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Abstract

It remains unclear whether PAX6 acts as a crucial transcription factor for lung cancer stem cell 

(CSC) traits. We demonstrate that PAX6 acts as an oncogene responsible for induction of cancer 

stemness properties in lung adenocarcinoma (LUAD). Mechanistically, PAX6 promotes GLI 

transcription, resulting in SOX2 upregulation directly by the binding of GLI to the proximal 

promoter region of the SOX2 gene. The overexpressed SOX2 enhances the expression of key 

pluripotent factors (OCT4 and NANOG) and suppresses differentiation lineage factors (HOPX and 

NKX2-1), driving cancer cells toward a stem-like state. In contrast, in the differentiated non-CSCs, 

PAX6 is transcriptionally silenced by its promoter methylation. In human lung cancer tissues, the 

positive linear correlations of PAX6 expression with GLI and SOX2 expression and its negative 

correlations with HOPX and NKX2-1 expression were observed. Therapeutically, the blockade of 

the PAX6-GLI-SOX2 signaling axis elicits a long-lasting therapeutic efficacy by limiting CSC 

expansion following chemotherapy. Furthermore, a methylation panel including the PAX6 gene 
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yielded a sensitivity of 79.1% and specificity of 83.3% for cancer detection using serum DNA 

from stage IA LUAD. Our findings provide a rationale for targeting the PAX6-GLI-SOX2 

signaling axis with chemotherapy as an effective therapeutic strategy and support the clinical 

utility of PAX6 gene promoter methylation as a biomarker for early lung cancer detection.
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Introduction

Cancer cells display a broad spectrum of functional and morphological heterogeneity even 

within a single tumor lesion. This phenomenon could be explained by the cancer stem cell 

(CSC) model, where a limited number of CSCs can divide asymmetrically and give rise to 

more differentiated progeny that represents most of the tumor cell population 1. 

Furthermore, undifferentiated CSCs are resistant to conventional chemotherapies that kills 

differentiated cancer cells, and they are responsible for subsequent tumor progression or 

recurrence 2. As CSCs contribute to the driving force of tumorigenesis, metastasis, and 

treatment failure 2, the elimination of CSCs is crucial for achieving long-term therapeutic 

efficacy. However, an incomplete understanding of the molecular pathways critical to lung 

CSC generation and expansion has hindered the development of therapeutic strategies 

targeting CSCs.

Paired box 6 (PAX6), which belongs to homeobox gene superfamily, is an essential 

transcription factor for embryonic development 3, 4, and the dysregulation of PAX6 

expression results in developmental disorders and formation of tumors 5–7. In neural stem 

cells, PAX6 controls the balance between self-renewal and differentiation by regulating the 

cellular networks involved in brain patterning, neuronal migration, and neural circuit 

formation 4, 8. In human cancer, the expression and biological role of PAX6 differs 

depending on cancer types. PAX6 is downregulated in tumors compared with normal tissues 

and acts as a tumor suppressor gene in glioblastoma and prostate cancer 9–11, whereas it is 

overexpressed and acts as an oncogene that facilitates cell growth and suppresses terminal 

differentiation in pancreas cancer 12, 13. The study of PAX6 in non-small cell lung cancer 

(NSCLC) is very limited. A recent study reported that PAX6 promotes proliferation and cell 

cycle progression of human NSCLC cell lines 14, and other studies found that the CpG 

island promoter region of PAX6 gene is frequently methylated 15, 16, which generally acts as 

a regulatory mechanism for its transcriptional silencing 17. Further studies are needed to 

understand the role of PAX6 gene in the pathogenesis of NSCLC.

NSCLC has three major histopathological subtypes: lung adenocarcinoma (LUAD), the 

most common lung cancer; lung squamous cell carcinoma (LUSC); and large cell 

carcinoma. Due to the unspecific nature and the late onset of symptoms, approximately two-

thirds of NSCLC patients are diagnosed at an advanced stage, implying a very poor rate of 

cure 18. Therefore, identifying biomarkers to detect cancer at an early stage is needed in 

clinical practice. Promoter methylation (PM) is one of the most common epigenetic 
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alterations, and aberrant PM of candidate genes can be an early event in cancer progression, 

indicating its potential as a biomarker for early cancer detection 17. In addition, assessing 

PM in serum DNA may be a promising, minimally invasive approach 19. Although frequent 

PM of the PAX6 gene has been reported in NSCLC 15, 16, its potential as a minimally 

invasive early lung cancer detection biomarker using serum samples is still unexplored.

CSCs retain substantial characteristics of embryonic stem cells (ESCs) through the common 

molecular signaling pathways and stemness-related factors, such as the Hedgehog (Hh)-GLI 

pathway and pluripotency-determinant molecule SOX2 20–23. As PAX6 is an indispensable 

factor for ESC traits 8, we hypothesized that it may contribute to CSC traits. To test this 

hypothesis, this study was designed to investigate 1) the contribution of PAX6 to LUAD-

associated CSC (LUAD CSC) generation and expansion, 2) the relevance of PAX6 PM in 

regulating LUAD CSCs, and 3) the potential of early detection by testing PM of PAX6 and 

other two homeobox genes (HOXA9 and UNCX) using serum samples from stage IA 

LUAD. Our study provides a rationale for targeting PAX6-GLI-SOX2 signaling axis and 

reveal the clinical utility of PAX6 PM as a serum biomarker for early lung cancer detection.

Results

PAX6 is a critical oncogene responsible for cancer stemness properties via SOX2 in LUAD

Given the reported PAX6 PM in a small cohort of LUAD 15 and the crucial role of PAX6 in 

ESC traits 8, we hypothesized that epigenetic alteration and the expression of PAX6 may 

have a role in the regulation and maintenance of LUAD CSCs. We first screened the 

methylation status of PAX6 promoter region of eight primary LUAD tumors and the 

adjacent matched normal samples. The promoter CpG islands were frequently methylated in 

the tumor samples compared with matched normal samples. Furthermore, PAX6 PM 

inversely correlated with its expression (Supplementary Fig. S1A–B). We confirmed this 

correlation in the LUAD cohort of The Cancer Genome Atlas (TCGA) (Supplementary Fig. 

S1C). In all the NSCLC cell lines with PAX6 PM, the expression levels of PAX6 were 

mostly absent (Supplementary Fig. S1A and S1D). To determine the association of PAX6 
PM with its transcriptional silencing, we treated 4 LUAD cell lines with a demethylating 

agent (5-Aza-dC) and found the robust reactivation of PAX6 in the cell lines with PM (Fig. 

1A). This finding suggests that PAX6 PM is a potential regulatory mechanism for its 

transcriptional silencing. Interestingly, we observed lower PM values and upregulated 

expression of PAX6 in spheroid LUAD cells compared with parental cells (Fig. 1B–C).

To understand the role of PAX6 in LUAD CSC maintenance and expansion, we constructed 

the lentiviral-based stable PAX6 overexpressed (PAX6-LV) NCI-H1975 and NCI-H23 cells, 

and PAX6 knockdown (PAX6-sh) NCI-H1650 and NCI-H1299 cells. PAX6-LV cells 

enhanced sphere-forming, self-renewal, migratory, and invasive abilities, while PAX6-sh 

cells showed the opposite effects (Fig. 1D and Supplementary Fig. S2A–C). Of note, the 

PAX6-sh spheroid cells no longer exhibited functions comparable to the control (PAX6-Ctrl) 

spheroid cells in terms of stemness properties such as invasion, chemoresistance, and anti-

apoptosis, while the PAX6-LV spheroid cells showed the enhanced stemness properties 

(Supplementary Fig. S2D–F). In addition, PAX6 expression status was associated with the 

expression of numerous stemness-related molecules, including the key pluripotent factors 
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SOX2, OCT4, and NANOG (Fig. 1E and Supplementary Fig. S3A–B). To examine the role 

of PAX6 in tumorigenesis, an in vivo tumor formation assay was performed using PAX6-sh 

and PAX6-LV cells. A remarkable reduction in tumor volume was observed in mice injected 

with PAX6-sh cells compared with PAX6-Ctrl cells, while enhanced tumorigenesis was 

observed in PAX6-LV cells (Fig. 1F and Supplementary Fig. S3C), indicating that PAX6 

acts as an oncogene in LUAD. Because a limiting dilution xenograft assay is one of the 

important features of CSCs, serially diluted PAX6-sh spheroid or PAX6-LV cells were 

subcutaneously injected into NSG mice. As expected, the PAX6-sh spheroid cells showed 

significantly low tumor initiation ability, while the PAX6-LV cells exhibited a more 

aggressive ability (Fig. 1G). Thus, PAX6 plays an indispensable role in LUAD CSC 

maintenance and progression.

Among the numerous stemness-related molecules associated with PAX6 expression 

(Supplementary Fig. S3A), we focused on SOX2, as it is a master regulator for CSC traits in 

various cancer types 23, 24. To understand the interaction of PAX6 with SOX2 in LUAD 

CSCs, we genetically induced SOX2 into PAX6-sh NCI-H1650 cells. As expected, the 

forced expression of SOX2 restored the stemness abilities, including sphere formation, 

chemoresistance, anti-apoptosis, and expression of the key pluripotent factors (OCT4 and 

NANOG) that were suppressed due to PAX6 knockdown (Fig. 1H and Supplementary Fig. 

S3D–E). In contrast, SOX2 knockdown attenuated the PAX6-induced stemness properties in 

PAX6-LV NCI-H1975 cells (Fig. 1I and Supplementary Fig. S3D–E). These findings 

suggest that PAX6 promotes a stem-like state via SOX2.

PAX6 activates GLI-SOX2 signaling axis in LUAD CSC maintenance

To elucidate the intrinsic signaling pathways driven by PAX6 in LUAD, we performed gene 

set enrichment analyses (GSEA) for identifying oncogenic signatures in the groups with 

high and low expression of PAX6 in the TCGA LUAD cohort. The Hedgehog (Hh) pathway 

significantly enriched in the group with high PAX6 expression compared with the group 

with low expression (Fig. 2A). Similar to our TCGA cohort analysis, PAX6-LV cells showed 

the overexpression of GLI1 and GLI2 that are downstream effectors of the Hh pathway, 

while PAX6-sh cells showed a decreased expression of GLI1 and GLI2 (Fig. 2B and 

Supplementary Fig. S3B and S4A). In addition, we confirmed the direct binding of GLI1 

and GLI2 to the proximal promoter region of the SOX2 gene using a chromatin 

immunoprecipitation assay in this cellular models (Fig. 2C), consistent with previous reports 

showing direct regulation of SOX2 by GLI 25, 26. As expected, we observed the 

concomitantly enhanced expression of GLI and SOX2 in the LUAD spheroid cells compared 

with parental cells (Supplementary Fig. S4B). To further confirm the role of the PAX6-GLI-

SOX2 signaling axis in LUAD CSCs, GLI was genetically inhibited in PAX6-LV NCI-

H1975 cells with high stemness properties. The dual knockdown of GLI1 and GLI2 resulted 

in a dramatic inhibition of sphere formation and SOX2 expression, and the forced expression 

of SOX2 rescued the GLI knockdown-attenuated sphere-forming ability (Fig. 2D). In 

contrast, the stimulation of PAX6-sh NCI-H1650 cells with the recombinant Sonic hedgehog 

ligand (Shh) enhanced sphere formation and expression of GLI and SOX2, but knockdown 

of SOX2 abolished the effect (Fig. 2E). These accumulated findings strengthen the relevance 

of PAX6-GLI-SOX2 axis in maintaining LUAD CSCs.

Ooki et al. Page 4

Oncogene. Author manuscript; available in PMC 2019 January 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



There are no available inhibitors for PAX6 and SOX2 because of their undruggable nature 
27, 28. Therefore, pharmacological inhibition of Hh pathway components, such as 

Smoothened (SMO) and GLI may be a clinically relevant approach to block the PAX6-GLI-

SOX2 signaling axis. Consistent with the findings of GLI genetic knockdown, the direct and 

specific GLI1 and GLI2 antagonist GANT61 treatment resulted in a concentration-

dependent reduction of GLI and SOX2 expression and suppressed sphere formation and in 
vivo tumorigenicity (Supplementary Fig. S4C–F). Furthermore, treatment with GANT61 

attenuated PAX6-promoted tumorigenicity (Fig. 2F). In contrast, treatment with the SMO 

antagonist cyclopamine showed a minor inhibitory effect, despite inhibition of SMO 

expression (Supplementary Fig. S4C and S4G), indicating that PAX6 activates Hh signaling 

in a SMO-independent manner.

Correlations of PAX6 with stemness-related factors and differentiation lineage factors in 
human samples

LUAD can be stratified into two molecular subtypes: the distal airway stem cell (DASC)-

like subtype and the alveolar-like subtype. The DASC-like subtype is similar to 

undifferentiated distal airway stem cells, and the alveolar-like subtype represents 

histologically more differentiated tumors 29. To test whether the expression status of PAX6 

is associated with these molecular subtypes, we assessed molecular subtype-related genes 

using their individual enrichment scores from results of GSEA in the groups with high and 

low PAX6 expression in the TCGA LUAD cohort (Supplementary Table S1). The group 

with low PAX6 expression significantly enriched genes associated with alveolar-like 

subtype, especially HOPX and NKX2-1 (Fig. 3A).

Because HOPX and NKX2-1 are central differentiation lineage transcription factors in the 

alveolar-like subtype 29, 30, we examined the association of PAX6 with HOPX and NKX2-1 

in PAX6-sh and PAX6-LV cells. As expected, PAX6-sh cells exhibited a higher expression 

of HOPX and NKX2-1 compared with PAX6-Ctrl cells, while PAX6-LV cells showed a 

lower expression (Fig. 3B). To determine whether HOPX and NKX2-1 are negatively 

regulated through the PAX6-GLI-SOX2 signaling axis, GLI was genetically inhibited in the 

PAX6-LV NCI-H1975 cells. GLI1 knockdown induced the expression of HOPX and 

NKX2-1, and the dual knockdown of GLI1 and GLI2 further upregulated their expression. 

However, SOX2 induction reduced the GLI knockdown-induced expression of HOPX and 

NKX2-1 (Supplementary Fig. S5A). In contrast, SOX2 knockdown restored Shh-reduced 

expression in PAX6-sh NCI-H1650 cells (Supplementary Fig. S5B). In addition, when 

spheroid cells cultured under standard conditions, the re-differentiated cells showed the 

restored expression of HOPX and NKX2-1 along with the PAX6 re-methylation, similar to 

parental cells (Fig. 3C). Collectively, PAX6 not only enhanced the key pluripotent factors 

but also repressed differentiation lineage factors via SOX2-GLI signaling. On the other 

hand, in the differentiated non-CSCs tumor cell population, PAX6 is transcriptionally 

silenced by its PM, resulting in an increased expression of HOPX and NKX2-1 through the 

suppression of the PAX6-GLI-SOX2 signaling axis.

To confirm the association of PAX6 with differentiation lineage factors (HOPX and 

NKX2-1) and stemness-related factors (SOX2 and GLI), we analyzed their mRNA 
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expression levels by Q-RT-PCR in 75 human lung tumor tissues. PAX6 showed inverse 

linear correlations with HOPX and NKX2-1 expression and positive linear correlations with 

SOX2 and GLI expression (Fig. 3D). Similar findings were confirmed in the TCGA LUAD 

cohort (Supplementary Fig. S5C). Notably, the histologically differentiated tumors showed a 

lower expression of PAX6 than those with poorly differentiated tumors (Fig. 3E). 

Furthermore, we observed that tumors with PAX6 PM have higher expression levels of 

HOPX and NKX2-1 and lower levels of SOX2 and GLI than those without PM (Fig. 3F and 

Supplementary Fig. S6A). Although it was not significant, PAX6 PM showed a trend toward 

a histologically differentiated status (Supplementary Table S2 and Fig. S6B).

Blocking the PAX6-GLI-SOX2 axis attenuates CSC expansion following chemotherapy

CSCs are selectively enriched following chemotherapy through the enhanced survival or 

repopulation of residual tumors, leading to tumor regrowth 2, 31. To understand the 

underlying mechanisms of CSC generation and expansion due to chemotherapy, we treated 

NCI-H1975 and NCI-H23 tumor-bearing mice with a combination chemotherapy of 

pemetrexed and cisplatin (Pem-Cis) that is a standard regimen for LUAD in clinical practice. 

In this xenograft models, we observed increased sphere formation and an activated PAX6-

GLI-SOX2 signaling axis following Pem-Cis chemotherapy (Supplementary Fig. S7A–B). 

To further assess the role of PAX6 in CSC expansion following chemotherapy, PAX6-sh or 

PAX6-Ctrl tumor-bearing mice were treated with Pem-Cis chemotherapy. In contrast to 

PAX6-Ctrl tumors, PAX6-sh tumors retained their low sphere-forming ability along with 

reduced PAX6-GLI-SOX2 signaling, even after treatment with Pem-Cis chemotherapy (Fig. 

4A–B). Pharmacologically, treatment with GLI antagonist GANT61 also suppressed CSC 

expansion following Pem-Cis chemotherapy in both PAX6-Ctrl and PAX6-LV tumors (Fig. 

4C). Interestingly, we observed a demethylation of the PAX6 promoter region, consistent 

with the upregulation of PAX6, in tumors treated with Pem-Cis chemotherapy compared 

with those with mock treatment (Fig. 4D). Thus, the chemotherapy-induced demethylation 

of the PAX6 promoter may expand LUAD CSCs via the activation of PAX6-GLI-SOX2 

signaling.

Given the crucial role of the PAX6-GLI-SOX2 signaling axis in LUAD CSC expansion 

following chemotherapy, we hypothesized that a combination of chemotherapy with a 

treatment to block this axis might be more effective than chemotherapy alone. To test our 

hypothesis, the tumor-bearing mice randomly divided into four groups: mock, GANT61, 

Pem-Cis chemotherapy, or Pem-Cis chemotherapy plus GANT61 treatment. The 

combination treatment with Pem-Cis chemotherapy plus GANT61 demonstrated 

significantly continuous suppression of tumor growth rate and tumor weight compared with 

either treatment alone (Fig. 4E). Finally, we confirmed the therapeutic efficacy of the same 

regimens in the most clinically relevant LUAD patient-derived xenograft (PDX) models 

(Fig. 4F).

PAX6 promoter methylation (PM) is a frequent and cancer-specific event in lung cancer

We observed that PAX6 expression significantly downregulated in tumor tissues compared 

with the adjacent histologically normal tissues in the TCGA LUAD cohort (Supplementary 

Fig. S8A). To test the cancer specificity of the PM event of the PAX6 gene, Q-MSP assay 
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conducted on 25 primary LUAD tumors and matched adjacent normal samples. PAX6 
showed significantly higher PM values in tumors compared with their corresponding 

adjacent normal samples (Fig. 5A). To determine the broader idea of PM prevalence of 

PAX6, we performed Q-MSP assay on an additional 67 tumor samples that lead to a total of 

92 tumor samples (25+67) in a training cohort. Again, higher PM values were observed in 

the tumor samples (Fig. 5B). The optimal cutoff value for distinguishing between tumors 

(n=92) and normal samples (n=25) was calculated using receiver operating characteristic 

(ROC) analysis. By using the optimal methylation cutoff value, the observed sensitivity and 

specificity for cancer detection were 66.3% (61/92) and 88.0% (22/25), respectively 

(Supplementary Table S3). As expected, the expression levels of PAX6 were significantly 

higher in subjects without PM than in those with PM (Fig. 5C).

To confirm the PM frequency in an independent cohort, we tested 43 stage IA LUAD 

primary tissues. Using the same cutoff as of training set, 31 of 43 subjects (72.1%) were PM 

positive for the PAX6 gene, indicating a potential for detecting neoplastic changes at a very 

early stage LUAD (Fig. 5D). Collectively, these findings suggest that PM of the PAX6 gene 

is a frequent and cancer-specific event.

PAX6 gene PM has a potential as a biomarker for early lung cancer detection

Previous report suggest that robust and frequent PM of a homeobox gene superfamily occurs 

in early-stage lung cancer 16, and the homeodomain-containing PAX6 belongs to the 

homeobox gene superfamily 32. We recently reported a candidate PM panel of six genes as a 

biomarker for early lung cancer detection in the same cohort used in this study, among 

which HOXA9 and UNCX also belong to the homeobox gene superfamily 19. Therefore, we 

assessed the cancer detection accuracy of a combination panel of three homeobox genes 

(PAX6, HOXA9, and UNCX). Notably, the combination panel yielded a sensitivity of 91.3% 

(84/92) and a specificity of 72.0% (18/25) in the training cohort and a sensitivity of 90.7% 

(39/43) in an independent set of stage IA LUAD cohort (Fig. 5D).

Given the high positive PM frequency of our gene panel in early stage primary LUAD 

samples, we next assessed the potential for minimally invasive early cancer detection using 

serum samples from 43 stage IA LUAD, 40 stage IA LUSC, and 42 population-matched 

control subjects from the New York University Lung Cancer Screening Cohort 33. The mean 

methylation value of the PAX6 gene was significantly higher in cancer subjects compared 

with controls (Supplementary Fig. S8B). By determining the optimal cutoff using ROC 

curves in 43 stage IA LUAD and 42 control samples, the sensitivity and specificity of PAX6 

PM for LUAD detection were 53.5% (23/43) and 90.5% (38/42), respectively 

(Supplementary Table S3). In the 43 primary tumors and the matched serum samples from 

stage IA LUAD, the PM status of the PAX6 gene in serum DNA was always concordant 

with the primary tumor DNA, and the concordance rate was 74.2% (23/31) (Fig. 5E). 

Notably, our PM panel of three genes yielded a sensitivity of 79.1% (34/43) and specificity 

of 83.3% (35/42) in serum DNA from stage IA LUAD and detected 30 (75.0%) of the 40 

serum samples from stage IA LUSC using the same cutoff (Fig. 5F).

Since malignant pleural effusion (MPE) is a common complication of NSCLC 34, we also 

assessed the feasibility of our methylation gene panel for detecting cancer using 70 pleural 

Ooki et al. Page 7

Oncogene. Author manuscript; available in PMC 2019 January 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



effusion (PE) samples (Supplementary Table S3). PM of the PAX6 gene was significantly 

higher in MPE than in PE with negative cytology, and our combination panel showed a 

sensitivity of 78.4% and a specificity of 75.8% (Supplementary Fig. S8C–D). Similar 

diagnostic accuracy observed in the ascites samples, despite the fact that the malignant 

ascites were collected from subjects with various types of cancer (Supplementary Fig. S8E–

F).

Discussion

Lung cancer is the second most common cancer and the leading cause of cancer deaths 

worldwide 18. Despite advances in treatment, such as chemotherapy and molecular targeted 

therapy, the five-year survival rate is less than 15% in lung cancer 18. The poor outcome is 

largely due to the advanced stage at the time of diagnosis and the emergence of treatment 

resistance. Thus, development of novel therapeutic strategies and biomarkers for early 

cancer detection are major clinical challenges to improving the prognosis of lung cancer 

patients. Given the central role of CSCs governing at the top of the cellular hierarchy in 

tumor initiation, progression, and therapeutic resistance 2, a better understanding of the 

molecular mechanisms crucial to CSC maintenance and expansion may shed light on the 

improvement of clinical management. Here, we provide a rationale for targeting the PAX6-

GLI-SOX2 signaling axis and support the clinical utility of PAX6 PM as a serum biomarker 

for early cancer detection.

The functional role of PAX6 is cellular context-dependent in cancer. Our findings suggest 

that PAX6 acts as a critical oncogene responsible for cancer stemness properties via GLI-

SOX2 signaling, accelerating CSC expansion in LUAD. SOX2 establishes a continuum 

between tumor initiation and progression via the direct regulation of key genes that control 

cancer stemness properties 24. Indeed, we found that SOX2 regulates the expressions of 

pluripotent transcription factors (OCT4 and NANOG) in line with previous reports 23, 25. 

Furthermore, the association of SOX2 with poor outcomes is reported in LUAD 26. 

Interestingly, PAX6 forms a molecular complex with SOX2, leading to synergistic gene 

activation during lens development 35. In addition, SOX2 is required for maintenance of 

PAX6 expression 35. Thus, PAX6-induced SOX2 acts as a master regulator to govern and 

maintain LUAD CSCs, and the regulatory circuitry between PAX6 and SOX2 may further 

stabilize a stemness-like state.

Normal lung epithelial differentiation is coordinated by a complex network of lineage-

specific transcription factors 36. Aberrant activation of cell lineage-restricted pathways is 

required for oncogenic transformation, whereas the activation of differentiation programs 

restrains metastasis and invasion 29. Notably, HOPX and NKX2-1 are essential 

differentiation lineage transcription factors for both normal lung maturation and the LUAD 

alveolar-like subtype 29, 30, 37, and PAX6 represses the expression of HOPX and NKX2-1. In 

addition, we observed the inverse correlation of PAX6 expression with HOPX and NKX2-1 

expression, as well as a positive correlation of PAX6 expression with SOX2 and GLI 

expression in both our and the TCGA LUAD cohorts. Thus, PAX6 not only enhanced the 

key pluripotent factors but also repressed the differentiation lineage factors via SOX2, 

driving lung cancer cells toward a stem-like state in LUAD. On the other hand, in the 
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differentiated non-CSCs that represent most of the tumor cell population, PAX6 is 

transcriptionally silenced by its PM. It is generally believed that methylation is a dynamic 

epigenetic alteration during ESC differentiation, which contributes to the turn-on and turn-

off of particular genes that are related to pluripotency and self-renewal 38, 39. Indeed, when 

spheroid cells were converted into a differentiated state, the demethylated promoter region of 

the PAX6 gene was re-methylated along with the restored expression of HOPX and 

NKX2-1. In addition, the histologically differentiated tumors showed a lower PAX6 

expression and a trend toward a higher PM frequency compared with poorly differentiated 

tumors in the human samples. Collectively, the relative amount of PAX6 may determine cell 

fate by switching toward a stem-like or differentiated state in LUAD. Further research is 

needed to determine in which contexts the epigenetic alteration of PAX6 regulates the switch 

toward a stem-like or differentiated state of LUAD cells.

Hh signaling is a stemness-related pathway tightly regulated during development, and its 

aberrant activation plays a critical role in maintaining CSCs in several cancer types 22. In 

LUAD, the aberrant activation of this pathway is observed 26, 40, consistent with our findings 

showing SMO-independent overexpression of GLI in lung CSCs. Hh signaling can involve 

canonical and noncanonical pathways. The canonical pathway follows the Patched (PTCH)–

SMO–GLI axis, whereas noncanonical pathways can facilitate SMO-independent GLI 

activation 20, 40. The activated GLI promotes the expression of Hh target genes, among 

which SOX2 is upregulated directly by the binding of GLI to the proximal promoter region 

of the SOX2 gene. Furthermore, the GLI gene has PAX6 binding sites within its transcribed 

regions, indicating a possible target gene for PAX6 41. Thus, our findings suggest that PAX6 

promotes the activation of the Hh signaling pathway in the noncanonical manner and 

subsequent SOX2 overexpression.

Therapeutically, the blockade of the PAX6-GLI-SOX2 signaling axis elicits a long-lasting 

therapeutic efficacy by limiting CSC expansion following chemotherapy, indicating these 

transcription factors are promising target molecules for LUAD CSCs. However, most 

transcription factors, including PAX6 and SOX2, are generally considered as undruggable 

targets due to the lack of small molecule binding pockets and the highly charged surface 
27, 28. Thus, the pharmacological inhibition of Hh pathway components may be a clinically 

appropriate approach to block this axis. Importantly, GLI is pharmacologically targetable 

and the final effector of the Hh pathway, even if this pathway is activated in canonical and/or 

noncanonical manners 27. Indeed, the GLI antagonist, but not the SMO antagonist, 

attenuated PAX6-promoted tumorigenicity and GLI expression. Therefore, GLI may be the 

most preferable target in blocking the PAX6-GLI-SOX2 axis for the eradication of LUAD 

CSCs.

Cancer detection at an early stage increases survival rates. While low-dose spiral computed 

tomography (CT) can be a reliable screening tool for the early detection of lung cancer and 

decreases the mortality rate 42, it has poor specificity and high false positive rate leading to 

surgical resections for benign nodules 42–44. Therefore, novel, minimally invasive 

biomarkers are ideal to increase diagnostic accuracy and decrease unnecessary invasive 

diagnostic procedures. DNA methylation analysis in blood samples is one of the most 

promising approaches because it is a minimally invasive alternative compared to the more 
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invasive routine procedures required for diagnosis. In NSCLC, a large fraction of the 

methylated CpG islands are mapped to homeobox genes in the genome, suggesting a 

common epigenetic pathway involving the homeobox gene network 16. Our combination 

panel of three homeobox genes (PAX6, HOXA9, and UNCX) showed comparable 

sensitivity (79.1% vs. 71.1%) and superior specificity (83.3% vs. 62.7%) in serum samples 

from stage IA LUAD compared with the CT screening cohort 42, 43. Furthermore, the 

diagnostic accuracy maintain comparable sensitivity with superior specificity compared to 

previous studies using blood samples 19, 45, indicating the potential for its use as a serum 

biomarker for early lung cancer detection. In addition, our gene panel successfully detected 

not only MPE but also malignant ascites, suggesting the utility for cancer detection from 

various bodily fluids. Further studies are required to determine the clinical feasibility in a 

larger cohort.

In summary, we demonstrate that PAX6 drives cancer cells toward a stem-like state via the 

GLI-SOX2 signaling axis and the blockade of this axis suppresses CSC expansion following 

chemotherapy in LUAD. In addition, a methylation panel including PAX6 can potentially 

serve as a minimally invasive serum biomarker for early cancer detection. Our findings 

provide a clinical rationale for targeting the PAX6-GLI-SOX2 signaling axis and 

demonstrate the clinical utility of PAX6 PM as a biomarker for early cancer detection.

Materials and Methods

Compounds and reagents

Cisplatin, demethylating agent 5-Aza-2′-deoxycytidine (5-Aza-dC), histone deacetylase 

inhibitor Trichostatin A (TSA) were purchased from Sigma-Aldrich (St. Louis, USA). 

Pemetrexed and GLI antagonist GANT61 were purchased from MedKoo Bioscences 

(Morrisville, USA). The SMO antagonist cyclopamine and Recombinant human Shh ligand 

were purchased from STEMCELL Technologies (Cambridge, USA) and R&D Systems 

(Minneapolis USA), respectively. Recombinant human epidermal growth factor (EGF) and 

the fibroblast growth factors (FGF)-basic were purchased from PeproTech (New Jersey, 

USA).

Cell lines and tissue samples

LUAD cell lines NCI-H1650, NCI-H1975, NCI-H1299, and NCI-H23 were obtained from 

and propagated according to the recommendation of the American Type Culture Collection 

(Manassas, VA, USA). Re-authentification of cells was performed using PowerPlex 16 HS 

for short tandem repeats analysis at Genetic resource core facility, the Johns Hopkins 

University School of Medicine (JHUSOM), Institute of Genetic Medicine, and all cell lines 

have been confirmed as authentic.

This study included human samples, including 92 primary NSCLC, 43 primary tumor 

tissues with matched serum samples from stage IA LUAD, 40 serum samples from stage IA 

LUSC, 42 population-matched control serum samples, 70 pleural effusions (PEs), and 49 

ascites samples. The demographic and clinical characteristics of all the cohorts were 

summarized previously 19. Informed consent was obtained from all patients before 
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collecting samples. Approval for research on human subjects was obtained from the Johns 

Hopkins University Institutional Review Boards. This study qualified for an exemption 

under the U.S. Department of Health and Human Services policy for the protection of 

human subjects [45 CFR 46.101(b)] in accordance with U.S. Common Rule.

TCGA analysis

The gene expression data of 515 primary LUAD samples and 58 tumor adjacent, 

histologically normal samples in the TCGA LUAD cohort 46 was downloaded from the 

Broad GDAC Firehose. Gene Set Enrichment Analysis (GSEA) was performed to identify 

signatures enriched by PAX6-high group in Oncogenic and Hallmarks gene set collections 

from the Molecular Signatures Database (MSigDB; Broad Institute) using the 

GSEAPreranked tool.

RNA extraction and quantitative reverse transcription real time PCR (Q-RT-PCR)

Total RNA from cell lines and formaldehyde fixed-paraffin embedded human tissues was 

isolated using the RNeasy Plus Mini Kit (Qiagen) and the RecoverAll™ Total Nucleic Acid 

Isolation Kit (Ambion), respectively. Q-RT-PCR was performed using the Fast SYBR Green 

Master Mix (Thermo Fisher Scientific).

Western blotting analysis

Whole cell lysates were extracted using RIPA buffer (Thermo Scientific) supplemented with 

10 μL/mL Halt™ Protease Inhibitor Cocktail Kit (Life Technologies) and 30 μL/mL Halt™ 

Phosphatase Inhibitor Cocktail Kit (Life Technologies). The protein concentrations were 

determined using a Pierce™ BCA Protein Assay Kit (Life Technologies), and the protein 

were separated on NuPAGE® 4–12% Bis-Tris Gel (Life Technologies) according to the 

manufacturer’s protocol. NANOG (D73G4), OCT4 (D7O5Z), and GLI1 (C68H3) antibodies 

were obtained from Cell Signaling Technology, except for SOX2 (EPR3131; Abcam, 

Cambridge, USA), GLI2 (AF3635; Novus Biologicals), PAX6 (ab5790; Abcam), and β-

actin (A2228; Sigma-Aldrich). Secondary horseradish peroxidase (HRP)–conjugated 

antibodies were obtained from Cell Signaling Technology, and chemiluminescent detection 

of HRP-labeled antibodies was performed using Amersham ECL Prime Western Blotting 

Detection Reagent (GE Healthcare, Piscataway, USA). As loading control, β-actin was used.

DNA extraction and quantitative methylation-specific polymerase chain reaction (Q-MSP)

DNA was extracted using the standard phenol-chloroform extraction protocol as described 

previously 19. Bisulfite treatment was conducted with an EpiTect Bisulfite Kit (Qiagen). For 

5-Aza-2′-deoxycytidine (5-Aza-dC) treatment, cells were treated with 5 μmol/L of the 5-

Aza-dC, as described previously 47. For Q-MSP, amplification reactions were done in a 

7900HT Fast Real-Time PCR System (Life Technologies). Results were analyzed by 

Sequence Detector System (SDS) software (Applied Biosystems, Foster City, CA, USA).
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Chromatin immunoprecipitation (ChIP) assay

ChIP assays were conducted using SimpleChIP Enzymatic Chromatin IP Kit (Cell signaling 

Technology). GLI1 and GLI2 antibodies were obtained from Cell Signaling Technology and 

Novus Biologicals, respectively.

Gene silencing and expression

PAX6 siRNA Lentiviral Particles (Cat # sc-36195-v) was used for the knockdown of the 

gene expression (PAX6-sh; Santa Cruz Biotechnology, Dallas, USA). This particles include 

a pool of 3 different siRNA duplexes (sc-36195A, sc36195B, and sc-36195C) as follows: 

sense; CCAACGGAUGUGUGAGUAATT, antisense; UUACUCACACAUCCGUUGGTT 

(sc-36195A), sense; GAAGCUGCAAAGAAAUAGATT, antisense; 

UCUAUUUCUUUGCAGCUUCTT (sc-36195B), and sense: 

CUACCAACCAAUUCCACAATT, antisense: UUGUGGAAUUGGUUGGUAGTT 

(sc-36195C). Control shRNA Lentiviral Particles (Cat # sc-108080) was used as a control 

(PAX6-Ctrl; Santa Cruz Biotechnology). Pax-6 Lentiviral Activation Particles (Cat # 

sc-418357-LAC) for PAX6 induction (PAX6-LV) and Control Lentiviral Activation Particles 

(Cat # sc-437282) for a control (PAX6-Ctrl) were used (Santa Cruz Biotechnology). EF1A-

Human-SOX2 lentivirus (Cat # PLV-10013) for SOX2 induction (SOX2-LV) and EF1A-

vector control lentivirus (Cat # PLV-10074) for a control (SOX2-Ctrl) were purchased from 

Cellomics Technology (Rockville, USA). SOX2 shRNA pGFP-C-shLenti Vector (Cat # 

TL309173) for SOX2 knockdown (SOX2-sh) and Non-effective 29-mer scrambled shRNA 

pGFP-C-shLenti Vector (Cat # TR30021) for a control (SOX2-Ctrl) were purchased from 

Origene (Rockville, USA). SOX2-sh lentiviral vector includes 4 unique 29mer shRNA 

constructs as follows; AACATGATGGAGACGGAGCTGAAGCCGCC, 

CAGTACAACTCCATGACCAGCTCGCAGAC, 

CGTTCATCGACGAGGCTAAGCGGCTGCGA, and 

TTTACTCCATTATGCACAGTTTGAGATAA. Lentiviral particles were produced by 

cotransfection of each lentiviral vector with the Lenti-vpak Packaging Kit (Origene) into 293 

cells according to the manufacturer’s protocol. Stable cells were established by optimal 

antibiotic selection. For the knockdown of GLI1 and GLI2, cells were transfected with GLI1 

Silencer Select siRNA (GLI1-siRNA; Cat # 4392420 s5815; Thermo Fisher Scientific) and 

GLI2 Silencer Select siRNA (GLI2-siRNA; Cat # # 4392420 s5819; Thermo Fisher 

Scientific) at the final concentration of 10 nM by forward transfection using Lipofectamine 

RNAiMAX (Invitrogen) according to the manufacturer’s protocol. The target sequences for 

GLI1 and GLI2 are as follows: GLI1-siRNA sense; CCAACUUGCCCAAUCACAATT, 

GLI1-siRNA antisense; UUGUGAUUGGGCAAGUUGGGT, GLI2-siRNA sense; 

AGAUCCACAUGUACGAACATT, and GLI2-siRNA antisense; 

UGUUCGUACAUGUGGAUCUGG. Silencer Select Negative Control No. 1 siRNA 

(Thermo Fisher Scientific; Cat # 4390843) was used as a control for nonspecific effect. To 

verify the knockdown, western blotting analysis was performed 72 hours after transfection.

In vivo xenograft assay

Mice were maintained in accordance with the American Association of Laboratory Animal 

Care guidelines. Patient-derived xenograft (PDX) tumor tissues (1762 and 1885) were 
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obtained from Champion Oncology (Maryland, USA). Athymic (nu+/nu+) mice and NOD/

SCID/IL2Rγ−/− (NSG) mice were obtained from Harlan Laboratories and the JHUSOM 

animal care facility, respectively. When tumors reached a volume of 100–200 mm2, tumor-

bearing mice were randomly assigned into experimental groups (five mice per group). For 

GANT61 treatment, GANT61 in solvent (50 mg/kg) or solvent only were administered 

every other day for 21 days. For pemetrexed plus cisplatin (Pem-Cis) treatment, pemetrexed 

(75 mg/kg) for 5 days followed by a 2 day holiday plus cisplatin (4 mg/kg) every 7 days 

were administered for 14 days. No blinding was done. All experiments using mice were 

approved by the JHUSOM Animal Care and Use Committee, and the mice were maintained 

in accordance with the American Association of Laboratory Animal Care guidelines.

Statistical analysis

In each set of data analyses, the estimate variation is indicated in each figure as a standard 

error of mean (SEM). The two groups were compared with the Wilcoxon–Mann–Whitney 

test. A comparison between the multiple groups was performed using the Kruskal–Wallis 

with post-hoc test (Dwass-Steel test) for non-parametrically continuous variables. 

Categorical variables were analyzed using Fisher’s exact test or a Chi-squared test. The level 

of statistical significance was set at P < 0.05. All statistical analyses were conducted using 

the JMP 12 software package (SAS Institute).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
PAX6-induced cancer stemness properties via SOX2. (A) Re-expression of the PAX6 gene 

after treatment of LUAD cells with 5-Aza-dC ± Trichostatin A (TSA), as determined by Q-

RT-PCR. The relative expression levels were calculated as a ratio of the values of 5-Aza-dC 

± TSA treatment relative to the value of mock treated cells considered as 1.0. Plus (+) and 

minus (-) marks represent cell lines with and without methylation of the PAX6 gene, 

respectively. (B) The PM values of the PAX6 gene in isogeneic parental and spheroid LUAD 

cells, as measured by Q-MSP. (C) Western blotting analysis of PAX6 in isogeneic parental 

and spheroid cells. (D) Sphere formation and self-renewal assays through the second (P2) 

passage from the first passage (P1) in stable PAX6 knockdown (PAX6-sh) NCI-H1650 and 
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overexpressed (PAX6-LV) NCI-H1975 cells compared with control (PAX6-Ctrl) cells. Left, 

representative images of sphere formation (scale bars, 200 μm); Right, number of the 

spheres over 100 μm. (E) Western blotting analysis of PAX6 and SOX2 expression in stable 

PAX6-sh NCI-H1650 and PAX6-LV NCI-H1975 cells. (F) The in vivo tumorigenesis after 

xenotransplantation of stable PAX6-sh NCI-H1650 (left) and PAX6-LV NCI-H1975 (right) 

cells (four mice per group). (G) Limiting dilution xenograft assays in stable PAX6-sh NCI-

H1650 spheroid (upper) and PAX6-LV NCI-H1975 (lower) cells. Tumor-initiating capacity 

is shown as the numbers of tumors / the number of injections. (H) Sphere formation assay 

(upper left) and western blotting analysis (lower left) in PAX6-sh or PAX6-Ctrl NCI-H1650 

cells transduced with SOX2-LV or SOX2-Ctrl (PAX6-Ctrl/SOX2-Ctrl, PAX6-sh/SOX2-Ctrl, 

and PAX6-sh/SOX2-LV). Right, representative images of sphere formation (scale bars, 200 

μm). The spheres over 100 μm were counted. (I) Sphere formation assay (upper left) and 

western blotting analysis (lower left) of PAX6-LV or PAX6-Ctrl NCI-H1975 cells 

transduced with SOX2-sh or SOX2-Ctrl (PAX6-Ctrl/SOX2-Ctrl, PAX6-LV/SOX2-Ctrl, and 

PAX6-LV/SOX2-sh). Right, representative images of sphere formation (scale bars, 200 μm).

Each error bar indicates mean ± SEM. *, P <0.05; **, P <0.01 (Wilcoxon–Mann–Whitney 

test [D and F] Chi-squared test [G], and Kruskal–Wallis with post-hoc test [H and I]). See 

also Fig. S1–S3.
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Figure 2. 
The PAX6-GLI-SOX2 signaling axis in LUAD CSCs. (A) Gene set enrichment analysis 

(GSEA) related to the oncogenic signatures and hallmarks in the groups with high and low 

expression of PAX6 in the TCGA LUAD cohort. Left, the enhanced oncogenic pathways in 

group with high PAX6 expression, as determined by a normalized enrichment score (NES); 

Right, the enrichment of Hedgehog pathway in group with high PAX6 expression. The 

GSEAs from both oncogenic signatures gene set (left and middle panels) and hallmarks gene 

set (right panel) showed the enriched Hedgehog pathway. SHH; Sonic hedgehog. (B) 

Western blotting analysis of GLI in stable PAX6-sh NCI-H1650 or PAX6-LV NCI-H1975 

cells. (C) ChIP assays conducted on the proximal promoter region of the SOX2 gene using 
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the indicated antibodies in NCI-H1650 or PAX6-LV NCI-H1975 cells. Histone H3 and 

normal IgG were used as the positive and negative control, respectively. (D) Sphere 

formation assay (upper left) and western blotting analysis of indicated molecules (lower left) 

of PAX6-LV NCI-H1975 cells transfected with GLI siRNA ± SOX2-LV. Right, 

representative images of sphere formation (scale bars, 200 μm). The spheres over 100 μm 

were counted. (E) Sphere formation assay (upper left) and western blotting analysis (lower 

left) of PAX6-sh NCI-H1650 cells stimulated with recombinant human Sonic Hedgehog 

ligand (Shh; 1μg /ml) after transfection with SOX2-sh or SOX2-Ctrl. Right, representative 

images of sphere formation (scale bars, 200 μm). (F) The in vivo tumorigenesis of stable 

PAX6-LV or PAX6-Ctrl NCI-H1975 cells in the presence or absence of the GLI antagonist 

GANT61 (50 mg/kg) treatment for 21 days (five mice per group).

Each error bar indicates mean ± SEM. **, P <0.01 (Kruskal–Wallis with post-hoc test [D, E, 
and F]). See also Fig. S4.
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Figure 3. 
PAX6-regulated differentiation lineage factors (HOPX and NKX2-1) and stemness-related 

factors (SOX2 and GLI) in LUAD. (A) The enrichment scores of molecular subtype-related 

genes from GSEA in the groups with high and low expression of PAX6 in the TCGA LUAD 

cohort. The enrichment score of each gene was summarized in Supplementary Table S1. The 

alveolar-related genes, especially HOPX and NKX2-1, were enriched in group with low 

PAX6 expression compared with high group. DASC, distal airway stem cell. (B) The relative 

expression levels of HOPX and NKX2-1 in PAX6-sh (NCI-H1650 and NCI-H1299) and 

PAX6-LV (NCI-H1975 and NCI-H23) cells compared with PAX6-Ctrl cells, as measured by 

Q-RT-PCR. (C) The promoter methylation levels of the PAX6 gene and expression levels of 
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HOPX and NKX2-1 in re-differentiated cells compared with spheroid cells. When spheroid 

cells were cultured under standard conditions containing the fetal bovine serum (FBS), the 

floating spheroid cells could adhere and acquire epithelial morphology similar to parental 

cells. The cells showed higher expression of HOPX and NKX2-1 along with re-methylation 

of the PAX6 gene compared with corresponding spheroid cells, as measured by Q-RT-PCR 

and Q-MSP. (D) A linear correlation analysis of PAX6 with SOX2, GLI1, GLI2, HOPX, and 

NKX2-1 in 75 human lung cancer tissues. The relative mRNA expression levels were 

calculated as the Q-RT-PCR values of each molecules vs. β-actin (The values of PAX6, 

GLI1, and HOPX were multiplied by 1000 for easy tabulation). The extent of the correlation 

is indicated by the R coefficient. (E) The association between PAX6 expression and the 

status of histological differentiation (well/moderate vs. poor differentiation). Scatter plots 

show the distribution of relative mRNA expression values of PAX6 according to the 

differentiation status. (F) The association of PAX6 promoter methylation with the expression 

levels of HOPX and NKX2-1.

Each error bar indicates mean ± SEM. *, P <0.05; **, P <0.01 (Wilcoxon–Mann–Whitney 

test [A, B, E, and F]). See also Fig. S5 and S6.
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Figure 4. 
CSC expansion following chemotherapy abrogated by targeting the PAX6-GLI-SOX2 axis 

in xenograft models. (A) Sphere formation assay of cancer cells isolated from xenografted 

tumor tissues after treatment with pemetrexed (75 mg/kg, once daily, 5 days on and 2 days 

off) plus cisplatin (4 mg/kg, once every 7 days; Pem-Cis) chemotherapy for 14 days in 

PAX6-sh or PAX6-Ctrl xenograft models (NCI-H1650 and NCI-H1299 cells). Upper, 

representative images of sphere formation (scale bars, 200 μm); Lower, number of spheres 

over 100 μm. (B) The expression levels of GLI, PAX6, and SOX2 of xenografted tumor 

tissues after treatment with Pem-Cis chemotherapy for 14 days in PAX6-sh or PAX6-Ctrl 

NCI-H1650 xenograft models, as measured by western blotting analysis for GLI and PAX6 

(left) and flow cytometry for SOX2 (right). (C) Sphere formation assay of cancer cells 

isolated from xenografted tumor tissues after treatment with Pem-Cis chemotherapy in the 

presence or absence of the GLI antagonist GANT61 (50 mg/kg) treatment for 14 days in 

PAX6-LV or PAX6-Ctrl NCI-H1975 xenograft models. (D) The promoter methylation levels 

of the PAX6 gene of xenografted tumor tissues after treatment with Pem-Cis chemotherapy 

for 14 days in xenograft models, as measured by Q-MSP. (E) The in vivo therapeutic 

efficacy of the combination of Pem-Cis chemotherapy for 14 days with GANT61 (50 mg/kg) 
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for 21 days in NCI-H1650 and NCI-H1975 xenograft models (five mice per group). Left, 

tumor growth curve; Right, tumor weight from both flanks of five mice per group. Growth 

curves were calculated by comparing the tumor size before any treatment with the size at 

different time points of therapy. (F) The in vivo therapeutic efficacy of the combination of 

Pem-Cis chemotherapy with GANT61 (50 mg/kg) in patient derived xenograft (PDX) 

models (five mice per group).

Each error bar indicates mean ± SEM. *, P <0.05; **, P <0.01 (Wilcoxon–Mann–Whitney 

test [A and C] and Kruskal–Wallis with post-hoc test [E and F]). See also Fig. S7.
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Figure 5. 
The potential of a methylation panel (PAX6, HOXA9, and UNCX) as a biomarker for early 

cancer detection using serum samples from subjects with LUAD. (A) The promoter 

methylation levels of the PAX6 gene measured by Q-MSP in 25 primary LUAD tumors and 

matched adjacent normal tissues. The promoter methylation values of tumors and the 

matched adjacent tissues were connected with a line. (B) Box plot of the promoter 

methylation values of the PAX6 gene measured by Q-MSP in primary lung tumors (n=92) 

and adjacent normal tissues (n=25). (C) The relative expression levels of PAX6 according to 

the status of its PM. The relative mRNA expression levels were calculated by multiplying 

the Q-RT-PCR values (normalized by β-actin) with 1000 for easy tabulation. PAX6 PM was 

determined by Q-MSP. (D) The sensitivity and specificity of methylation gene panel in the 

training cohort (n=92) and independent stage IA LUAD cohort (n=43). The schematic 

representation shows true positives (red), false negatives (pale red), true negatives (blue), 

and false positive (pale blue) detected by the PAX6 gene alone or the panel of three genes 

(PAX6, HOXA9, and UNCX). (E) The promoter methylation patterns of the PAX6 gene and 

HOXA9/UNCX genes in 43 primary tumors and matched serum samples from patients with 
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stage IA LUAD. Cells in color represent the presence of methylation in the corresponding 

gene in tumor (T) and the matched serum (S) samples. The frequency of positive 

methylation is shown in the parenthesis. (F) The sensitivity and specificity of the 

methylation gene panel for cancer detection in serum samples from stage IA LUAD (n=43) 

and stage IA LUSC (n=40). See also Fig. S8.

Each error bar indicates mean ± SEM. The paired t-test (A) and Wilcoxon–Mann–Whitney 

test (B and C) were performed. See also Fig. S8.

Ooki et al. Page 26

Oncogene. Author manuscript; available in PMC 2019 January 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Results
	PAX6 is a critical oncogene responsible for cancer stemness properties via SOX2 in LUAD
	PAX6 activates GLI-SOX2 signaling axis in LUAD CSC maintenance
	Correlations of PAX6 with stemness-related factors and differentiation lineage factors in human samples
	Blocking the PAX6-GLI-SOX2 axis attenuates CSC expansion following chemotherapy
	PAX6 promoter methylation (PM) is a frequent and cancer-specific event in lung cancer
	PAX6 gene PM has a potential as a biomarker for early lung cancer detection

	Discussion
	Materials and Methods
	Compounds and reagents
	Cell lines and tissue samples
	TCGA analysis
	RNA extraction and quantitative reverse transcription real time PCR (Q-RT-PCR)
	Western blotting analysis
	DNA extraction and quantitative methylation-specific polymerase chain reaction (Q-MSP)
	Chromatin immunoprecipitation (ChIP) assay
	Gene silencing and expression
	In vivo xenograft assay
	Statistical analysis

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5

