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promising diagnostic biomarker for early
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Abstract

Endometrial cancer (EC) is a major cause of death among gynecologic malignancies. To improve early detection of
EC in patients, we carried out a large plasma-derived exosomal microRNA (miRNA) studies for diagnostic biomarker
discovery in EC. Small RNA sequencing was performed to identify candidate exosomal miRNAs as diagnostic
biomarkers in 56 plasma samples from healthy subjects and EC patients. These miRNA candidates were further
validated in 202 independent plasma samples by droplet digital PCR (ddPCR), 32 pairs of endometrial tumors and
adjacent normal tissues by quantitative real-time PCR (qRT-PCR), and matched plasma samples of 12 patients before
and after surgery by ddPCR. miR-15a-5p, miR-106b-5p, and miR107 were significantly upregulated in exomes
isolated from plasma samples of EC patients compared with healthy subjects. Particularly, miR-15a-5p alone yielded
an AUC value of 0.813 to distinguish EC patients with stage I from healthy subjects. The integration of miR-15a-5p
and serum tumor markers (CEA and CA125) achieved a higher AUC value of 0.899. There was also a close
connection between miR-15a-5p and clinical manifestations in EC patients. Its exosomal expression was not only
associated with the depth of muscular infiltration and aggressiveness of EC, but also correlated with levels of
reproductive hormones such as TTE and DHEAS. Collectively, plasma-derived exosomal miR-15a-5p is a promising
and effective diagnostic biomarker for the early detection of endometrial cancer.
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Main text
Endometrial cancer (EC) is the second highest incidence
of gynecologic cancer [1]. Patients have to undergo

uterine apoxesis for accurate EC diagnosis, since there
are no effective biomarkers [2]. Exosomes originate from
the endosome, and then fuse with the plasma membrane
under the traction of molecular motors, and are released
to the extracellular environment [3, 4]. Exosomes are de-
tected in body fluids such as plasma, urine, and amniotic
fluid [5]. Exosomes encapsulate biomolecules such as pro-
teins and miRNAs, maintain their integrity in the circula-
tion, and transfer them to recipient cells [4]. MiRNA is
the most abundant type in the RNA cargo of exosomes [6,
7], and exosomal miRNAs (exomiRs) are usually tumor-
specific [8]. ExomiRs have received increasing attention in
precision medicine, due to their non-invasiveness, and
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high accessibility and stability [2, 9]. Recent studies have
shown that exomiRs have the potential to be efficient bio-
markers for the screening, diagnosis, and monitoring of
cancers [10–13]. However, exomiRs as biomarkers have
not yet been reported in EC.
To improve early detection of EC patients, we carried

out a large plasma-derived exosomal miRNA study for
biomarker discovery in EC (Supplementary Methods).
Candidates were identified by miRNA sequencing in
plasma samples from healthy controls (HC) vs. EC

patients, and were further validated in independent
plasma samples and endometrial tumor tissues (Table
S1 and Figure S1). Plasma-derived exosomal miR-15a-5p
was identified as a promising diagnostic biomarker for
early detection of endometrial cancer.

Identification of exomiRs for EC diagnosis
Exosomes were isolated from plasma of EC patients and
age-matched HC subjects. The previously reported
method to identify the shape and size of exosomes [5]

Fig. 1 Dysregulated miRNAs in plasma exosomes of EC patients. a Volcano plot displaying differentially expressed miRNAs between plasma
exosome of EC and HC. Small RNA sequencing was performed in plasma exosomes of 25 EC patients and 31 HC controls. There were 49
differentially expressed with p-value < 0.01 (i.e., above the dotted line). b Feature vectors forming the best panel to discriminate two different
groups were determined by the random forest algorithm. Six miRNAs (miR-106b-5p, miR-107, miR-15a-5p, miR-139-3p, miR-3615, and miR-574-3p)
that indicated higher variable importance in the random forest tree were identified as candidate biomarkers. c Hierarchical clustering analysis of 6
candidate miRNAs roughly divided plasma samples into two distinct groups (EC vs HC). d ROC curves to evaluate the sensitivity and specificity of
6 candidate miRNAs to discriminate EC and HC subjects. e The expression levels of 6 candidate miRNAs in plasma exosomes of EC (n = 25) and
HC (n = 31) subjects. f The expression levels of 6 candidate miRNAs in EC tumor tissues and matched para-carcinoma tissues from TCGA (n = 18).
HC: healthy controls; PC, para-carcinoma tissues
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was used with CD81, TSG101 and GM130 as positive or
negative markers, respectively. Indeed, the fraction iso-
lated from plasma was enriched in exosomes (Figure S2).
The miRNA sequencing was then performed in

plasma-derived exosomes from 25 EC and 31 HC sub-
jects. On average, approximately 50 million reads were
generated in each library, and 384 exomiRs were

detected in each sample (Table S2). Forty-nine miRNAs
were differentially expressed between HC and EC groups
(p < 0.01) (Fig. 1a and Table S3). Eighteen of them also
differentially expressed between tumor and adjacent nor-
mal tissues in The Cancer Genome Atlas (TCGA) EC
samples [14] (Table S4 and Figure S3). Next, a set of
exomiRs from these 18 miRNAs were selected as a best

Fig. 2 ddPCR validation of plasma exosmal miR-15a-5p, miR-106b-5p and miR-107 as diagnostic markers in 202 independent plasma samples. a
The expression level of exosomal miR-15a-5p, miR-106b-5p, and miR-107 measured by ddPCR in independent validation samples. b ROC curves
to validate the discrimination efficiency (for all EC with different stages vs HC) of exosomal miR-15a-5p, miR-106b-5p, miR-107, and their
combinations (AUC = 0.832). n = 202. c ROC curves to validate the discrimination efficiency (for all EC with different stages vs HC) of exosomal
miR-15a-5p, miR-106b-5p, miR-107, tumor biomarkers (TB), and their combinations (AUC = 0.885). CEA and CA125 were analyzed in TB analysis.
n = 169. d ROC curves to validate the discrimination efficiency (for stage I EC vs HC) of exosomal miR-15a-5p, miR-106b-5p, miR-107, and their
combinations (AUC = 0.815). Only EC patients with stage I in validation samples were analyzed for ROC curves. n = 170. e ROC curves to validate
the discrimination efficiency (for stage I EC vs HC) of exosomal miR-15a-5p, miR-106b-5p, miR-107, TB (i.e., CEA and CA125), and their
combinations (AUC = 0.875). n = 139. f The expression level of plasma-derived exosomal miRNAs from the same EC patients (n = 12) before and
after surgery quantified by ddPCR. g-l The relationship between exosomal miR-15a-5p and clinical manifestations. Plasma-derived exosomal miR-
15a-5p is differentially expressed between EC patients with p53 positive and negative staining (g), EC patients with depth of muscular infiltration
< 1/2 and≥ 1/2 (h), and EC patients with tumor size < 10 cm3 and≥ 10 cm3 (i). Exosomal miR-15a-5p is positively correlated with TTE (j) and
DHEAS (k), while is negatively correlated with E2 (l). TTE: testosterone; DHEAS: dehydroepiandrosterone sulfate; E2: estradiol
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panel to distinguish EC from HC subjects using ran-
dom forest algorithm (Fig. 1b). Clustering analysis
showed that these samples were largely divided into
two distinct groups (EC vs HC) by these six exomiRs
(Fig. 1c). The AUC for each exomiR ranged from
0.693 to 0.819 with a mean of 0.757. The AUC of the
combined six exomiRs achieved 0.983 (Fig. 1d). miR-
106b-5p, miR-107, miR-15a-5p, and miR-3615 were
significantly up-regulated, while miR-139-3p and miR-
574-3p were significantly down-regulated in plasma-
derived exosomes of EC compared with HC (Fig. 1e).
Consistent trends in expression of these exomiRs
were observed in tumor tissues from TCGA EC pa-
tients (Fig. 1f).

Validation of diagnostic exomiRs by ddPCR in
independent plasma samples
Next, we applied droplet digital PCR (ddPCR) to ver-
ify these six exomiRs in an independent validation co-
hort including 115 EC and 87 HC plasma samples.
Two stable high-abundance miRNAs (let-7b-5p and
miR-26a-5p) were selected as endogenous references,
due to their high consistency in expression across all
samples (Figure S4). The miR-106b-5p, miR-107, and
miR-15a-5p were consistently upregulated in plasma-
derived exosomes from EC compared with HC (Fig. 2a).
Their upregulation was further verified in 32 pairs of
endometrial tumor tissues and adjacent normal tissues
using qRT-PCR (Figure S5). While the other three exo-
miRs were not pursued because of no significant expres-
sion changes between EC and HC groups in the validation
set or failure of primer design in ddPCR.
The average AUC of these three verified exomiRs was

0.705, ranging from 0.611 to 0.823, in the independent
plasma samples. The combination of these exomiRs
yielded a much higher AUC than tumor biomarkers
(TB, including CEA and CA125) alone (0.873 vs.
0.736) (Figs. 2b and S6). Integration of these exomiRs
into routine TB test models significantly improved
the diagnostic performance, yielding an AUC of 0.904
(Fig. 2c). To evaluate the efficiency of these exomiRs
in the early detection of EC, we specifically analyzed
stage I EC patients in the independent plasma sam-
ples. Interestingly, the three exomiRs performed rea-
sonably well with an average AUC of 0.702, ranging
from 0.601 to 0.813. The AUC of the combined three
exomiRs achieved 0.869 (Fig. 2d), while the AUC of
TB alone is 0.760 (Figure S6). Integrating these exo-
miRs into routine TB test models yielded an AUC of
0.915 (Fig. 2e). Particularly, miR-15a-5p yielded an
AUC values of 0.823 and 0.813 to distinguish between
EC and HC subjects, for all EC patients and stage I
EC patients only, respectively. The integration of

miR-15a-5p and TB could achieve a higher AUC of
0.899 (Fig. 2b-e).
We also assessed the expression changes of these

diagnostic exomiRs after surgery by comparing
plasma samples from same patients before and after
surgery (n = 12). As expected, the expression of
miR-15a-5p and miR-106b-5p tended to decrease in
EC patients after tumor resection surgery (Fig. 2f),
which may be due to the massive reduction of exo-
somes secreted by tumor cells. Furthermore, there
was no significant difference in the exosomal ex-
pression of miR-15a-5p, miR-106b-5p, and miR-107
between types I and II of EC patients (p > 0.05)
(Figure S7).
Taken together, we have identified and validated three

plasma-derived exomiRs (miR-106b-5p, miR-107, and
miR-15a-5p), which can be served as potential diagnostic
biomarkers for both early- and late-stage EC patients.

Pathway enrichment analysis of diagnostic exomiRs
KEGG pathway enrichment analysis for target genes
of the three diagnostic miRNAs were performed to
investigate their potential functions involvement in
EC (Figure S8). Among the 20 significant pathways
(FDR < 0.05), most of them are cancer-related, such as
TGF-beta, Hippo, MAPK, p53, FoxO, Wnt, mTOR,
and ErbB signaling pathways. The other pathways are
related to fatty acid metabolism and biosynthesis,
whereas prolactin signaling, oocyte meiosis, and endo-
cytosis pathways are known to be associated with
exosome biogenesis and release [14]. These results
suggested that these miRNAs can not only serve as
diagnostic biomarkers, but also are potentially in-
volved in various steps in EC carcinogenesis and
progression.

Exosomal miR-15a-5p associated with clinicopathologic
characteristics
We assessed the relationship between three diagnostic
exomiRs and clinicopathologic characteristics in EC pa-
tients (Fig. 2g-i). The plasma-derived exosomal miR-15a-
5p expression was significantly higher in patients with
p53 positive than p53 negative staining (p = 0.010). The
exosomal miR-15a-5p level increased with the increase
of muscular infiltration depth in EC patients (p = 0.032).
Patients with large tumor had higher exosomal miR-15a-
5p expression compared with small tumor (p = 0.002).
These results implies that exosomal miR-15a-5p expres-
sion is strongly predictive of the aggressiveness and p53
mutation status of EC tumors.
Exosomal miR-15a-5p was also associated with testoster-

one (TTE), dehydroepiandrosterone sulfate (DHEAS), and
estradiol (E2) (p < 0.05). However, its expression was not as-
sociated with normal menstrual cycles (Figure S9). Given a
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positive association of elevated circulating levels of TTE
and DHEAS with EC risk [15], exosomal miR-15a-5p may
also be a valuable clinical indicator for EC patients.

Tissue specificity of miR-15a-5p expression
Finally, we analyzed miR-15a-5p expression in other
cancer types, including cervical, breast, ovarian and lung
cancer. The miR-15a-5p expression is much more abun-
dant (7–19 times) in EC tumor tissues than that in the
other cancer types (Figure S10A). Compared with adja-
cent tissues, the miR-15a-5p expression was increased to
more than 7 times in EC tumor tissues, while the miR-
15a-5p was either downregulated in tumor tissues or
showed small difference between tumor and adjacent tis-
sues or normal controls of the other cancer types (Figure
S10B).

Conclusions
Our study identified plasma-derived exosomal miR-15a-
5p as a valuable diagnostic biomarker for the early de-
tection of EC. Compared with uterine apoxesis, blood
extraction is more convenient and carries less risk of va-
ginal/uterine cervix infection. It has the potential to be
incorporated into routine blood examinations for
screening endometrial cancer in the general population.
Further validation of miR-15a-5p in large sample sizes is
warranted before the clinical use as a diagnostic bio-
marker. Functional investigation of these diagnostic exo-
miRs will help reveal the mechanisms that underlie the
occurrence and development of EC.
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