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Abstract: Assessments of coronary artery disease can be achieved using non-invasive computed
tomography coronary angiography (CTCA). CTCA can be further used for the 3D reconstruction of
the coronary arteries and the development of computational models. However, image acquisition
and arterial reconstruction introduce an error which can be propagated, affecting the computational
results and the accuracy of diagnostic and prognostic models. In this work, we investigate the effect of
an imaging error, propagated to a diagnostic index calculated using computational modelling of blood
flow and then to prognostic models based on plaque growth modelling or binary logistic predictive
modelling. The analysis was performed utilizing data from 20 patients collected at two time points
with interscan period of six years. The collected data includes clinical and risk factors, biological and
biohumoral data, and CTCA imaging. The results demonstrated that the error propagated and may
have significantly affected some of the final outcomes. The calculated propagated error seemed to be
minor for shear stress, but was major for some variables of the plaque growth model. In parallel, in
the current analysis SmartFFR was not considerably affected, with the limitation of only one case
located into the gray zone.

Keywords: coronary artery disease (CAD); error propagation; computational modeling; 3D recon-
struction; plaque growth; predictive models

1. Introduction

Cardiovascular disease (CVD) is the most common cause of death being responsible
for significant escalating healthcare costs [1]. The main pathology of CVD is atherosclerotic
disease, which develops with slow rates during the lifetime, but its events are usually
acute, causing death if medical care is not provided on time [2]. The assessment of CVD is
achieved using invasive and non-invasive imaging. The gold standard is still considered
invasive X-ray coronary angiography, but computed tomography coronary angiography
(CTCA) has recently been proposed by the European Society of Cardiology to be used in
clinical practice, as the first non-invasive diagnostic imaging method [3].
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Preventive and predictive strategies have been developed in recent years utilizing
datasets which include patients’ information and follow-up outcomes. Traditional ap-
proaches are based on statistical models, while the most recent are based on machine
learning algorithms. Moreover, the use of coronary imaging enables the 3D reconstruction
of the coronary arteries and their utilization for the computational simulation of blood flow
towards the estimation of endothelial shear stress (ESS), since it has been found that low
ESS is an independent predictor of disease progression [4–6]. Furthermore, advanced com-
putational models simulating the main mechanisms of atherosclerotic disease evolution
and growth also exist [7,8].

The accuracy of the computational models of blood flow or plaque growth depends
mainly on the accuracy of the reconstructed coronary arteries. In a previous error prop-
agation study [9], the imaging acquisition included some errors which propagated in
the analysis of the images, the segmentation of the lumen and the outer wall borders
and plaque characterization. In parallel, the segmentation algorithms and reconstruction
methodologies include additional error, which may in turn increase significantly the acqui-
sition error. Thus, it is expected that this imaging-based propagated error should affect the
computational results and the accuracy of the predictive models.

In this work, we present, for the first time, the effect of the imaging based propagated
error on the computational results and the accuracy of the developed predictive mod-
els. In particular, through the utilization of 3D coronary arteries with and without error,
we employed previously developed models of blood flow, fractional flow reserve (FFR)
calculation and plaque growth to estimate the propagated error. The propagated error
was calculated for each level of analysis (3D reconstruction, blood flow modelling and
plaque growth modelling). Moreover, an uncertainty was calculated considering the error
of the previous levels. Moreover, we develop predictive models of disease progression to
investigate the degree that the propagated error affects accuracy.

2. Materials and Methods
2.1. Study Population and 3D Reconstruction

Twenty patients were recruited from the SMARTool clinical study (ClinicalTrials.gov
Identifier: NCT04448691) [10]. For each patient, baseline and follow-up clinical, biohumoral
data and CTCA imaging data (mean follow-up period: six years) were collected. Full ex-
planation of the investigational nature of the study was provided to all participants and
written consent was obtained. Ethical approval was provided by each participating center
(National Research Council, Pisa Italy, University of Turku, Turku, Finland, University of
Zurich, Zurich, Switzerland, Fondazione Toscana Gabriele Monasterio, Pisa, Italy, Warsaw
National Institute of Cardiology, Warsaw, Poland) through the approval of the clinical study
by the Ethics Committee Vast Area Northwest of Tuscany (CEAVNO), Pisa, Italy, and all
subjects gave written informed consent. Our clinical study follows the declaration of Helsinki.

The 3D reconstructions of the coronary lumen and outer vessel walls were performed using
an in-house software, which provided measurements of lumen area, plaque area and plaque
burden, as previously described and validated by IVUS-VH and manual annotations [11].

2.2. Error Generation

To create the error propagation models, we made a random selection of twenty patients
who were either healthy or had an ischemic incidence (i.e., pathologic fractional flow reserve
(FFR) or significant stenosis > 50%). For each reconstructed vessel, apart from the two 3D
volumes that were automatically created by the reconstruction module (i.e., the lumen and
outer wall), two models with equidistant contours in point cloud format (Figure 1) were
also included.
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Figure 1. Illustration of a 3D model along with its respective contours in point cloud format.

Each contour consisted of 72 points. The process of the error-containing 3D models is
presented below:

• In order to increase or decrease the lumen area for each contour, the centroid of the
contour was calculated.

• The original points of the contour were then scaled according to the desired area
reduction factor. In our case we determined an error of 5% in each contour area.

• The centroid of the scaled contour was then determined.
• The translation vector was then calculated by finding the difference of the two centroids.
• The translation vector was used to find the translation between the original points

and the scaled ones.
• The translation was applied to the scaled points, thus creating the scaled contour.
• The overestimated and the underestimated models were then created by converting

the point clouds to 3D volumes.
• The error of 5% was determined using the validation results of the 3D reconstruc-

tion algorithm [11,12].

The same procedure was followed for the outer wall, as well. This resulted in 60 arterial
segments in total.

2.3. Blood Flow Modelling and SmartFFR Calculation

The Navier–Stokes equations were employed for the simulation of the blood flow,
assuming that the flow is laminar and incompressible. The blood was defined as a New-
tonian fluid, having a viscosity of 0.0035 Pa s. For the error propagation analysis of ESS
values, the results produced for a flow rate of 1 mL/s, which corresponds to the average
blood flow during rest, were applied as boundary condition.

SmartFFR [13,14], which is a computational approach to estimate invasive FFR, was
calculated based on a transient simulation of blood flow (consisting of 5 timesteps with
timestep duration 0.25 s), applying an average pressure 100 mmHg at the inlet (i.e., mean
human aortic pressure) and, at the outlet, a volumetric flow rate 0, 1, 2, 3 and 4 mL/s was
applied per timestep. No-slip and no-penetration boundary conditions were used at the
endothelial membrane boundary. In the next step, for each timestep, the Pd/Pa value was
calculated in order to create a Pd/Pa curve using a spline of 100 points. The area under
this curve is calculated and normalized using the area under curve of a healthy segment.
This ratio represents the SmartFFR value [15].
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2.4. Plaque Growth Modelling

A previously developed plaque growth model was used for the simulation of the
growth of atherosclerotic plaque in the arterial wall [8]. Using this model, the user can
simulate a time-dependent wall thickening and the gradual lumen narrowing and blockage
of blood flow. Briefly, the model was based on the modelling of blood flow in the lumen
and the transport of low density lipoprotein (LDL) [5], high density lipoprotein (HDL)
and monocytes in the lumen, employing convection-diffusion equations. The endothelial
membrane acts as a barrier between the lumen and the arterial wall and we applied the
Kedem–Katchalsky equations to define the path of molecular penetration in the wall. In
parallel, differential equations are employed in the arterial wall to simulate the LDL oxida-
tion, the initiation of inflammation by the transformation of monocytes into macrophages,
foam cell formation and the proliferation of smooth muscle cells (SMCs) and collagen
production. At the final step, we simulate the time-dependent plaque volume which is
assumed to be comprised by SMCs, foam cells and collagen.

In the current study of error propagation, we assume that the reconstruction error
affects the plaque growth results. The assumption is based on the following considerations:
(i) the endothelial permeability depends on the local ESS. In that sense, the error of the
reconstructed geometries is propagated to the calculation of the ESS through blood flow
modelling, which in turn, increases or decreases endothelial permeability, which may
change the progression rate of plaque. (ii) The reconstruction of the outer wall may affect the
accumulation rate of the molecules in the arterial wall due to the altered pressure difference
between the adventitia and the endothelium boundary. (iii) In the plaque growth model, we
assume some initial concentrations of the SMCs in the arterial wall. This concentration in
a diseased wall is higher than the concentration in a physiologic arterial wall. For these
reasons, in this work, we applied the plaque growth model in the normal, over- and under-
estimated reconstructed geometries, and we compared all the calculated variables produced
by the model, including the newly generated geometries, in terms of the simulated arterial
wall area.

2.5. Error Propagation to the Prognostic Model

In this section, we present the results of the propagated error in the prognostic model
of plaque growth prediction. The results of this model were previously presented [5].
Briefly, this predictive model is based on the computational modelling of blood flow, LDL
transport and SmartFFR calculation, and these results are combined with morphological
characteristics and non-imaging data to build binary logistic models of prediction of
plaque progression. For the purposes of this analysis, we have to consider the following
errors which can be propagated in the results of the prognostic model: (i) the error of
the reconstruction, and (ii) the analytical error of the biohumoral data collection. Indeed,
analytical errors in biochemistry are categorized into three main categories [16,17]. The
pre-analytical error regards mainly the following types of errors: inappropriate testing,
wrong patient identification, error during transport, wrong sampling and other. This error
may range from 46–68.2%. During SMARTool clinical study such errors are not expected
due to the many levels of security related to the pre-analytical step of data collection. The
analytical error category refers mainly to issues with the proper function of the equipment,
issues with quality control or incorrect procedures. This error may range from 7–13%. Still
in our clinical study, we expect that this error is again minimized due to the experience of
the clinical centers. However, in order to present this error, we assumed two different case
scenarios for the error propagation study. In the first one, we apply the maximum error of
13% to all biohumoral variables, and in the second scenario we apply a random error with
maximum of 13%. In the second case, the error may have a reducing or increasing effect
to the feature value (each biohumoral value was multiplied by a random value ranging
from 0.87–1.13). Finally, post-analytical error is due to the failure in reporting correctly the
analysis results, and ranges from 18.5–47%. We assumed this error to be minimal because
all values have been revised at least two times by the coordination team and because the
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SMARTool Case Report Form Application has specific rules to testify to the validity of the
entered data.

3. Results

Simulations were performed to 20 arterial segments and to additional 40 segments which
includes the propagated reconstruction error. A 5% reconstruction error was assumed, which
was extracted during the validation of the reconstruction algorithms. This error was used to
calculate the differences in the ESS distribution, as well as in the SmartFFR calculation, which
refects a non-invasive diagnostic index for significant obstructive atherosclerotic disease.

3.1. Error Propagation to ESS

To determine the effect of the error propagation on the ESS distribution, we created
regression plots for the underestimated and overestimated 3D models for comparison
to the correct 3D models for all cases. From the regression plots, we can see that both
the underestimated (i.e., r = 0.99, p < 0.001) (Figure 2A) and the overestimated cases
(i.e., r = 0.99, p < 0.001) (Figure 2B) are well correlated to the original 3D models. However,
some points in the regression plots present a considerably different distribution. These
points each regard the measurements of a specific vessel which produces these results
may be caused by low vessel quality during the transformation, bad mesh quality or poor
translation of the 2D contours. Moreover, we created Bland–Altman plots to understand
the agreement of the overestimated and the underestimated models when compared
to the correct 3D models. As depicted in Figure 2, good agreement was observed for
most patients. However, as explained above, one patient exhibited significant differences
which are also present in the Bland–Altman plots. Regarding the underestimated cases,
we observed a mean difference of −0.149 ± 0.2430 Pa compared to the correct 3D cases
(Figure 2C). The lower limit was −0.6262 (95% CI–0.6480 to −0.6043), while the upper limit
was 0.3263 (95% CI 0.3044 to 0.3481). For the overestimated cases, we observed a mean
difference of −0.1725 ± 0.3243 Pa compared to the correct 3D cases (Figure 2D). The
lower limit was −0.4632 (95% CI −0.4923 to −0.4340), while the upper limit was 0.8082
(95% CI 0.7790 to 0.8373).

Figure 2. Error propagation to ESS: regression plot comparing the underestimated (A) and overesti-
mated models (B) to the original ones. (C,D): Bland–Altman plots comparing the correct 3D models
to the underestimated (C) and overestimated (D) ones.
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3.2. Error Propagation to SmartFFR

Another important hemodynamic factor that was used in our error propagation
study was the SmartFFR. We calculated SmartFFR in the 20 cases (original 3D models,
underestimated and overestimated). Table 1 presents the calculated SmartFFR values for
all 20 cases. We also created the respective regression plots comparing the overestimated
and the underestimated models to the correct ones, as well as the respective Bland–Altman
plots (Figure 3). From the regression plots, we can observe a strong correlation of both the
overestimated (r = 0.99, p < 0.001) and the underestimated (r = 0.99, p < 0.001) models to the
correct ones, respectively. Good agreement is also found between the overestimated (mean
difference: −0.004 ± 0.006, p = 0.0075) and the underestimated models (mean difference:
0.009 ± 0.008, p = 0.0001) when compared to the correct 3D models.

Table 1. SmartFFR values for the original, underestimated and overestimated 3D models of all
20 cases, respectively.

Case Original −5% 5%

Case 1 0.96 0.96 0.96
Case 2 0.95 0.94 0.95
Case 3 0.97 0.96 0.97
Case 4 0.9 0.89 0.91
Case 5 0.91 0.9 0.92
Case 6 0.95 0.95 0.95
Case 7 0.95 0.94 0.95
Case 8 0.92 0.91 0.93
Case 9 0.97 0.96 0.97
Case 10 0.96 0.96 0.96
Case 11 0.93 0.92 0.94
Case 12 0.98 0.97 0.98
Case 13 0.79 0.76 0.81
Case 14 0.96 0.96 0.96
Case 15 0.86 0.83 0.86
Case 16 0.98 0.98 0.99
Case 17 0.96 0.96 0.96
Case 18 0.96 0.95 0.96
Case 19 0.97 0.96 0.98
Case 20 0.98 0.97 0.98

3.3. Error Propagation to Plaque Growth Prediction

The following parameters were used for the presentation of the error propagation
results to the plaque growth modelling: LDL concentration, HDL concentration, oxidized
LDL concentration, monocyte cell concentration, macrophage cell concentration, synthetic
SMC concentration, contractile SMC concentration, collagen concentration, cytokine con-
centration, foam cell concentration, plaque volume and area of simulated thickened wall.
It is worth mentioning here that any changes in these parameters due to geometry error
were caused mainly by the change to the ESS distribution. In particular, a reduced lumen
area (underestimation error) will cause an increase in the accumulation of LDL and subse-
quently increased inflammation and plaque growth rates. On the contrary, an increased
lumen area (overestimation error) will result in reduced plaque growth rates due to low
LDL accumulation in the arterial wall. The mathematical explanation of this situation
is given by the Kedem–Katchalsky equations applied as boundary conditions at the en-
dothelial membrane of the plaque growth model [8,18]. The minimum, maximum, mean
and std. deviation for all variables are presented in Table 2. In comparison to the original
model, Table 2 presents the resulting relative error as the percentage difference between
the two models (over and underestimated).
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Figure 3. Error propagation to SmartFFR: Regression plots comparing the SmartFFR values of
the overestimated (A) and underestimated (B) models to the original ones. Bland–Altman plots
comparing the correct 3D models to the overestimated (C) and underestimated (D) ones.

Additionally, the additive uncertainty was calculated for each level of simulation.
The uncertainty of the first level (3D reconstruction) was 0.09. In the second level, the
blood flow modelling and calculation of shear stress, there was a minor increase in the
uncertainty compared to the standard deviation. Finally, the third level, the plaque growth
model, was affected by both the 3D reconstruction and shear stress uncertainty.

Table 3 presents the results of a univariate analysis for the association of plaque
progression with the original values of biohumoral data, with a 13% maximum error and
with a random error between 7–13%. As we can see, non-significant differences were
observed for most biohumoral variables. Major differences were observed for the alkaline
and triglycerides, in which they were correlated with plaque progression in the case of
the original values and the maximum error, while they were not correlated in the case of
random error. On the other hand, leptin was not associated with plaque progression in the
case of the original values and the maximum error, while it was correlated in the case of
random error.

In order to examine these minor differences to the detection of the independent
predictors of plaque progression, we implemented a multivariate model to examine the
effects of the errors on the predictors included in the disease progression model (Table 4).
The results demonstrate that there was no difference in the statistically significant predictors
of disease progression. A difference was observed at the random error simulation where
leptin was included in the model without being statistically significant. Overall, all cases
demonstrate that the age and the baseline plaque burden are the independent predictors
included in the model.
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Table 2. Descriptive statistics for the LDL concentration, HDL concentration, oxidized LDL concentration, monocyte cell
concentration, macrophage cell concentration, synthetic SMC concentration, collagen concentration, cytokine concentration,
foam cell concentration, plaque volume and area of simulated thickened wall for the normal, overestimated and underesti-
mated geometries, respectively. The relative error and uncertainty are also presented. The relative error is defined as the
percentage difference between the two models (over and underestimated).

Minimum Maximum Mean Std.
Deviation

Relative
Error

Minimum

Relative
Error

Maximum

Relative
Error Mean Uncertainty

Shear stress 0.577 24.1 2.5663 1.8863
Overestimated 0.495 23 2.3938 1.7576 −14.2 −4.56 −6.72 1.7599

Underestimated 0.63 25.7 2.7163 1.9902 9.19 6.64 5.84 1.9922

Thickened Wall 2.55 × 10−6 2.70 × 10−5 1.23 × 10−5 5.38 × 10−6

Overestimated 2.68 × 10−6 2.84 × 10−5 1.27 × 10−5 5.49 × 10−6 5.10 5.19 2.74 1.7599
Underestimated 2.44 × 10−6 2.84 × 10−5 1.20 × 10−5 5.35 × 10−6 −4.31 5.19 −2.81 1.9922

LDL concentration 5.54 × 10−5 6.64 × 10−4 2.27 × 10−4 1.35 × 10−4

Overestimated 5.54 × 10−5 6.54 × 10−4 2.22 × 10−4 1.33 × 10−4 0.00 −1.51 −1.85 1.7599
Underestimated 3.62 × 10−5 6.70 × 10−4 1.80 × 10−4 1.55 × 10−4 −34.7 0.90 −20.5 1.9922

HDL concentration 6.69 × 10−4 8.06 × 10−4 7.45 × 10−4 3.68 × 10−5

Overestimated 6.69 × 10−4 8.08 × 10−4 7.45 × 10−4 3.70 × 10−5 0.00 0.25 5.02 × 10−2 1.7599
Underestimated 2.41 × 10−4 1.79 × 10−3 1.02 × 10−3 4.84 × 10−4 −64.0 1.22 × 102 38.3 1.9922

Oxidized LDL concentration 8.20 × 10−4 1.41 × 10−3 1.16 × 10−3 1.81 × 10−4

Overestimated 8.30 × 10−4 1.41 × 10−3 1.17 × 10−3 1.81 × 10−4 1.22 0.00 0.36 1.7599
Underestimated 7.68 × 10−4 1.45 × 10−3 1.16 × 10−3 2.38 × 10−4 −6.34 2.84 −0.73 1.9922

Monocyte cells concentration 1.32 × 10−7 1.40 × 109 4.13 × 108 2.59 × 108

Overestimated 1.32 × 10−7 1.41 × 109 4.09 × 108 2.57 × 108 0.00 0.71 −0.93 2.57 × 108

Underestimated 1.47 × 10−7 1.37 × 109 4.13 × 108 2.74 × 108 11.4 −2.14 −9.77 ×
10−2 2.74 × 108

Macrophage cells concentration 3.40 × 109 2.65 × 1011 8.85 × 1010 5.59 × 1010

Overestimated 3.40 × 109 2.62 × 1011 8.76 × 1010 5.53 × 1010 0.00 −1.13 −0.98 5.53 × 1010

Underestimated 3.55 × 109 3.02 × 1011 8.81 × 1010 5.91 × 1010 4.41 14.0 −0.36 5.91 × 1010

Synthetic SMC concentration 1.00 × 10−18 4.83 × 105 5.79 × 104 9.01 × 104

Overestimated 1.00 × 10−18 4.80 × 105 5.76 × 104 8.90 × 104 0.00 −0.62 −0.65 89073.87
Underestimated 1.01 × 10−18 8.19 × 105 1.74 × 105 1.56 × 105 1.00 69.6 2.01 × 102 155950.1

Collagen concentration 5.60 × 10−26 2.67 × 10−2 3.20 × 10−3 4.98 × 10−3

Overestimated 5.60 × 10−26 2.65 × 10−2 3.18 × 10−3 4.92 × 10−3 0.00 −0.75 −0.69 1.7599
Underestimated 5.65 × 10−26 4.53 × 10−2 9.64 × 10−3 8.62 × 10−3 0.89 0.69 2.01 × 102 1.9922

Cytokine concentration 6.00 × 10−2 1.00 × 101 2.79 1.92
Overestimated 5.99 × 10−2 1.01 × 101 2.77 1.89 −0.17 1.00 −0.99 2.5852

Underestimated 6.70 × 10−2 1.49 × 101 3.48 2.84 11.7 0.49 24.5 3.4721

Foam cells concentration 2.61 × 106 4.88 × 108 1.44 × 108 1.02 × 108

Overestimated 2.61 × 106 4.93 × 108 1.42 × 108 1.00 × 108 0.00 1.02 −1.03 1.01 × 108

Underestimated 2.92 × 106 8.12 × 108 1.79 × 108 1.53 × 108 11.9 66.4 25.1 1.53 × 108

Plaque volume 4.54 × 1017 8.46 × 1019 2.49 × 1019 1.77 × 1019

Overestimated 4.53 × 1017 8.55 × 1019 2.47 × 1019 1.75 × 1019 −0.17 1.01 −1.03 1.75 × 1019

Underestimated 5.07 × 1017 1.41 × 1020 3.12 × 1019 2.66 × 1019 11.7 66.6 25.1 2.66 × 1019

Table 3. Univariate analysis for the association of plaque progression with the original biohumoral data values, with a 13%
maximum error and with a random error between 7–13%.

Original Values Maximum Error Random Error (7–13%)

Effect Estimated Regression
Coefficient (95% CI) p-Value Estimated Regression

Coefficient (95% CI) p-Value Estimated Regression
Coefficient (95% CI) p-Value

Alanine 0.001 (−0.005 to 0.007) 0.6657 0.001 (−0.004 to 0.006) 0.6837 −0.002 (−0.005 to 0.002) 0.3209
Alkaline 0.004 (0.001 to 0.007) 0.0089 0.003 (0.001 to 0.006) 0.0114 0.001 (−0.001 to 0.002) 0.4390

Aspartate 0.002 (−0.004 to 0.009) 0.4557 0.002 (−0.004 to 0.007) 0.5079 0.000 (−0.003 to 0.003) 0.9561
Gamma-GT 0.000 (−0.003 to 0.003) 0.8390 0.000 (−0.002 to 0.003) 0.7756 0.000 (−0.002 to 0.002) 0.9581
Creatinine 0.174 (−0.111 to 0.459) 0.2302 0.108 (−0.119 to 0.335) 0.3479 −0.010 (−0.106 to 0.085) 0.8340
Uric acid −0.015 (−0.059 to 0.028) 0.4893 −0.014 (−0.051 to 0.023) 0.4471 −0.003 (−0.018 to 0.012) 0.6832
Glucose 0.001 (−0.002 to 0.004) 0.5752 0.001 (−0.002 to 0.003) 0.7143 −0.000 (−0.001 to 0.001) 0.7337

Triglycerides 0.001 (0.000 to 0.002) 0.0417 0.001 (0.000 to 0.002) 0.0485 0.000 (−0.000 to 0.001) 0.5595
Cholesterol 0.000 (−0.001 to 0.001) 0.8951 0.000 (−0.001 to 0.001) 0.9709 −0.000 (−0.001 to 0.000) 0.4114

LDL −0.000 (−0.002 to 0.001) 0.7338 −0.000 (−0.001 to 0.001) 0.6909 −0.000 (−0.001 to 0.000) 0.3698
HDL −0.000 (−0.003 to 0.003) 0.9506 −0.000 (−0.003 to 0.002) 0.8915 −0.000 (−0.002 to 0.001) 0.5006

Reactive Protein 0.077 (−0.001 to 0.155) 0.0528 0.068 (−0.001 to 0.137) 0.0543 0.056 (−0.013 to 0.124) 0.1133
Interleukin-6 0.006 (−0.036 to 0.049) 0.7645 0.005 (−0.032 to 0.042) 0.7818 0.000 (−0.035 to 0.035) 0.9904

Leptin −0.004 (−0.010 to 0.002) 0.2241 −0.003 (−0.009 to 0.002) 0.2127 −0.006 (−0.011 to −0.001) 0.0186
ICAM1 0.000 (−0.000 to 0.001) 0.5538 0.000 (−0.000 to 0.001) 0.5972 0.000 (−0.000 to 0.000) 0.6356
VCAM1 −0.000 (−0.001 to 0.000) 0.4961 −0.000 (−0.000 to 0.000) 0.4612 −0.000 (−0.000 to 0.000) 0.5804
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Table 4. Results of multivariate linear regression.

Case Effect Estimated Regression Coefficient (95% CI) p-Value

Original values

Age 0.010 (0.002 to 0.019) 0.0137

Alkaline 0.002 (−0.001 to 0.005) 0.2627

Triglycerides 0.001 (−0.001 to 0.002) 0.3456

CE_18_3 0.001 (−0.003 to 0.004) 0.6840

CE_20_3 0.004 (−0.009 to 0.017) 0.5224

CE_20_4 0.000 (−0.003 to 0.004) 0.7970

PS_38_6 −0.110 (−0.360 to 0.140) 0.3865

Baseline plaque burden −0.011 (−0.012 to −0.009) <0.0001

Min ESS 0.003 (−0.004 to 0.011) 0.3676

Max LDL concentration −57.466 (−726.391 to 611.460) 0.8656

SmartFFR −0.018 (−0.372 to 0.336) 0.9202

Maximum error

Age 0.011 (0.003 to 0.019) 0.0107

Alkaline 0.002 (−0.001 to 0.005) 0.2372

Triglycerides 0.000 (−0.001 to 0.002) 0.3528

CE_18_3 0.001 (−0.003 to 0.004) 0.6368

CE_20_3 0.005 (−0.008 to 0.018) 0.4598

CE_20_4 0.000 (−0.003 to 0.004) 0.9221

PS_38_6 −0.131 (−0.382 to 0.121) 0.3059

Baseline plaque burden −0.011 (−0.012 to −0.009) <0.0001

Min ESS 0.003 (−0.004 to 0.011) 0.3930

Max LDL concentration −99.142 (−770.228 to 571.943) 0.7709

SmartFFR −0.014 (−0.367 to 0.339) 0.9376

Random error (7–13%)

Age 0.012 (0.005 to 0.020) 0.0023

Leptin −0.005 (−0.010 to 0.001) 0.0902

CE_18_3 0.001 (−0.003 to 0.004) 0.6437

CE_20_3 0.008 (−0.004 to 0.020) 0.1809

CE_20_4 −0.000 (−0.004 to 0.003) 0.9308

PS_38_6 −0.156 (−0.399 to 0.087) 0.2069

Baseline plaque burden −0.011 (−0.013 to −0.010) <0.0001

Min ESS 0.004 (−0.003 to 0.011) 0.2923

Max LDL concentration −33.879 (−693.428 to 625.670) 0.9194

SmartFFR −0.021 (−0.372 to 0.329) 0.9039

4. Discussion

We presented an error propagation study and its effect on the calculation of crit-
ical hemodynamic parameters, such as ESS and intracoronary pressures (SmartFFR).
Twenty arterial segments were initially reconstructed in 3D using CTCA images, and
for each case we created two additional models, one depicting an overestimation of the area
of the arterial lumen and one depicting an underestimation, both by 5%. The calculation of
the ESS values revealed similar trends for both cases, with a high correlation coefficient
value for both cases (i.e., r = 0.99 for both cases). As expected, the underestimated mod-
els presented with higher ESS values, whereas the overestimated models presented with
lower ESS values. Moreover, from the ESS distribution diagrams we observed that the
underestimated models produces ESS values of greater percentage difference at the sites of
maximum ESS values when compared to the correct 3D models, while the overestimated
models produced ESS values closer to those of the correct 3D models. We also observed
that SmartFFR was affected by the reconstruction error, without being affected to such
an extent that it would produce a false classification of the examined case (i.e., healthy or
ischemic). In particular, the only pathological case of our dataset was correctly classified as
such by both the over- and the underestimated model. The healthy segments were correctly
assessed as healthy by both the over- and underestimated models. The maximum relative
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error in the SmartFFR calculations did not exceed a percentage of 3.8%, a value that was
not statistically significant.

The initial errors that might appear in the overall modelling procedure were mainly
caused by the imaging formation issues that arose from the CTCA equipment itself [9].
Several artefacts may be present due to numerous technical reasons that might affect
the procedure.

Moreover, we estimated the propagated error in a previously presented and validated
plaque growth model. In that case, the over- and under-estimated geometries were also
used for plaque growth modelling. The statistical analysis showed very good correlation
between the original geometries and the included error. For this analysis we have calculated
also the relative error, but also the propagated uncertainty from the 3D reconstruction
level to the blood flow dynamics and finally to plaque growth results. There was minor
increase in the shear stress variable and most of the plaque growth results. However,
the few plaque growth variables which presented high standard deviation were affected
also by the reconstruction error. The uncertainty was calculated using the addition or
subtraction formula assuming that the reconstruction uncertainty was 0.09 and, for the rest
of the variables, the standard deviation noted in Table 2 was utilized. We can conclude that
the error introduced by the geometries affected specific variables, but the overall effect on
the plaque growth was minor, because plaque growth is affected by the combination of
many variables.

Finally, we also examined error propagation in a prognostic model. For this purpose,
we introduced the analytical error in clinical biochemistry from biohumoral data collection.
This error, according to literature data, may be as high as 13%. The maximum error was
used in addition to a random value of error with a maximum of 13%. The results showed
that minor differences were observed in the prognostic model with most of the predictors
to remain to all case scenarios (reference model and error included models).

Our work has the limitation that it is based on a special CVD population characterized
by a low risk to present disease progression. This may affect the interpretation of the
error propagation results. Especially, the SmartFFR error would be considerable when
more patients would be available with FFR values around the grey zone. In the same
manner, the plaque growth results and especially the prediction of the disease progression
would be more be affected when more pathological (in terms of arterial stenosis) cases are
included, since the disease progression would be rapid. Furthermore, the 3D reconstruction
process of the error-generated models underlies a risk of distorting the final surface of
the lumen, due to the fact that the point cloud was created by using edited contours that
had a distance of 0.5 mm between them. This might cause a slight distortion of the edited
model which, in turn, may can cause severely affected ESS values among the base and
edited models. This was observed in one case from the entire dataset and this was the cause
of the points that exhibited a difference of >1 Pa between the base and the overestimated
models, respectively.

5. Conclusions

In this work, we present for the first time to our knowledge an error propagation
study and the effect that CTCA imaging acquisition and arterial reconstruction may have
to computational models. In particular, we initially investigated the effect of reconstruc-
tion error to blood flow modelling and SmartFFR calculation. SmartFFR can be used as
a non-invasive diagnostic index of obstructive disease. Our results demonstrated that
the reconstruction error was indeed propagated to the calculation of SmartFFR, which
may alter clinical decisions. In our patients, the error-included calculations still classified
patients correctly. However, careful interpretation of the SmartFFR values is required for
the grey zone around 0.80. We also examined the propagation of the reconstruction error
to a plaque growth model. In that case, it was found that the effect was minor, possibly
because the calculated plaque volume was affected by many factors independent of the
arterial geometries. Finally, to address the effect of the propagated geometry error to
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a prognostic model, we also considered the potential analytical error during the collection
and measurement of biological parameters. In this case, we found that the prognostic
model exhibits similar accuracy and almost the same predictors, meaning that this model
is generalized well.
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