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ABSTRACT
HMG-CoA reductase inhibitors, i.e. statins, are effective in reducing cardiovascular disease 
events but also in cardiac-related and overall mortality. Statins are in general well-tolerated, 
but currently the concerns are raised if statins may increase the risk of new-onset diabetes 
mellitus (NOD). In this review, the possible effects of statins on organs/tissues being involved 
in glucose metabolism, i.e. liver, pancreas, adipose tissue, and muscles, had been discussed. 
The net outcome seems to be inconsistent and often contradictory, which may be largely 
affected by in vitro experimental settings or/and in vivo animal conditions. The majority of 
studies point out statin-induced changes of regulations of isoprenoid metabolites and cell-
associated cholesterol contents as predisposing factors related to the statin-induced NOD. 
On the other hand, it should be considered that dysfunctions of isoprenoid pathway and 
mitochondrial ATP production and the cholesterol homeostasis are already developed under 
(pre)diabetic and hypercholesterolemic conditions. In order to connect the basic findings 
with the clinical manifestation more clearly, further research efforts are needed.
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INTRODUCTION

Rate limiting enzyme of cholesterol synthesis pathway is HMG-CoA reductase (HMGCR), 
which converts HMG-CoA to mevalonic acid. When the activity of HMGCR is turned-down, the 
amount of cell-associated cholesterol is reduced, which activates SREBP-2-mediated signaling 
pathways. One of the important outcomes of SREBP-2 activation for cholesterol homeostasis is 
the upregulation of low-density lipoprotein (LDL) receptor (LDLR). The increased number of 
LDLR on hepatocytes enhances the removal of cholesterol-rich LDL particles from the blood 
circulation.1) Currently, several HMGCR inhibitors (i.e. statins) are available and proved to be 
effective in reducing cardiovascular disease events but also in cardiac-related and overall mortality.2) 
Such benefits of statins are believed to result from efficient removal of atherogenic lipoprotein 
particles, such as LDLs and intermediate density lipoproteins, from the blood circulation, 
which is represented by the reduction of LDL-cholesterol levels. Additionally, statins reduce the 
production of isoprenoid metabolites and such “beyond cholesterol” effects may also contribute 
to the prevention of cardiovascular disease. Statins are in general well-tolerated, but currently the 
concerns are raised if statins may increase the risk of new-onset diabetes mellitus (NOD).
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In this review, a number of possibilities implying statins' effects on glucose metabolism will be 
discussed. The clinical implications of statins to change glucose levels have been extensively 
described in previous studies. Therefore, this review will focus on the basic mechanisms by 
which statins affect the response of major organs involved in glucose metabolism.

LIVER

Glucose transporter
Unlike other cell types, hepatocytes are capable of gluconeogenesis and the need for glucose 
uptake is only modest. The role of hepatocytes to supply glucose and other carbohydrates for fuel 
is vital for cell survival, which involves a family of integral membrane glucose transporter (GLUT) 
molecules.3) Of 14 members of GLUT family, GLUT-1, GLUT-2,4) GLUT-9,5) and GLUT-10,6) 
have been documented on human hepatocytes but little is known about their extrahepatic 
expression or function. GLUT-2 is mainly distributed in the sinusoidal plasma membrane of 
hepatocytes and plays a major role in the glucose transport at Km of up to 66 mmol/L.7) The 
transport of glucose via GLUT-2 is (should be) bi-directional, meaning GLUT-2-mediated 
glucose efflux from hepatocytes is essential for peripheral glucose supply under fasting 
glucose-depleted state.8) Fraulob et al.9) fed C57BL/6 mice a high fat diet and found that 
co-treatment with rosuvastatin (20 mg/kg/day) ameliorated insulin resistance and hepatic 
steatosis. Moreover, upregulation of GLUT-2 and SREBP-1c expressions in liver was not 
observed in statin-treated mice,9) suggesting statin may not increase glucose overproduction 
or synthesis of triglyceride by liver. On the other hand, little has been studied if statins 
may change the expression levels of GLUT-2 by hepatocytes under euglycemic conditions. 
Since statins suppress isoprenoid/mevalonate pathway, it is possible that subsequent 
downregulation of small GTPases such as RhoA and Rab4 may slow down the traffics of 
hepatic GLUT-2 to the cell membrane as reported in the case of GLUT-4 in adipocytes and 
skeletal muscle. If this happens, the function of GLUT-2, i.e. glucose uptake under glucose-fed 
condition and glucose production and release under fasting and glucose-depleted conditions, 
could be jeopardized. However, little large-scale studies have been performed if statins may 
simultaneously induce fasting hypoglycemia and postprandial hyperglycemia.

Glucokinase
Glucokinase (GCK) converts glucose to glucose-1-phosphatate, which is a key substance for 
the subsequent glycolysis and gluconeogenesis. GCK shows a markedly lower affinity for 
glucose than other hexokinases and lacks of significant feedback inhibition, meaning the rate 
of GCK-dependent glucose phosphorylation is proportional to the glucose concentration in 
the normal physiological range.10)11) A downstream GCK promoter in hepatocytes responds 
to insulin12) and also requires the activation of SREBP-1c13) and LXR-α,14) i.e. the essential 
cell signalings for the production of triglyceride. Pramfalk et al.15) analyzed human liver 
biopsy samples and found that the treatment of high-dose atorvastatin (80 mg/day for 4 
weeks), which decreased both serum LDL-cholesterol and triglyceride levels, reduced mRNA 
expressions of GCK (50%) and SREBP-1c (30%) while glucose-6-phosphatase (90%) mRNA 
expression was upregulated. The study also showed the decrease in triglyceride content in 
liver after atorvastatin treatment without altering serum glucose or insulin levels.15) These 
results suggest that statin's benefit on liver is the suppression of triglyceride synthesis and 
subsequent hepatic accumulation while the synthesis of glycogen is increased. However, 
serum glucose levels may be elevated due to GCK downregulation although glucose uptake 
by liver is relatively minor. In the other report, profound GCK overexpression (>6 fold) was 
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induced in rats, which showed the reduction of circulating glucose (38%) and insulin (67%) 
levels but also developed hypertriglyceridemia (190%) and free fatty acidemia (310%).16) 
Taken together, the reduced expression of GCK under statin treatment can increase the 
chance of hyperglycemia, but also reduce the accumulation of glucose in hepatocyte and 
subsequent glycolysis and lipogenesis. It is questionable if the lowered GCK expression (up 
to 50%) observed in statin treatment could elevate serum glucose and insulin levels through 
less efficient hepatic glucose uptake. In human cases of heterozygotes GCK deficiency 
showing 50% of usual GCK activity, mild elevation of fasting glucose and HbA1C levels 
were observed.17) Such reduced GCK activity could be comparable to the condition observed 
under high dose of statin treatment. However, the GCK activities in other tissue could also 
contribute to the elevation of glucose levels. In addition to lowered GCK expression, statins' 
another effect to upregulate glucose-6-phosphatase may increase de novo gluconeogenesis 
and subsequent glucose release.

The change of cholesterol content in hepatocytes by statin treatment had been discussed 
as a possible mechanism. The inhibition of HMGCR by statins results in the reduction 
of cholesterol synthesis. Hepatocytes show the highest expression level of LDLR, which 
is further upregulated under statin treatment through upregulation of SREBP-2. As a 
result, the enhanced LDLR-mediated uptake of LDL particles increases the accumulation 
of cytosolic cholesterol in hepatocytes. In other report, Schonewille et al.18) suggested 
the different mechanism of cholesterol accumulation, in which male C57/BL6 mice fed 
0.01% rosuvastatin, 0.05% atorvastatin or 0.2% lovastatin showed the actual increase 
in hepatic cholesterol synthesis by robust increase in the production of substrates for 
HMGCR and upregulations of cholesterol synthesis enzymes mevalonate kinase (Mvk), 
phosphomevalonate kinase (Pmvk), farnesyl-diphosphate farnesyltransferase 1 (Fdft1/
Sqs), and squalene epoxidase (Sqle).18) Both findings seem to be, at least for hepatocytes, 
reasonable explanations for the increased amount of cell-associated cholesterol under 
statin treatment. The negative regulation of hepatic GCK by hepatic cholesterol content is 
supported by a Tsai and Dyer's report,19) in which cholesterol or cholic acid feeding to rats, 
which increased cholesterol content in the liver, developed depressed activities of GCK and 
glucose-6-phosphate dehydrogenase in the liver but not in the adipose tissue.

Insulin receptor
Insulin receptor (IR) signaling itself obviously affects cholesterol homeostasis in liver. Miao 
et al.20) developed hepatic IR deficiency mice which showed decrease in expressions of 
SREBP-2 and cholesterologenic genes and these effects were not reversed by statins. These 
findings raise the possibility that insulin and/or IR signaling (e.g. mTORs) is required for 
hepatic cholesterol synthesis. Conversely, statin treatment affects the activity of hepatic IR. 
In animal models, statin treatment increases tyrosine phosphorylation in hepatic IR and 
insulin receptor substrate (IRS)-1/2, and serine phosphorylation of Akt (through PI3K).21)22) 
Interestingly, these effects of statin were still observed in LDLR-deficient insulin-resistant 
mice even after mevalonate supplementation, suggesting the involvement of both intrinsic 
and extrinsic LDLR-dependent cholesterol homeostasis in hepatocytes is less likely.

Glucose production
Pregnane X receptor (PXR), activated by statins, binds and dephosphorylates 
serum/glucocorticoid regulated kinase 2 (SGK2). The PXR-SGK2 complex interacts with 
PXR-SGK2 response elements and an IR sequence region and eventually upregulate glucose-
6-phosphatase.23) The result may increase endogenous glucose production (EGP). However, 
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in vivo studies show that treating diabetic human subjects with atorvastatin (10 mg/day) or 
simvastatin (10 mg/day) resulted in only slight increase in EGP.24)25) The upregulation of hepatic 
glucose-6-phosphatase by statin treatment has been reported in human as discussed above,15) 
but detailed mechanism is not clear.

PANCREAS

Glucose transporter
The capability of insulin secretion from pancreas β cells is mandatory for maintaining 
euglycemic condition. The insulin secretion is the metabolic outcome of pancreas β cells in 
response to fuels, foremost glucose. Thus, type 2 diabetes mellitus (T2DM) can be developed 
due to dysfunctional “fuel”-stimulated insulin secretion. It is well known that glucose 
uptake can be through GLUTs, mostly through GLUT-1 to 4. Zhao and Zhao26) treated human 
pancreas β cells with atorva-, rosuva-, prava-, and pitavastatin (up to 100 nM) and found 
that atorvastatin and pravastatin elicited a concentration-dependent inhibition of GLUT-2 
expression in human pancreas islet β cells, while rosuvastatin and pitavastatin showed a 
slight increase in GLUT-2 expression. On the other hand, little had been studied if other 
GLUTs including GLUT-1 or GLUT-3 expressions by pancreatic beta cells are changed under 
statin treatment. The function of pancreatic GLUT-2 had been extensively studied in murine 
and rodent models, which is however known to be little expressed in human pancreas beta 
cells while GLUT-1 and GLUT-3 expressions are preserved. A previous histological analysis of 
human pancreas islets showed that GLUT-1 expression is dominant and did not significantly 
change in the context of the various (pre-) diabetic conditions including T2DM and islet 
autoantibody positive conditions.27) Pancreas β cells must respond to the subtle change of 
extracellular glucose concentration through controlling insulin secretion. A kinetic study 
showed that glucose uptake via GLUT-1 seemed to be most sensitive, i.e. at least nine times 
higher than that of GLUT-2.28) The Km value of glucose uptake via GLUT-1 in pancreas β 
cells is only 1–2 mmol/L, which could be ideal as a sensor for pancreas β cells to monitor 
circulating glucose levels. Therefore, more research about the relationship between GLUT-1 
regulations in human pancreas β cells and statin treatment might be necessary in the future.

Glucokinase
The glucose in the cytosol of β cells is phosphorylated by GCK. Loss of function mutations, 
as reported in the case of maturity onset diabetes of the young 2, results in a right shift in the 
dose-response curves of glucose and insulin secretion while dysregulation of insulin secretion 
and degree of hyperglycemia do not seem to be progressive.29) Little has been studied if 
statins may alter GCK expression levels in pancreas β cells. Zhang et al.30) found that HMGCR 
inhibition (ex vivo) of pancreatic beta cells isolated from streptozotocin-induced diabetic 
mice showed decrease in the amount of cell-associated cholesterol content and increased 
mRNA expression of GCK. Hao et al.31) tested apoE-KO or/and ob/ob mice with C57BL/6J 
background. Insulin secretion from pancreatic islets and pancreas GCK activity was inversely 
correlated with cholesterol contents associated with islets. Moreover, cholesterol depletion 
and enhanced insulin secretion in islets were observed after treatment with mevastatin.31) 
Such changes were accompanied by upregulation of insulin-1 (INS-1), insulin-2, pancreatic and 
duodenal homeobox factor-1 (PDX-1) transcripts,30) suggesting reduced cholesterol burden in 
islets through statin treatment showed enhanced insulin synthesis for the secretion as well 
as glucose sensing. Therefore, one of the fundamental questions regarding the change of 
regulation of pancreas β cells under statin treatment is if there would be any change of 
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cell-associated cholesterol content. Theoretically, statin may decrease cell-associated 
cholesterol content through the inhibition of HMGCR and subsequent cholesterol synthesis. 
On the other hand, statin may increase cell-associated cholesterol content if activated SREBP-2 
signalings upregulates LDLR. However, it is unlikely because LDLR protein is hardly expressed 
in pancreas though LDLR transcripts are detected in virtually all cell types.32)

Insulin synthesis and secretion
Glucose-6-phosphate generated by GCK is eventually changed to pyruvate, which is 
a representative substrate for the generation of ATP in mitochondria. Although such 
glycolytic metabolism is tightly coupled to mitochondrial metabolism, other potential 
substrates can also trigger TCA cycle (i.e. exogenous pyruvate or glutamate), and might 
cause hyperinsulinism. The other pentose phosphate pathway is purely cytosolic and 
eventually generates nicotinamide adenine dinucleotide phosphate (NADPH), alters redox 
potential and reduces insulin secretion, but these could be minor for controlling de novo 
insulin secretion.33) The series of cascade metabolic pathway changes mitochondrial plasma 
membrane electrical potential oscillations. The changes of mitochondrial membrane 
potential cause the inhibition of KATP-channels, which in turn induces transient opening of 
voltage-activated Ca2+ channels and subsequent insulin secretion.29)34)

Under (pre)diabetic conditions, mitochondrial mass is increased (up to 60%) while the 
number shows little change. Activities of a number of metabolic enzymes such as glycerol 
phosphate dehydrogenase, pyruvate carboxylase, succinyl-CoA:3-ketoacid-CoA transferase 
and FAD-linked glycerol phosphate dehydrogenase were reduced in human β cells under 
diabetic conditions.35)36) However, it is not studied if statins may change those enzyme 
activities or expression levels. Additionally, the increased expression of uncoupling protein 
2 (UCP2), which could uncouple the respiratory chain from ATP production, has been 
described as a cause of mitochondrial dysfunction in diabetic patients.37)38) Atorvastatin (10 
umol/L) reportedly decreased UCP2 expression in rat primarily cultured cardiomyocytes, 
which enhanced energy metabolism and myocardial remodeling.39) On the contrary, co-
incubation of New Zealand rabbit cardiomyocytes with rosuvastatin (1 uM) under ischemia/
reperfusion model enhanced UCP2 expression while series of pro-apoptotic and pro-oxidant 
genes were suppressed.40) Cautious interpretation may be necessary if such opposite changes 
of UCP2 expression suggest the ‘restoration’ of mitochondrial function. The other study 
tested human pancreas islet cells and rat-insulin secreting INS-1 cells and demonstrated that 
atorvastatin (100 ng/mL) but not pravastatin attenuated insulin secretion under high glucose 
concentration and these finding is thought to be due to decreased functions of complex I, III, 
IV, and V and lowered co-enzyme Q10 protein.41) Yaluri et al.42) treated mouse pancreatic MIN6 
β cells with either 14.3 uM simvastatin or 26.3 uM pravastatin and found that only simvastatin 
reduced insulin secretion through affecting KATP and Ca2+ channels and these effects were 
restored by direct activation of cAMP-dependent signaling and GLP-1 receptor stimulation. 
The other study measured insulin secretion using INS-1 832/13 cells, which was increased 
by rosuvastatin (20 nM–20 uM) under euglycemic condition (2.8 mM) but decreased under 
hyperglycemia (16.7 mM). Downstream of KATP channel and Ca2+ channel was not affected 
by rosuvastatin except maximal concentration tested (20 uM) under hyperglycemia.43) The 
statins' proposed effect to enhance upstream GCK expression as discussed above may 
aggravate the condition of the increased basal and fasting insulin secretion. The uncoupling 
process and reduced ATP production in mitochondria are increased under hyperglycemia, 
which can be more exaggerated by more limited supply of isoprenoids and co-enzyme Q10 
protein under statin medication. Oral supplementation of co-enzyme Q10 has been described 
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as beneficial for enhancing mitochondrial ATP production, but more evidences are needed if 
oral delivery can actually increase tissue level (i.e. pancreatic beta cells) of co-enzyme Q10.44) 
Hyperglycemic condition is also associated with the increased NADH and the inhibition of 
electron transport at complex III. Co-enzyme Q10 supplement may inadvertently increase 
oxygen free radical (i.e. superoxide) generation unless other uncoupling conditions are 
simultaneously resolved.45)

Islets survival and apoptosis
The apoptosis of β cells is induced by hyperglycemia, which is determined by the balance 
of pro- and anti-apoptotic cell signaling.46) It is highly controversial whether statins affect 
pancreas β cells' survival. Atorvastatin (25–125 uM) increased reactive oxygen species 
production and mitochondria-mediated apoptosis in rat islets.47) On the other hand, 
atorvastatin treatment (30 mg/kg/day) to C57BL/6J mice showed the preservation of β 
cell mass and sensitivity of insulin secretion, which involved upregulation of PDX-1 and 
downregulation of activating transcription factor 4 (ATF4; ER stress marker), CCAAT-
enhancer-binding protein homologous protein, and phosphorylated eukaryotic initiation 
factor 2α.48) Long-term pravastatin treatment (0.05%) to OLETF rats showed decreased 
serum glucose concentration and fibrotic area, elevated superoxide dismutase activity and 
down-regulated transforming growth factor-β1 mRNA in the pancreas.49) On the contrary, 
long term pravastatin (40 mg/kg/day) treatment to LDLR-deficient mice showed reductions of 
exocytosis-related SNARE proteins (SNAP25, Syntaxin 1A, VAMP2) and increased apoptosis 
markers (Bax/Bcl2 protein ratio, cleaved caspase-3 and lower NAD[P]H production rates) 
in pancreatic islets, suggesting the reduction of insulin exocytosis and the increased β cell 
death.50) Simvastatin,51) atorvastatin,52) and pravastatin53) reportedly induce anti-apoptotic Akt 
signalings. But other results showed the inhibition of p-Akt by atorvastatin, pravastatin, and 
rosuvastatin.26) Taken together, multiple factors including dose of statin, glycemic condition, 
concentration of cholesterol etc. can affect the outcome of the experimental study and it is 
largely unknown if conventional dose of statins may affect β cells' longevity in human.

ADIPOCYTES AND MUSCLE

Insulin receptor signalings
Insulin receptor (IR) is a tyrosine kinase receptor. Tyrosine residues in agonist(insulin)-bound 
IR is phosphorylated and then binds to series of IRS1–4, which trigger multiple cell functions 
including glucose uptake through GLUT-4.54) Jiang et.al. treated rat cardiomyocytes with 
either atorva-, prava- or rosuvastatin (up to 10 uM) and found that only atorvastatin decreased 
glucose uptake and expressions of GLUT-4 and IRS-1 while RhoA protein expression 
showed no change.55) Other studies using simvastatin (5 uM) showed the suppression of the 
phosphorylation of IR, IRS-1 and Akt, and total expression of IR, IRS-1 or glycogen synthase 
kinase 3β (GSK-3β), but not Akt, in L6 skeletal muscle myotubes and C2C12 myotubes.56)57) In 
case of adipocytes, 3T3-L1 cultured adipocytes had been extensively used and shows the trend 
that hydrophobic rather than hydrophilic statins reduced phosphorylation of IRS-1 and Akt, 
and expressions of small GTPases such as RhoA and Rab4 which are required for traffic of 
GLU-4 to the cell membrane.58)59) Therefore, less generation of isoprenoid metabolites due to 
statin treatment may possibly inhibit IRS-derived signaling and the translocation of GLUT-4 
to cell membrane. However, it should be noted that these such suppressive changes may 
become more evident for any statins with high lipophilicity under higher concentration levels 
in in vitro experimental settings.
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Unlike in vitro results, the series of earlier in vivo animal studies suggest the opposite 
outcomes after statin treatment. Wistar rats fed high fat diet with/without lovastatin 
(4 mg/kg/day) and showed that skeletal muscle from lovastatin-treated rats showed the 
enhanced insulin-stimulated IRS-1/phosphatidylinositol 3-kinase/Akt pathway in parallel with 
a decrease in the inflammatory pathway (c-jun N-terminal kinase and I κΒ kinase/inhibitor 
of κB/nuclear factor κB) related to insulin resistance.22) Other animal study using fructose-fed 
hamsters and rosuvastatin (10 mg/kg/day) showed similar findings, in which rosuvastatin 
showed significant increases in tyrosine-phosphorylation of the IR and IRS-1 in liver, muscle 
and adipose tissue.21) FVB mice fed high fat diet and simvastatin (40 mg/kg/day) showed 
higher adiponectin levels.60) These results suggest that the advanced hypercholesterolemic 
condition itself could deteriorate insulin sensitivity, which could be, at least in part, 
‘normalized’ by statin treatment.

Fatty acid metabolism
While statins' effects to reduce cholesterol and triglyceride have been well established, few 
studies had been performed to investigate the change of free fatty acid (FFA) metabolism 
under statin treatment. In a recent meta-analysis, both groups with atorvastatin and 
simvastatin medications showed the reduction of plasma FFA concentration (−19.42%).61) The 
release of FFA from adipocytes is due to lipolysis and is increased under insulin resistance. 
Atorvastatin treatment (up to 80 mg/day) to diabetic subjects dose-dependently decreased 
activity of hepatic lipase, which is responsible for lipolysis from adipocytes,62) suggesting 
statin may inhibit lipotoxicity due to hyperFFAemia under diabetic condition. Moreover, 
activities of lipoprotein lipase (LPL), which delivers FFA to peripheral tissue, are reportedly 
enhanced by atorvastatin (1–10 uM)63)64) and pitavastatin (1 uM)64) in 3T3-L1 preadipocytes 
and L6 skeletal muscle cells, respectively, probably through phosphorylation of adenosine 
monophosphate-activated protein kinase. These findings suggest that statin may reduce 
plasma FFA levels especially under diabetic condition. Although above findings may 
contribute to the clearance of circulating FFA, excess accumulation of FFA in skeletal muscle 
can inhibit glucose uptake through GLUTs and its further utilization65) and this could be 
predisposed by increased de novo fatty acid synthesis under statin treatment. Treatment with 
lovastatin (10 uM)66) or depletion of mevalonates and farnesyl pyrophosphate67) increased 
FFA synthesis in keratinocytes and CaCo-2 colon epithelial cells, respectively, under sterol 
depletion through upregulation of fatty acid synthase. The other study showed the decreased 
LPL activity in THP-1 cultured monocytes and prevented the transformation into foam cells 
by simvastatin and atorvastatin (up to 20 uM), suggesting statins' effect on LPL could be 
cell-specific.

Adipocytes or adipose tissue?
It is controversial if statin may change the level of adiponectin. A series of meta-analysis 
shows that long-term statin (> 12 weeks; atorvastatin, simvastatin, rosuvastatin, pravastatin or 
pitavastatin) medication to human increased adiponectin level by 0.88 μg/mL68) while leptin,69) 
resistin and visfatin70) levels showed no significant changes. In small-scale clinical studies or in 
vitro experimental studies, circulating levels or mRNA/protein expression levels of leptin show 
the tendency of reduction by statins. For example, both atorvastatin (1–10 uM) and simvastatin 
(1 uM) decrease leptin and monocyte chemoattractant protein-1 (MCP1) expressions in human 
white adipocytes.71) The elevation of adiponectin and reduction of leptin suggest the favorable 
effect of statin to prevent atherogenesis. But such changes of adipokines were not always 
associated with the improvement of insulin sensitivity in adipocytes.
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The adipose tissue also contains adipose tissue macrophages, which may influence the 
functional status of adipocytes. Kralova et al.72) analyzed the characteristics of macrophages 
in visceral adipose tissue and the proportion of pro-inflammatory (CD14+ CD16+ CD36high) 
macrophages was higher in hypercholesterolemia and lower in statin-treated groups, 
respectively. Abe et al.73) treated ob/ob mice with 0.05% pravastatin and 0.003% pitavastatin 
and found the attenuation of the induction of pro-inflammatory genes (i.e. TNF-α, IL-6, and 
MCP1) in adipose tissue. In in vitro conditions, TLR4- or TLR3-stimulated macrophages 
elicited the similar pattern of response.73)

Recently, the association of inflammasome such as NOD-like receptors pyrin domain 
containing 3 (NLRP3) with statin-induced diabetes has been raised. Statins have been 
shown to induce the formation of NLRP3, which in turn activates caspase-1/IL-1β pathway in 
macrophages only in the presence of LPS.74)75) On the contrary, other research groups describe 
statin inhibits the formation of NLRP3 in immune and vascular cells in various inflammatory 
and oxidative conditions.76-81) Up to date, none of studies prove the statin-stimulated NLRP3 
formation in adipose tissue in vivo. Moreover, the role of NLRP3 in other tissues involved 
with glucose metabolism has not been studied. It remains to be a hypothesis that, especially 
in obese conditions, NLRP3-induced IL-1β formation in adipose tissue is possible and may 
aggravate the pre-existing insulin resistance.

SUMMARY AND CONCLUSION

A number of experimental findings strongly suggest that statins regulate both glucose 
and cholesterol homeostasis. The initial change of cell signalings elicited by statins is not 
different from specific cell types or tissues (i.e. less production of isoprenoid metabolites) 
and the depletion of cell-associated cholesterol content. Relatively lipophilic statins are 
described as more diabetogenic in many in vitro studies, which are probably because they can 
diffuse more easily into cells under culture conditions and the inhibition of the production 
of isoprenoids becomes more potent. Moreover, many of these results are found at relatively 
high concentration of statins. This may not only result in general decrease in cellular function 
but also induce cell apoptosis. It should be considered that in vivo concentrations of statins 
in specific tissue are affected by multiple factors such as bioavailability, gastrointestinal 
absorption, and hepatic uptake etc. as well as solubility itself.82)

Moreover, it is confusing whether the final outcome of cell-associated cholesterol level 
becomes increased or decreased by statin treatment. Interestingly, both opposite changes 
have been described as the cause of dysregulation of glucose metabolism under statin 
treatment. That might be due to initial depletion of cell-associated cholesterol, which 
is then “over-compensated” by LDL uptake through SREBP-2-mediated upregulation of 
LDLR and probably through the upregulation of cholesterologenic genes. In fact, results 
of in vitro experiments using either cholesterol depletion or cholesterol loading have been 
extrapolated to the effect of statins. LDLR expression level could be very different from 
specific tissues. Hepatocytes abundantly express LDLR, of which expression level is far lower 
in other cells such as pancreas islet cells and adipocytes. Moreover, it is not clear whether 
LDLR upregulation under statin treatment results in “overload” or “normalization” of cell-
associated cholesterol content.
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On the other hand, a series of in vivo results show statin treatment to rats or mice resulted 
in the reduction of glucose levels with improvement of insulin sensitivity and these findings 
became more evident under hypercholesterolemic and hyperglycemic condition. However, 
such findings favorable to statins may not be totally due to statins' pharmacological action, 
because statin-treated animals usually showed less gain-of-weight. Moreover, the dose of 
administered statins is still debatable. Recently, another cholesterol lowering drug had been 
developed, i.e. PCSK9 inhibitor. Its role is to enhance LDLR recycling and further reduce 
circulating cholesterol levels through more efficient LDL uptake. The circulating cholesterol 
level will become extremely-lowered. Any cells which abundantly express LDLR may have 
more cell-associated cholesterol while the other cells with little LDLR show more advanced 
cholesterol depletion. If tissues such as pancreas islets, adipocytes and skeletal muscle do not 
respond to PCSK9 inhibition, unlike hepatocytes, the cell-associated cholesterol levels will 
become more depleted. Therefore, in order to resolve cholesterol issue in the development 
of NOD, it would be very interesting to evaluate the change of glucose regulation in specific 
tissues under PCSK9 inhibition or other types of pharmacological intervention with or 
without statins, which may also provide information if statins are truly diabetogenic.
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