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Abstract: The effects of benzalkonium chloride (BKC) contents on the structure, properties, and
ultrafiltration performance of chitosan-based nanocomposite membranes containing poly(ethylene
glycol) and multi-walled carbon nanotube (chitosan/BKC/PEG/CNT) were examined. The mem-
branes were prepared by a mixing solution method and phase inversion before being characterized
with microscopic techniques, tensile tests, thermogravimetric analysis, water contact angle, and
porosity measurements. The performance of the nanocomposite membranes in regard to permeability
(flux) and permselectivity (rejection) was examined. The results show that the incorporation of BKC
produced nanocomposite membranes with smaller pore structures and improved physico-chemical
properties, such as an increase in porosity and surface roughness (Ra = 45.15 to 145.35 nm and
Rq = 53.69 to 167.44 nm), an enhancement in the elongation at break from 45 to 109%, and an en-
hancement in the mechanical strength from 31.2 to 45.8 MPa. In contrast, a decrease in the membrane
hydrophilicity (water contact angle increased from 56.3 to 82.8◦) and a decrease in the average
substructure pore size from 32.64 to 10.08 nm were observed. The membrane rejection performances
toward Bovine Serum Albumin (BSA) increased with the BKC composition in both dead-end and
cross-flow filtration processes. The chitosan/BKC/PEG/CNT nanocomposite membranes have
great potential in wastewater treatments for minimizing biofouling without reducing the water
purification performance.

Keywords: nanocomposite membranes; chitosan; ultrafiltration; permeability; rejection

1. Introduction

A water crisis is one of the most challenging global problems and affects human
survival and economic development. Based on the results of an environmental survey,
by 2025, about 1.8 million people will live in regions experiencing a water crisis. Almost
70% of the global population is likely to be affected by water scarcity [1]. This is in
line with reports [2] that around 4.0 million people in the world live under periods of
water shortage every year for at least one month. Many people are also infected with
diseases due to pollution and sanitation problems and from drinking water unsuitable for
public consumption. In addition, many companies use groundwater in large quantities in
industrial processes, meaning that alternative water sources are needed [3].

Membrane technology for water treatments has been widely developed to overcome
the problems of water shortages and water pollution [4,5]. Membrane filtration technology
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is promising for water treatment and desalination, as it provides a high separation perfor-
mance and energy efficiency and can be applied over wide pH and temperature ranges [6].
Compared to existing conventional technologies, the major advantage of this technology is
its simple operation with no additional chemicals, meaning that its energy consumption
is minimal [7]. However, membrane fouling is an unavoidable obstacle and challenge in
membrane applications because it can cause a decrease in membrane performance and
function [8,9], resulting in a reduction in flux. Therefore, the frequent replacement or
washing of the membrane is required. This leads to decreased process efficiency because of
the increased operating and maintenance costs [10].

Fouling is generally caused by the deposition and growth of organic, inorganic, col-
loidal, and microbial foulants [11,12] and the adhesion of microbial cells on the membrane
surface [13]. Biofouling commonly originates from organic matter from microbial cells.
Biofouling makes up more than 45% of all membrane fouling [14]. The biofilm formation
on the membrane surface causes an increase in feed flow pressure and energy consumption
and can induce membrane biodegradation [11,13]. A variety of methods have been pro-
posed to overcome biofouling problems, including the biological control of feed water by
calculating the total direct cell (TDC) assimilable organic carbon (AOC) [15]; the biofilm
formation rate (BFR); and the chemical and physical modification of membrane, such as
membrane surface grafting [16] and nanoparticle mixing [17]. Among these, modifications
of the membranes by adding antibacterial agents to the membrane matrix (solution mix-
ing) [8,9,18,19] are of interest because these are safer, more economical, and proven to deal
with biofouling efficiently.

Benzalkonium chloride (BKC) is commonly used as a biocide and phase transfer
agent [20]. The compound shows good antibacterial activity and is safe and friendly
to the environment [21,22]. In addition, it is also widely used as a hand sanitizer [21].
The compound is effective against various bacteria, viruses, and fungi, even at low
concentrations [20]. Surface-coating membranes with BKC is known to reduce biofilm
growth [9,23–25].

Chitosan is a bio-based polymer derived from chitin. The material is obtained from
various crustacean shells, which have the second largest abundance in the world [26].
Chitosan has a chemical structure that is easily modified, antibacterial activity [27], good
permeability, and good hydrophilicity, meaning that it is resistant to fouling. However,
chitosan membranes have low stability and mechanical strength. Therefore, it is necessary
to modify their manufacturing process [28,29]. The addition of polyethylene glycol (PEG)
and carbon nanotubes (CNT) has been shown to significantly increase the permeability and
mechanical strength of chitosan membranes [30,31].

In our previous study [18], chitosan/PEG/CNT/BKC nanocomposite membranes
were developed using an in situ forming method. BKC was employed as an antibacterial
agent. Chemical structures, interactions, and membrane structures were characterized.
It was found that the BKC compositions in the membranes significantly determined the
variation in the pore structures and the antibacterial activity of the membranes. In this study,
the characterization and performance testing of chitosan/PEG/CNT/BKC membranes is
carried out in the filtration process using a dead-end and cross-flow system. The effect of the
morphology, hydrophilicity, and surface charges of the membranes on their performances
is systematically investigated.

2. Materials and Methods
2.1. Materials

Chitosan (MW ~33 kDa, DD = 87.5%), PEG (MW ~6 kDa), BKC, C6H5CH2N(CH3)2
(C8H17)Cl), acetic acid (CH3COOH, 1%), sodium hydroxide (NaOH, 99%), and Bovine
Serum Albumin (BSA, MW ~66 kDa) were purchased from Merck (Darmstadt, Ger-
many). Multi-walled carbon nanotubes (CNT) were purchased from Wako Chemicals
(Osaka, Japan).
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2.2. Fabrication of Chitosan/PEG/CNT/BKC Nanocomposite Membranes

Chitosan/PEG/CNT/BKC nanocomposite membranes were fabricated via solution
mixing and casting methods, as described in our previous work [18]. The mass ratio of
chitosan: BKC:PEG:CNT is 8572:10:285:1. The casting solution (25 mL) was poured into
a glass mold (φ 90 mm). It was then dried for 5 d at 25 ◦C until the membrane was
completely dry. The dried membrane was soaked in 1 M NaOH for 1 h to neutralize
the acetic acid. The membrane was then washed with distilled water until neutral and
dried by delicately pressing the membrane sandwiched between filter paper sheets, drying
under room conditions (25 ◦C, 70% RH) for 2 d, and further drying at 60 ◦C for 24 h in a
vacuum condition.

2.3. Characterization of Nanocomposite Membranes

The morphology of the nanocomposite membranes was characterized by Field-Emission
Scanning Electron Microscopy (FE-SEM, Hitachi S-4800, Hitachi, Yamaguchi, Japan). The
surface roughness of the membranes was investigated using Atomic Force Microscopy
(AFM-Park XE-100, Park System, Suwon, Korea). The average roughness (Ra) and the
root mean square average of height deviation (Rq) were calculated to evaluate the mem-
branes’ surface roughness [32]. The tensile strength, elongation, and Young’s modulus
of the membranes were evaluated on a tensile tester (Shimadzu EZ-EX-500M, Shimadzu,
Tokyo, Japan). The hydrophilicity of the membrane was evaluated by water contact angle
(WCA) measurement using the sessile drop method. The porosity of the membrane was
determined following the dry–wet weight method, which involved calculating the weight
difference (between wet and dry membranes) as a function of the membrane weight [33].
The average pore radius (rm) on the membranes was examined based on the filtration rate
method and calculated based on the Guerout–Elford–Ferry equation [34,35].

2.4. Performances of Nanocomposite Membranes

A permeability test was carried out using a dead-end and cross-flow filtration set,
with the membranes’ effective area set at 1.96 × 10−3 and 1.66 × 10−3 m2, respectively.
The membrane was compacted with the applied pressure of 2 bar for 1 h until the water
flux reached a constant value [36,37]. The rejection test was carried out by employing BSA
solutions (100, 200, 300 ppm) at pH 7 as the feed using 2 bar pressure. The permeates and
feed solutions from both systems were collected, and concentrations were measured using
a spectrophotometer (UV-Vis, Shimadzu-1240, Shimadzu, Tokyo, Japan). The maximum
wavelength of the BSA solutions was detected at 720 nm. The water flow velocity over time
regarding the membrane water permeability [38] and the membrane rejection correspond-
ing to the number of particles that were removed from the feed water [39] were calculated
using the equations reported in our previous work [33,40].

3. Results
3.1. Characterization of Nanocomposite Membranes

FE-SEM was employed to examine the membrane morphology. The SEM images of
chitosan/PEG/CNT/BKC nanocomposite membranes in the cross-section part, as illus-
trated in Figure 1, depict the asymmetric porous structure of the chitosan matrix with the
use of PEG as porogen [18,41]. In addition, the incorporation of BKC induced the formation
of an elongated porous structure as a result of the flattened stacking of aromatic rings in
BKC and CNT structures [18].

The surface roughness of composite membranes with and without BKC at different
compositions is examined by AFM, as shown in Figure 2. The membranes show an increase
in the surface roughness with the BKC concentration, as indicated by the Ra and Rq
values. The segregation of BKC clusters during the casting process is the main cause of
this roughness increase. Due to their amphiphilic nature, BKC molecules tend to form
a cluster structure by stacking their non-polar benzene rings, leading to the extension
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of their quaternary ammonium groups at the cluster’s surfaces to interact and promote
compatibility with the more polar chitosan structure [18,42,43].
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Mechanical properties of the composite membranes were examined in tensile mode.
The stress–strain curves and mechanical properties of the membranes as a function of BKC
compositions were compared (see Figure S1). The BKC contents profoundly influenced
the mechanical properties of the membranes. Because of the presence of PEG chains as the
softer domains dispersed in chitosan (the stiffer matrix), the tensile strength and Young’s
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modulus decreased slightly as the BKC concentration increased. However, remarkable
improvements in the membrane toughness were observed, as evidenced by substantial
improvements in the elongation at break values as the BKC concentration increased, ranging
from 45% (M0) to 109% (M50). This is due to the hardening effects induced by the elongated
dispersed domains of CNT/BKC/PEG clusters in the stiff chitosan matrix, as reported
previously [18,44]. This enhancement in the membrane toughness provides additional
benefits for their practical use, especially in ultrafiltration applications.

Thermal gravimetric analysis (TGA) was employed to assess the thermal stability
of the composite membranes, as shown in Figure 3a. The initial stage of weight loss
from 25 to 177 ◦C (11–19%) was due to the evaporation of moisture absorbed inside the
membranes. From 177 to 357 ◦C, a significant decomposition stage (up to 40%) was shown,
corresponding to the deacetylation and depolymerization of chitosan. Finally, the weight
loss above 357 ◦C was likely associated with residual or crosslinked structures [45,46].
The corresponding DTG curves show that the peak temperature of the second step was
significantly unchanged at 290 ◦C. In contrast, a decrease in the peak temperature was
observed in the first and the third stages, from 121 to 103 ◦C and from 417 to 412 ◦C,
respectively. The results indicate that the decomposition due to the deacetylation and
depolymerization of chitosan was unaltered by the addition of BKC. However, the binding
interactions between water molecules and chitosan or PEG domains may be interrupted by
the competing interactions with the quaternary ammonium of BKC, leading to a decreased
evaporation temperature. Additionally, the dispersion of BKC clusters in the chitosan
matrix may weaken the interactions of the residual structure, leading to a lower degradation
temperature [47] and a reduction in the composition of the final residues.
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Since membrane permeability is affected by its hydrophilicity, the water contact angle
(WCA) of the composite membranes was examined, as shown in Figure 3b. The addition
of BKC resulted in an increase in the WCA values (from 57.0◦ for M0 to 82.7◦ for MB400),
suggesting a reduction in surface hydrophilicity. No significant difference in WCA values
was observed in the nanocomposite membranes with different thicknesses. The reduction
in hydrophilicity was likely due to the segregation of the elongated clusters of BKC at the
surface of the membranes, as described previously. Similar segregation behavior was also
reported in [48]. Even though BKC prefers to create clusters enclosed by PEG chains, an
enhancement in its content proportional to PEG causes it to accumulate on membrane
surfaces. Furthermore, an increase in the membrane surface roughness, as observed in
the SEM images, may also lead to a decrease in the surface hydrophilicity. Nonetheless,
because the contact angle values of all composite membranes after the BKC addition were
still lower than 90◦, they were classified as hydrophilic membranes.

The porosity of nanocomposite membranes was measured. The results, as shown in
Figure 4, indicate a slight increase in the value with the BKC concentration. The higher the
membrane porosity, the larger the flux obtained was. These enhancements were likely due
to the contribution of the polar groups of BKC that accumulate in the polymer membrane
structure, causing electrostatic repulsion between the polymer chains. In contrast, the
average pore size of the substructure of the nanocomposite membranes declined with
the increase in the BKC content, especially at a BKC concentration of 400 ppm. This
was likely due to the distribution of the stacking structure of the planar aromatic ring in
BKC [18,42], resulting in nanopore blocking. It was noted that the porosity and average
pore diameter of the composite membranes were not thickness-dependent (see Figure S2),
as the values remained the same for each membrane series at different thicknesses (only
10 µm difference).
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3.2. Membrane Performance Tests

The membrane performance in ultrafiltration using the dead-end filtration method is
summarized in Figure 5. The membrane permeability represented by the deionized water
flux was significantly reduced (130 (M0) to 16 L/m2 h (M400)) upon the incorporation of
BKC and the increase in membrane thickness (130 to 83 L/m2 h (0.05 mm); 124 to 59 L/m2 h
(0.06 mm); 87 to 28 L/m2 h (0.07 mm); 16 to 4 L/m2 h (0.08 mm)). The permeability value
for each membrane series was determined from the constant water flux vs. time (as
summarized in Figure S3). The reduction in hydrophilicity and pore size of the composite
membranes upon the BKC addition resulted in increased surface tension for the water
molecules in their filtration through the pores. In contrast, the tortuosity of the membrane
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might have been increased due to the reduction in the pore size [49]. Consequently, the
water permeability decreased, preventing the passage of water molecules through the
membrane [50]. It was also expected that the thicker membranes and those with higher
tortuosity had lower flux with a higher rejection ratio during the filtration process. Because
water transport into the pore channels is characteristically laminar, flow resistance is caused
by the resistance between water molecules and the inner surface of the membrane pores.
Therefore, the thicker the membrane is, the greater the mass transport interruption is, but
with a lower permeability.
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The results obtained for the pressure-dependent water flux from the cross-flow fil-
tration method using membranes with various thicknesses and applied pressures are
summarized in Figure 6. The water flux increased as the pressure increased from 88 (2 bar)
to 138 L/m2 h (4 bar). The results indicate that the incorporation of BKC and increase in
the membrane thickness notably reduced the deionized water flux. The morphology of the
polymeric membranes was slightly altered due to the pressure driving force, resulting in
decreased volume porosity, increased membrane friction, and reduced water permeability.
These comprehensively impacted the separation efficiency. Similar to the dead-end method,
the decrease in water flux was induced by the increase in the BKC concentration and
the membrane thickness. The incorporation of BKC led to a reduction in the membrane
hydrophilicity and pore size. The water permeability was reduced as a result of the higher
surface tension for water molecules in filtering via the pores, preventing water molecules
from penetrating the membrane [51]. In addition, the increase in BKC concentration pro-
duced a membrane with a smaller average substructure pore size (Figure 4). The water
flux of the membrane was predicted to increase in a similar pattern as the membrane pore
radius, following the sieving mechanism theory [52].

During the ultrafiltration process, thicker membranes and smaller pore sizes were also
expected to show a lower permeability and a greater rejection ratio [53]. Flow resistance
is created by friction between water molecules and the inner surface of membrane pores
because water transport into the pore channels is often laminar. As a result, the longer
the mass transit delay is and the lower the permeability is, the thicker the membrane will
be. It was noted that at the same applied pressure (2 bar), the water flux values obtained
from the cross-flow method were underestimated compared to those from the dead-end
filtration method.
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Similar to the dead-end filtration system, the decrease in the pure water permeability
was due to the reduction in hydrophilicity, average substructure pore size, and surface
roughness of the membranes with the BKC addition. This caused a decrease in the water
penetration ability, as well as the blockage of membrane pores due to the accumulation of
hydrophobic planar groups on the membrane surface [18,42]. Since current flows can form
hydrodynamic pressure that can control fouling accumulation on the membrane surface,
the flux value becomes more stable in cross-flow systems. The permeability value of the
composite membrane derived from the cross-flow method was determined by constant
water flux vs. time (see Figure S4).

The membrane rejection of BSA was examined using dead-end and cross-flow filtration
methods, as summarized in Figures 7 and 8. A similar tendency was observed between the
two systems. The membrane rejection performances shown towards BSA increased with
the BKC composition. Two factors contribute to this behavior. First, electrostatic interaction
between positive charges on the membrane surface and negatively charged BSA molecules
(isoelectric point = 4.4) causes the accumulation of BSA on the membrane surface. Second,
BSA has a large molecular structure (Mw = 66 kDa, hydrodynamic diameter = 6.8 nm [54]),
thus hindering the interactions occurring on the membrane surface. The rejection of the
composite membrane proportionally increased with the BSA concentration. Increased
rejection is associated with a decrease in the average pore size of the membrane and
pore-blocking owing to the accumulation of BKC on the membrane surface. The small
pore diameter causes the surface area available for BSA adsorption to be larger, thereby
increasing the rejection percentage.
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The dead-end filtration exhibited slightly lower rejection values compared to the
cross-flow filtration. Some solutes may linger behind the membranes, whereas the water
penetrates the membrane in dead-end filtration. Accordingly, there is greater friction when
passing the membrane. When the pressure of the feedwater is steady, the permeate flux
declines. Eventually, the flow significantly decreases and the cleaning of the membrane is
required. In dead-end filtration, the membrane pores are blocked and the retentate remains
inside. This mode of filtration enables concentrating the solution very rapidly but promotes
tough fouling. In cross-flow filtration, the solution is distributed along the membrane with
a high shear rate, which restricts the membrane fouling [55]. The feed has no obstacle to
its flow, and the retentate can be collected. The separation becomes more intensive and
leads to higher rejection than the dead-end method. The results firmly indicate that the
nanocomposite membranes have a high capability in wastewater treatments for decreasing
biofouling without reducing the water separation performance (see Table S1).

4. Conclusions

The effects of the content of benzalkonium chloride (BKC) on the structures, properties,
and ultrafiltration performances of chitosan/PEG/CNT composite membranes were stud-
ied. The incorporation of BKC was found to remarkably modify the structure, morphology,
physical properties, and performance of the membranes. SEM images showed that the
modified membranes had an asymmetric pore structure. In addition, the porosity, surface
roughness, and mechanical strength of the membranes increased with the BKC contents. In
contrast, the surface hydrophilicity of the membranes decreased with the increase in the
BKC compositions, causing a reduction in the membrane permeability. Additionally, the
increase in membrane thickness also reduced the membrane water flux. The membrane
rejection performances shown toward BSA were improved with the increase in BKC com-
position in both dead-end and cross-flow filtration due to the decrease in the average pore
size of the membranes and pore blocking by the accumulation of BKC clusters. From an
environmental viewpoint, this work is highly beneficial, as nanocomposite membranes
have great potential in wastewater treatments for minimizing biofouling without reducing
the water purification performance.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/membranes12030268/s1: Figure S1: (I) Stress vs. strain curves of
(a) M0, (b) M50, (c) M100, and (II) M400; (B) tensile strength, Young’s modulus, and elongation at
break of nanocomposite. Figure S2: porosity and average pore size of nanocomposite membranes
with different BKC contents and thicknesses: (a) 0.05 mm, (b) 0.06 mm, (c) 0.07 mm, and (d) 0.08 mm.
Figure S3: Flux–time relationship for various nanocomposite membranes at various thicknesses for
the dead-end filtration model: (a) 0.05 mm, (b) 0.06 mm, (c) 0.07 mm, and (d) 0.08 mm. Figure S4:
Flux–time relationship for various nanocomposite membranes at various thicknesses for the crossflow
filtration model: (a) 0.05 mm, (b) 0.06 mm, (c) 0.07 mm, and (d) 0.08 mm. Table S1: Comparisons of
the performance of similar membranes.
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