounts of CPD
and 6–4PP in the E. coli were 2.622 ng/µg and 0.276 ng/µg (Figure 6).
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with ELISA. DNA samples extracted from F. nucleatum after 30 s irradiation with 265 nm LED light
(black bars) or 280 nm LED light (grey bars) were measured for amounts of CPD and 6–4PP per
microgram of DNA. E. coli irradiated with a UV lamp (hatched bar) were used as a positive control.

4. Discussion

Light irradiation from DUV-LEDs exerted a bactericidal effect on F. nucleatum in a time-
dependent manner. We previously reported that the Gram-negative bacteria Pseudomonas
aeruginosa and E. coli were highly sensitive to DUV-LED light [28]. F. nucleatum is an
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anaerobic Gram-negative bacterium with a similar sensitivity to DUV-LED as that of
other Gram-negative bacteria because their cell wall is thinner than that of Gram-positive
bacteria [29]. That we did not conduct experiments to form biofilms in vitro is a limitation
of the present study.

DUV light at a wavelength of around 260 nm is absorbed by DNA [30]. When cells
are irradiated with UV light, covalent bonds of the pyrimidine base form with the adjacent
thymine or cytosine base that result in the creation of pyrimidine dimers. These dimers
interfere with DNA replication and transcription that can lead to cell death, mutation,
and chromosomal instability [31]. The mechanism of the bactericidal effect exerted by
DUV-LEDs is thought to be due to DNA damage because DNA extracted from DUV-LED-
irradiated F. nucleatum contains pyrimidine dimers. While the light wavelength around 280
nm is absorbed by proteins, the effect on proteins of cell membranes is one of the issues
being pursued.

Although fusobacteria are found in CRC [10,15–18], the mechanisms by which they
hone in on and localize to CRC have been underexplored. Abed et al. suggested that
fusobacterial Fap2 and host Gal-GalNAc are involved in fusobacterial CRC localization and
enrichment. They showed that intravenously injected F. nucleatum localizes to mouse tumor
tissues in a Fap2-dependent manner, suggesting that fusobacteria use a hematogenous
route to reach colon adenocarcinomas [32]. Komiya et al. reported that 75% (6/8) of CRC
patients exhibited identical strains of F. nucleatum in their CRC and saliva specimens [33].
In addition, transient bacteremia is common during periodontal disease with bacterial loads
reaching 104 bacteria/mL blood 15 min after tooth brushing in humans [34]. These findings
suggest that F. nucleatum in CRC originates in the oral cavity. We think that sterilizing F.
nucleatum in the oral cavity by DUV-LED light may reduce the number of F. nucleatum in the
intestine and could potentially lead to the prevention of CRC. In addition, we previously
showed that stage IV CRC patients with a high F. nucleatum copy number had a significantly
shorter overall survival time than those with a low copy number [18], indicating that DUV-
LED therapy may also improve survival in patients with advanced CRC.

DNA damage by DUV is elicited not only in microorganisms but also in human cells,
and chronic exposure to DUV light has been established as a human health hazard [35].
In a mouse model, significant hyperplasia and intercellular edema were induced in the
epidermis after chronic irradiation of 254 nm DUV at 4500 mJ/cm2 [36]. The radiant energy
required for lethality of F. nucleatum in the present study was much less, 5.3 mJ/cm2 for
the 265 nm LED and 8.3 mJ/cm2 for the 280 nm LED. By reducing the current supplied to
the LEDs, the survival rate of HaCaT cells increased. We must first determine appropriate
doses of DUV that can selectively inactivate F. nucleatum in an animal model.

DUV-LED light therapy is not a specific treatment targeting one pathogen such as
vaccines do, so it may disturb the oral bacterial flora. Treatments that affect all oral bacteria
can lead to nitric oxide pathways and adversely affect blood pressure regulation [37]. Thus,
we must be aware of these adverse events. In the case of general oral care, however, the
number of bacteria is reduced by 60 to 70%, but this is effective in preventing aspiration
pneumonia [38]. Consequently, it is considered clinically useful to reduce multiple types of
bacteria as a whole rather than suppressing just one type of bacteria. We believe that this
also needs to be verified by animal experiments.

LEDs have unique characteristics of compactness, durability, and low heat production,
and thus, DUV-LEDs can be applied in narrow spaces such the oral cavity. A mouthpiece-
type phototherapy device should be considered as an effective application to irradiate
DUV-LED light to a localized infection. It might be necessary to use a thin fiber to irradiate
DUV into the periodontal pockets.

5. Conclusions

Irradiation with DUV-LED light exerted a bactericidal effect on F. nucleatum by causing
the formation of pyrimidine dimers indicative of DNA damage. DUV-LED devices can be
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useful tools for the inactivation of F. nucleatum. Thus, DUV-LED light therapy may have
the potential to prevent CRC.
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