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Abstract

Background: The liver function test (LFT) is among the most commonly used clinical investigations to assess hepatic
function, severity of liver diseases and the effect of therapies, as well as to detect drug-induced liver injury (DILI).

Aims: To determine the relative contribution of genetic and environmental factors as well as test and quantify the effects of
sex, age, BMI and alcohol consumption to variation in liver function test proteins - including alanine amino transaminase
(ALT), Albumin, gamma glutamyl transpeptidase (GGT), total bilirubin, total protein, total globulin, aspartate transaminase
(AST), and alkaline phosphotase (ALP) - using the classical twin model.

Methods: Blood samples were collected from a total of 5380 twin pairs from the TwinsUK registry. We measured the
expression levels of major proteins associated with the LFT, calculated BMI from measured weight and height and
questionnaires were completed for alcohol consumption by the twins. The relative contribution of genetic and
environmental factors to variation in the LFT proteins was assessed and quantified using a variance components model
fitting approach.

Results: Our results show that (1) variation in all the LFTs has a significant heritable basis (h2 ranging from 20% to 77%); (2)
other than GGT, the LFTs are all affected to some extent by common environmental factors (c2 ranging from 24% to 54%);
and (3) a small but significant proportion of the variation in the LFTs was due to confounding effects of age, sex, BMI, and
alcohol use.

Conclusions: Variation in the LFT proteins is under significant genetic and common environmental control although sex,
alcohol use, age and BMI also contribute significantly to inter-individual variation in the LFT proteins. Understanding the
underlying genetic contribution of liver function tests may help the interpretation of their results and explain wide variation
among individuals.
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Introduction

The liver function test (LFT) is a routinely ordered clinical

investigation used to assess hepatic function, disease severity [1–5],

and to evaluate response to treatment by measuring the levels of

various biomarkers (proteins) in the blood. These proteins reflect

different aspects of a normal functioning liver [6–8]. For example,

normal bilirubin (BILIRB) levels reflect adequate excretion of anions,

normal alanine amino transaminase (ALT) or aspartate transaminase

(AST) levels indicate hepatocellular integrity, and BILIRB or alkaline

phosphotase (ALP) levels provide insights into adequate formation

and flow of bile and albumin for protein synthesis.

In the clinic, LFT results are compared to and interpreted

according to reference charts containing internationally accept-

ed normal-levels for these proteins. However many patients are

investigated for having levels outside the normal range without

any obvious pathology or responsible factor being detected. The

most common biomarkers that are routinely measured as part

of the LFT include proteins which are specifically produced by

the liver – such as ALT and albumin (ALB) – as well as those

that are more ubiquitously produced, for example AST, which

is also produced by red blood cells and cardiac/ skeletal

muscles, and ALP which is also produced in bones and

kidneys.
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At the population level, previous studies have shown that some

of the LFT proteins are highly variable, affected by various

epidemiological factors including body mass index (BMI) [9,10],

alcohol consumption [11,12], and age [10,13,14], and that at least

some of these proteins are also influenced to some degrees by

genetic factors [11,15].

Twin studies provide one of the best epidemiological designs to

gain insights into the contribution of genetic and environmental

factors to population variation in clinical or evolutionary traits.

Here, we use the classical twin design to investigate the relative

contributions of genetic and environmental factors to variation in

the most common liver biomarkers including alanine amino

transaminase (ALT), albumin (ALB), gamma glutamyl transpep-

tidase (GGT), total bilirubin (TBILIRB), total protein (TPROT),

total globulin (TGLOB), aspartate transaminase (AST) and

alkaline phosphotase (ALP). Furthermore, we directly test for the

effect of age, sex, BMI, and alcohol use on variation in the LFT

proteins.

Materials and Methods

Ethics Statement
The study was approved by St. Thomas’ Hospital Research

Ethics Committee (EC96/439 Twins UK) and all participants

provided written informed consent.

Subjects and Questionnaire
A total of 5380 twins, comprising of 1804 DZ pairs and 886 MZ

pairs (female to male ratio of approximately 10:1), from the

TwinsUK database at St. Thomas’ Hospital [16] with mean age of

47 (range, 18–81years) were included in our study. Fasting blood

samples were collected from all twins for biochemical assays of the

liver function proteins and weight and height were measured at the

visit (BMI was calculated as weight (kg)/height (m2)). Summary

characteristics of the cohort and the measured proteins are

presented in Table 1. Alcohol consumption data was collected

from self-reported questionnaires. Questionnaire frequencies of

recalled intake of beer, wine, fortified wine and spirits were

converted into units of alcohol per week (with one unit equal to half

a pint of beer, one glass of wine, or one measure of spirits) [17].

Biochemical Assays
All assays were performed on a Synchron LX20 automated

multi channel analyzer (Beckman Coulter, Fulleton, CA). ALT

activity was measured by a kinetic rate method (within run

precision 4.3 and between run 4.6 at 20 iu/L). Serum albumin

concentration was measured by means of a bichromatic digital

endpoint methodology using bromcresol purple (BCP) reagent

(within run precision 0.2 and between run 1.3 at 48 g/L). GGT

activity was measured by an enzymatic rate method (within run

precision 3.5 and between run 5.3 at 86 iu/L). BILIRB was

measured by a timed endpoint Diazo method (within run precision

3.0 and between run 4.5). TPROT concentration was measured

by means of a rate biuret method (within run precision 0.7 and

between run 0.87 at 75 g/L). AST activity was measured by an

enzymatic rate method (within run precision 0.7 and between run

1.0 at 175 iu/L). ALP activity was measured by a kinetic rate

method using a 2-amino-2-methyl-1-propanol (AMP) buffer

(within run precision 1.8 and between run 2.1 at 150 iu/L).

Twin Studies
Twin studies are the optimum epidemiological design to study

and partition population variation of a trait into genetic and non-

genetic - shared and unique environmental - components. The

classical twin design assumes that monozygotic twins share 100%

of their genes and shared environment whereas dizygotic twins

share on average 50% of their genes and 100% of shared

environment. Thus any greater similarity between MZ as

compared to DZ twin pairs is attributed to genetic factors [18,19].

Statistical Analysis
All measures of liver function test proteins were recorded as

continuous variables. However, many were not normally distributed

Table 1. Descriptive statistics of the raw data for female and male MZ and DZ twins including total number of individuals (n),
means and standard deviations (s.d.) for the liver function test proteins and the major covariates included in the study.

Protein Female Male

MZ DZ MZ DZ

n Mean (s.d.) n Mean (s.d.) n Mean (s.d.) n Mean (s.d.)

Age (18–81 yrs) 1660 48.54 (13.57) 3320 46.52 (11.88) 112 43.76 (15.90) 288 48.34 (13.38)

BMI 1291 24.69 (4.50) 3091 25.21 (4.69) 95 26.27 (4.11) 278 26.24 (3.59)

Alcohol Use 1331 5.37(7.40) 2553 5.37(7.14) 58 11.51(10.91) 141 12.46(15.86)

ALT 1654 24.45 (12.19) 3302 25.45 (12.97) 112 27.49 (21.62) 285 34.65 (16.71)

ALB 1652 42.31 (3.23) 3302 41.82 (3.04) 110 45.25 (3.27) 287 42.78 (3.01)

GGT 1081 25.35 (22.05) 3032 25.35 (21.96) 63 32.66 (16.46) 274 44.62 (39.13)

BILIRB 1492 8.58 (3.61) 3282 8.70 (3.65) 63 12.90 (4.83) 274 12.41 (4.88)

TPROT 1490 71.26 (4.64) 3258 70.86 (5.19) 63 72.27 (3.42) 275 71.34 (4.89)

TGLOB 1486 29.41 (3.43) 3242 29.08 (3.88) 63 28.65 (3.28) 275 28.76 (4.19)

AST 98 10.31 (4.60) 477 9.74 (4.18) - - - -

ALP 1497 67.58 (19.84) 3285 67.08 (20.30) 63 72.99 (17.62) 275 74.66 (18.02)

Note AST was not measured in male twins.
doi:10.1371/journal.pone.0004435.t001

Genetic Basis of LFT Proteins

PLoS ONE | www.plosone.org 2 February 2009 | Volume 4 | Issue 2 | e4435



so appropriate statistical transformations were carried out prior to

analyses; Total protein, GGT, TGLOB and ALP were log10

transformed, ALT, BILIRB, TPROT and AST were square root

transformed, and ALB was normally distributed. Covariates age,

BMI and alcohol consumption were all continuous variables as well.

Demographic differences between MZ and DZ twins were

assessed by comparing means, medians and standard deviations

(Table 1). We carried out logistic regression analyses - treating sex

and zygosity as the explanatory variables - to check if age, BMI,

and alcohol consumption as well as the levels of the LFT proteins

were significantly different between male/female twins and MZ/

DZ twins.

Ordinary least squares regression was used for analysis of

covariates, age, BMI and sex. For alcohol consumption, truncated

Gaussian regression was used to assess the independent contribu-

tion of alcohol consumption to variation of protein assay.

Relatedness between the twins was accounted for using the

‘‘cluster’’ option in STATA. All preliminary analyses were

performed using STATA 10 [20].

Path analysis and genetic model fitting of twin data
Standard methods of quantitative genetic analysis were used to

model latent genetic and environmental factors influencing sibling

covariance for MZ and DZ twins. Genetic model fitting (path

analysis) was used for the decomposition of the observed

phenotypic variance (P) into additive (A) & dominant (D) genetic

components and environmental components shared by both twins

(C) & unique to each twin (E). The latter also includes

measurement error. Dividing each of these components by the

total variance yields the different standardized components of

variance. For example the (narrow sense) heritability (h2) can be

defined as the proportion of the total variance attributable to

additive genetic variation or h2 = A/P. The significance of the

variance components A, C, and D are assessed by comparing the

model fit between a full model and a nested model in which each

term is sequentially set to zero. Model fit is assessed using the

likelihood ratio test. The purpose of the model fitting procedure is

to explain the pattern of observed variances and covariances as

accurately as possible. Genetic modeling was carried out using the

computer package Mx, which has been specifically designed for

analysis of twin and family data [21].

The effects of significantly associated covariates on LFT

proteins, particularly age and BMI were removed by regressing

LFT phenotype upon the covariates and model fitting was then

performed using the residuals.

Results

The age range of twins in the study was 18–81 years. Table 1

summarizes the characteristics of this cohort including total

number of individuals (n), the mean (6s.d.) values of the LFT

proteins for MZ/DZ, male/female twins.

The mean and standard deviations of the LFT proteins, BMI,

alcohol consumption, and age range for the MZ/DZ twin

populations within each sex group were comparable (p.0.05).

Significant differences by zygosity were noted for ALT in the male

twin cohort (p,1024), although explicitly modeling the different

MZ/DZ means and variances did not qualitatively affect the

results in this case (data not shown).

Sex effects on the LFT enzymes
Age was comparable between male and female twin pairs

(x2 = 0.04, p,0.83). As expected we observed a significant

difference in BMI (x2 = 21.29, p,1025) and alcohol consumption

(x2 = 69.39, p,1024) between the male and female twins. Overall,

male twins had a higher BMI and consumed significantly more

alcohol than female twins.

Except for TPROT and TGLOB, significant differences

between the sex groups was observed for all other LFT proteins

(p,161024) with the proportion of variability explained (R2)

ranging from 1% in the case of ALP to 6% for GGT and BILIR

(Table 2); Note that AST was not measured in males.

Relationship between age, BMI, alcohol consumption,
and the LFT enzymes

As the mean and range of age was comparable across the male/

female sex strata we report results from pooled analyses (Table 3).

Age was shown to have a small but significant effect on all the LFT

enzymes except ALB and AST in the full cohort (p,0.005, R2

ranging from less than 1% to up to 3% in the case of ALP).

BMI was significantly associated with ALT and GGT, in both

the male and female twin cohort (p,1024, R2 ranging from 2%

for ALT in females to 11% for ALT in males), and ALB, BILIRB

and ALP in female twin cohort only (p,1023, R2 ranging from

less than 1% for BILIRB to 8.2% for ALP).

We also checked for the effect of alcohol consumption on

variation in the LFT proteins in males and females twin pairs

respectively. Alcohol consumption showed suggestive association

with the variation in ALB, GGT, TPROT and TGLOB in the

male twin cohort (p,0.04). In the female twin cohort alcohol

consumption was significantly associated with GGT, TGLOB and

ALP (p,0.002).

Path analysis and genetic model fitting of twin data
The results of genetic model fitting are shown in Table 4. For

ALT, ALB, BILIRB, TPROT, TGLOB, AST and ALP, the ACE

model – ascribing the total phenotypic variance to additive

genetic, common and unique environments – was the best fitting

model with narrow-sense heritabilities ranging from 15% in the

case of TPROT to 48% in the case of ALP. For GGT the best

fitting parsimonious model was AE model, with up to 77% of the

total variation accounted for by additive genetic factors.

Discussion

In this study we used the classical twin design to gain insight into

the relative contribution of genetic, environmental, as well as

confounding effects of sex, age, body mass index and relative

alcohol use to variation in the all major liver function test proteins.

Table 2. Results of the logistic regression analyses of sex on
liver function test proteins.

Sex

N F p R2

ALT 5353 40.30 161024 0.02

ALB 5351 46.22 161024 0.02

GGT 4450 152.5 161024 0.05

BILIRB 5111 158.8 161024 0.06

TPROT 5086 2.73 0.1 –

TGLOB 5066 2.94 0.1 –

AST – – – –

ALP 5120 59.47 161024 0.01

doi:10.1371/journal.pone.0004435.t002
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Our results show that (1) in agreement with previous studies,

variation in all the LFT proteins is highly variable; (2) a significant

proportion of the variation (up to 11%) in the LFTs was due to

confounding effects of age, sex, BMI, and alcohol use; (3) variation

in all LFTs has a significant heritable basis; and (4) other than

GGT, the LFTs are all affected to some extent by common

environmental factors.

Our results are in general agreement with previous cited studies

that have investigated the effects of age [22,13], sex [10,13,23],

BMI [13,14,22], and alcohol use [11,12] on variation in the liver

function test proteins. Age was shown to have a small but

significant effect on all the LFT enzymes except ALB and AST.

Except total protein and total globulin, we observed significant

sex differences with regards to variation in all the LFTs. For

instance, our results show that up to 6% of the variation in

bilirubin levels were due to sex. Furthermore, sex stratified analysis

showed that BMI contributes significantly and differentially to the

variation in many of the LFTs in our study. For example, up to

8% of the variation in ALP in females is due to variation in BMI

whereas BMI contributes insignificantly to ALP variation in males.

Moreover, although BMI is significantly associated to variation in

ALT in both males and females the explained proportion of the

variation in ALT by BMI is hugely different across sex groups; 2%

in females and 11% in males. Finally, alcohol consumption was

significantly associated with GGT, ALP, and total globulin in

females. Whilst in the males, we showed that there was a trend of

association with all the LFT proteins except ALT and ALP largely

due to the fact that the male cohort was approximately 10 fold

smaller than the female cohort. Interestingly, ALT, GGT and ALP

were found to be significantly affected by all four confounding

variable investigated - age, BMI, sex, alcohol use - highlighting the

present dilemma and difficulty faced by clinicians in interpreting

liver function test results.

Our study represents the largest and most extensive study to

investigate the influences of genes and environment on the major

LFT proteins. Our data shows that, quantitative variation in all

the major LFT proteins – corrected for the effects of age, sex,

BMI, and alcohol use – is under strong genetic control with

narrow-sense heritability ranging from 15 to 77%. Minor

differences were noted in the choice of the best fitting model for

ALT, ALB, BILIRB and ALP, when we carried out sex stratified

analyses, although point estimates of the A and C variance

components were very similar (data not shown). We have also

performed all our analysis by excluding male twins and our results

were unchanged.

Our study is in general agreement with two previous studies. A

small-scale study from the Danish twin registry consisting of 290

elderly twin pairs (age range between 73–102 years) were

measured for a subset of the LFTs by Bathum et al [15]. In line

with our results their study showed that variability in ALT, GGT,

and BILIRB to be significantly heritable (35–61%). By contrast to

our results, showed that additive genetic effects account for up to

20% of the variation in albumin levels, they showed no genetic

effect for ALB.

A larger study by Whitfield et al. [24] based on twins from the

Australian Twin Registry investigated the basis of variation and

covariation in three of the LFT proteins including GGT, ALT and

AST. In line with our results, Whitfield et al. showed that after

correcting for the effects of sex and age, GGT, ALT and AST

were highly heritable with additive genetic effects accounting for

52%, 48% and 32% of the variation in GGT, ALT and AST

respectively. Moreover, half of the genetic variance in GGT was

shown to be shared with ALT, AST, or both highlighting the

significant role of pleiotropy in the case of variation in the LFTs.
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Although a thorough examination of the basis of covariation

between all the LFT proteins studied is beyond the scope of this

paper we did observe a high and significant phenotypic correlation

between GGT & ALT (r2 = 0.5, p,161025) as well as ALT and

AST (r2 = 0.29, p,161025) although GGT and AST levels were

not correlated (r2 = 20.01, p = 0.78).

A major, previously unreported finding in our study is the strong

influence of common environmental factors underpinning varia-

tion in the LFTs. Our result showed that variation in all but one of

the LFT proteins (GGT) are strongly influenced by common

environmental factors. In fact, in most cases the effect of common

environment is either comparable or larger than the heritability of

the trait. Although commonly highlighted as a strong motivation

for undertaking a twin rather than a family based study, common

environmental factors are seldom reported together with genetic

factors in the same study. This is in large part due to lack of power

in most twin studies to dissect the total familial component into its

sub-components of genetic and common environments [25,26].

Ignoring batch effects (our assays were designed to minimize batch

effects), potential common environmental effects include stress,

diet, and exposure to toxins, pathogens, radiation and chemicals.

Although the relative contribution of these factors to variation in

the LFTs would be purely speculative, one could argue that these

factors along with other myriad factors could have a significant

effect on an organ such as the liver which primarily functions as a

site of metabolism, storage, decomposition, synthesis and detox-

ification. The observed strong influence of common environmen-

tal factors needs to be confirmed in a study with such

environmental factors explicitly measured.

Although our study represents the largest and most extensive

genetic epidemiological study of the LFT protein, there are a few

potential limitations, which warrant further discussion. First, our

study was conducted in twins, which have been previously shown

to be representative of population-based samples for a wide range

of common medical conditions and lifestyle characteristics [27].

Therefore, the conclusion derived from our study in twin

population should be generalisable to the general population.

Second, although all the participant twins were deemed

generally healthy – i.e. not suffering from any chronic diseases

or taking prescribed medication - our results may have been

influenced to an extent by unforeseen perturbations due to an

infection, early stages of a disease, or a short course of an over the

counter medication or dietary supplement [1]. Moreover,

measurement errors, visit effects can all bias our results by

Table 4. Genetic model fitting results for variation in liver function test proteins.

Protein X2 Df DX2 DDf P Model A (95% C.I.) C (95% C.I.) E (95% C.I.)

ALT 7.73 3 – – 0.052 ACE 0.32 (0.19–0.44) 0.30 (0.21–0.34) 0.38 (0.34–0.44)

44.44 4 36.71 1 0.000 AE 0.66 (0.62–0.70) – 0.34(0.30–0.38)

29.71 4 21.98 1 0.000 CE – 0.50(0.46–0.53) 0.50(0.47–0.54)

ALB 6.38 3 – – 0.095 ACE 0.20 (0.06–0.32) 0.36 (0.26–0.45) 0.44 (0.39–0.50)

55.35 4 48.97 1 0.000 AE 0.62(0.58–0.66) – 0.38(0.34–0.42)

14.11 4 41.24 1 0.007 CE – 0.48(0.44–0.52) 0.52(0.48–0.55)

GGT 8.53 3 – – 0.036 ACE 0.69(0.58–0.78) 0.07(0.00–0.16) 0.24(0.21–0.27)

10.90 4 2.37 1 0.124 AE 0.77(0.74–0.80) – 0.23(0.20–0.26)

128.03 4 119.50 1 0.000 CE – 0.50(0.47–0.54) 0.50(0.46–0.53)

BILIRB 8.05 3 – – 0.045 ACE 0.46 (0.37–0.56) 0.28 (0.20–0.36) 0.26 (0.23–0.29)

45.83 4 37.78 1 0.000 AE 0.76(0.73–0.79) – 0.24(0.21–0.27)

81.81 4 73.75 1 0.000 CE – 0.58(0.55–0.61) 0.42(0.39–0.45)

TPROT 23.18 3 – – 0.000 ACE 0.15(0.00–0.26) 0.44(0.33–0.51) 0.41(0.35–0.46)

100.69 4 77.51 1 0.000 AE 0.67(0.63–0.70) – 0.33(0.30–0.37)

30.22 4 7.04 1 0.008 CE – 0.53(0.50–0.54) 0.47(0.44–0.50)

TGLOB 16.67 3 – – 0.001 ACE 0.26 (0.17–0.35) 0.48 (0.48–0.54) 0.26 (0.23–0.30)

148.28 4 131.60 1 0.000 AE 0.77(0.75–0.80) – 0.23(0.20–0.25)

45.61 4 28.94 1 0.000 CE – 0.64(0.62–0.67) 0.36(0.33–0.38)

AST 4.82 3 – – 0.185 ACE 0.40 (0.04–0.68) 0.34 (0.11–0.57) 0.26 (0.16–0.43)

12.92 4 8.10 1 0.004 AE 0.78(0.69–0.85) – 0.21(0.15–0.31)

9.31 4 4.49 1 0.034 CE – 0.57(0.48–0.65) 0.43(0.35–0.52)

ALP 1.37 3 – – 0.714 ACE 0.48 (0.38–0.58) 0.24 (0.15–0.32) 0.28 (0.25–0.32)

27.16 4 25.78 1 0.000 AE 0.74(0.71–0.77) – 0.26(0.23–0.29)

69.07 4 67.7 1 0.000 CE – 0.55(0.51–0.58) 0.45(0.42–0.49)

The best fitting model is highlighted in grey. For each protein, full models (ACE & ADE) was compared to nested models (AE, CE, E) using a chi-squared test DX2 = (X2 sub
model)2(X2 full model) with the degrees of freedom equal to DDf = (Df sub model)2(Df full model). The degrees of freedom increases from the full to sub or nested
models due to drop in the numbers of parameters estimated as one moves down the model hierarchy. To be judged a good-fit, models should have a non-significant
chi-squared goodness-of-fit statistic (p.0.05). Note, C and D cannot be included together in the same model as in quantitative genetic studies of human populations
they are confounded thus the full model is either ACE or ADE. Comparisons with the ACE full model are shown here. In all cases, ACE provided a better model fit than
ADE with a smaller chi-squared goodness-of-fit statistic (data not shown).
Abbreviations: X2 = chi-squared goodness-of-fit statistic; Df = degrees of freedom; DDf = (df sub model)2(df full model); D X2 = (X2 sub model)2(X2 full model); P = P-
Value; A = Additive genetic influence; C = Shared environmental variance; E = Unique environmental variance.
doi:10.1371/journal.pone.0004435.t004
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inflating or deflating the within and between twin covariation in

the LFT measurements even though care was taken to minimize

the effects of these factors by using randomization of the samples

prior to all biochemical analyses.

Third, due to non-technical reasons AST was only measured in

a sub-sample of the female twin cohort (98MZ & 477DZ) and not

in males at all. We are currently looking into increasing our sample

size in the case of AST for future genetic association studies.

Fourth, due to historical reasons the TwinsUK database is

predominantly female cohort and so we only had access to a

limited number of male samples (no more than 500 twins).

Fifth, although not a major component of our study, the quality

of data on alcohol consumption was not optimal. First, it was

‘‘recall’’ data collected from self-reported questionnaires and

second our alcohol data is not representative of the drinking status

of the individuals at the time at which the blood samples were

taken for biochemical assays of the LFTs. For example, previously

it has been reported that the amount of alcohol consumed in the

past 30 days is an important indicator of high levels of GGT [23].

In our study, the time at which self-reported data on alcohol use

was collected and the time at which blood samples were taken

were up to 3 years apart. Both of these factors could reduce any

association between alcohol consumption and the LFT proteins

including GGT.

Finally, our conclusions are restricted to Northern European

Caucasian populations and the results need to be replicated in

other independent cohorts of different ancestry.

In conclusion, our study suggests the presence of sex differences

and effect of age, BMI and alcohol consumption in variation of

liver function proteins among individuals. Substantial heritability

was observed for all the LFTs with the quantitative genetic

modeling showing that a great proportion of the variation in liver

function proteins are due to additive genetic effects stimulating

further research to identify the responsible genes/region. Identi-

fying the genes that influence the widely used liver function test

will be very important in the future interpretation of their results

and possibly reduce the need to further investigate subjects with

high levels due to normal genetic variation.
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