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Abstract

Association testing of multiple correlated phenotypes offers better power than univariate analysis of single traits. We
analyzed 6,600 individuals from two population-based cohorts with both genome-wide SNP data and serum metabolomic
profiles. From the observed correlation structure of 130 metabolites measured by nuclear magnetic resonance, we
identified 11 metabolic networks and performed a multivariate genome-wide association analysis. We identified 34 genomic
loci at genome-wide significance, of which 7 are novel. In comparison to univariate tests, multivariate association analysis
identified nearly twice as many significant associations in total. Multi-tissue gene expression studies identified variants in
our top loci, SERPINA1 and AQP9, as eQTLs and showed that SERPINA1 and AQP9 expression in human blood was associated
with metabolites from their corresponding metabolic networks. Finally, liver expression of AQP9 was associated with
atherosclerotic lesion area in mice, and in human arterial tissue both SERPINA1 and AQP9 were shown to be upregulated
(6.3-fold and 4.6-fold, respectively) in atherosclerotic plaques. Our study illustrates the power of multi-phenotype GWAS and
highlights candidate genes for atherosclerosis.
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Introduction

Five years of genome-wide association studies (GWAS) have

successfully identified common variants at .1,000 genomic loci

robustly associated with a wide range of human conditions and

quantitative traits [1]. Despite this progress, one limitation is that

almost all GWAS performed to date have focused on single traits,

even in studies involving multiple related phenotypes. Growing

evidence for pleiotropy [2,3], where the same locus is associated

with multiple phenotypes, supports the idea that multivariate

analysis of multiple phenotypes can provide a substantial boost in

power for locus discovery, consistent with simulation studies [4–7].

A plethora of metabolites in blood have been described as risk

factors for metabolic syndrome, atherosclerosis and coronary

artery disease [8,9]. Using high-throughput nuclear magnetic

resonance assays, quantitative profiles of 130 metabolites in two

population-based cohorts from Finland, the Cardiovascular Risk

in Young Finns Study (YFS) [10] and the Northern Finland Birth

Cohort 1966 (NFBC66) [11] have been determined. These

metabolites included lipoprotein subclasses of VLDL, LDL, IDL

and HDL as well as lipids, amino acids and other small molecules

(Materials S1).

Figure 1 illustrates the general flow of our study. We first

applied an unsupervised algorithm to identify networks from the

observed correlation structure amongst the 130 metabolite

measures in 6,600 individuals. For each of these networks, we

performed a multivariate test of association for 2.5 million SNPs

[4]. Because we also tested all SNPs for association to each

metabolite separately, we can assess the relative gain in power of

the multivariate approach. To interpret the novel signals, we

tested whether the associated SNPs influenced cis-gene expression

levels in multiple tissues as well as whether the expression of

candidate genes was associated to specific metabolites that drive

the initial association. Finally, we analysed arterial tissue from

mouse and man to test for a relation between our top candidate

genes and atherosclerosis plaques.

Results

Genotype and phenotype data
We analysed genotype and phenotype data from the YFS

(N = 1,905) [10,12] and the NFBC66 (N = 4,703) [11,13]. For both

YFS and NFBC66, we imputed SNP genotypes using the MACH

algorithm [14] and the HapMap Phase 2 reference panel [15].

Serum collected from both cohorts underwent metabolomic

profiling on the same proton nuclear magnetic resonance

(NMR) platform [16]. The NMR metabolomics platform used

here provided absolute quantitative information on 130 distinct

metabolic measures [17]. Metabolite levels for both cohorts were

normalized and adjusted for age, gender, cohort, and population

structure (Materials and Methods).

Identification of metabolic networks
After correcting for cohort effects and pooling the metabolomic

data for YFS and NFBC66, we constructed a Pearson correlation

matrix that defined the pairwise relationships between all

metabolites and applied agglomerative hierarchical clustering in

order to identify networks of metabolites (Figure 2). Using a

dynamic, data-driven tree-cutting algorithm [18], we identified 11

metabolic networks that represent various metabolic pathways

(Materials and Methods and Figure S1). Additional information

for each metabolic network, including full descriptions, abbrevi-

ations, inter-metabolite correlations, and supporting association

analyses, is given in the Materials S1. Briefly, metabolic network 1

comprises multiple measures related mainly to cholesterol

metabolism in the apoB-containing lipoproteins. Metabolic

network 2 includes branched-chain and aromatic amino acids

together with the large TG-rich VLDL particles and serum

triglycerides. Metabolic networks 3 and 4 capture the larger and

smaller particles of HDL-metabolism, respectively. Metabolic

networks 5, 6, 7, and 8 are related to lipid poly-unsaturation,

ketone bodies, the glucose-alanine cycle, and renal function,

respectively. Metabolic networks 9, 10, and 11 each contain only 2

metabolites and represent measures of fatty acid chain length and

composition, mean diameter of LDL and double-bonding of fatty

acid chains, urea and acetate, respectively.

Genome-wide association analysis
For each of the 11 metabolic networks, we performed SNP

association testing using a multivariate test based on Canonical

Correlation Analysis and Wilks’ lambda [4]. Each association test

yielded an F statistic, corresponding P value, and a loading for

each metabolite in the network to indicate the relative contribution

of that metabolite to the overall association (Materials and

Methods). For univariate analysis, we used standard linear

regression where each of the 130 metabolites was regressed onto

each SNP.

The implementation of dimensionality reduction and multivar-

iate analysis allowed us to select essentially independent tests based

on the correlation structure of the phenotype data. Using

multivariate analysis, we tested each SNP only 11 times (one per

metabolic network). A Bonferroni correction for testing each SNP

to 130 metabolites is overly conservative, since the metabolites are

partially correlated, but still common practice [16,19,20].

Accordingly, we set genome-wide significance thresholds at

P,4.561029 and P,3.8610210 for multivariate and univariate

analysis, respectively.

To maximize power, we performed a joint analysis of both

cohorts, correcting for population structure and cohort-specific

effects. We observed little evidence for test statistic inflation,

lambda range 1.01–1.06 (Materials and Methods and Table S1).

Across all 11 metabolic networks, the joint multivariate analysis

yielded 713 SNPs significantly associated with one or more

metabolic networks (P,4.561029). This corresponded to 34

distinct loci and 75 significant locus-network associations overall

(Table 1 and Materials and Methods). Loci were considered novel

Author Summary

In this study, we aim to identify novel genetic variants for
metabolism, characterize their effects on nearby genes,
and show that the nearby genes are associated with
metabolism and atherosclerosis. To discover new genetic
variants, we use an alternative approach to traditional
genome-wide association studies: we leverage the infor-
mation in phenotype covariance to increase our statistical
power. We identify variants at seven novel loci and then
show that our top signals drive expression of nearby genes
AQP9 and SERPINA1 in multiple tissues. We demonstrate
that AQP9 and SERPINA1 gene expression, in turn, is
associated with metabolite levels. Finally, we show that the
genes are associated with atherosclerosis using mouse
atherosclerotic lesion size (AQP9) as well as tissue from
healthy human arteries and atherosclerotic plaques (AQP9
and SERPINA1). This study illustrates that multivariate
analysis of correlated metabolites can boost power for
gene discovery substantially. Further functional work will
need to be performed to elucidate the biological role of
SERPINA1 and AQP9 in atherosclerosis.

Genetic Association Analysis of Metabolic Networks

PLOS Genetics | www.plosgenetics.org 2 August 2012 | Volume 8 | Issue 8 | e1002907



if they had not been previously associated at genome-wide

significance with a metabolite or other metabolic phenotype in

the NHGRI Catalogue of Published GWAS [1] and if they were

independent of other proximal signals (Materials and Methods and

Table S2). Of the 34 loci detected, 27 were previously identified to

be associated with fasting glucose levels [21,22], total measures of

LDL, HDL and triglycerides [23,24], bradykinin [25], glutamine

[16,25], alanine-valine ratio [16], phenylalanine [16], citrate [16],

and sphingolipids [26]. Overall, we found 7 novel loci associated

with 12 metabolic networks in total (Table 1).

In comparing multivariate and univariate P values for a given

SNP, we selected the lowest univariate P value for any single

metabolite in a given network. We found that multivariate tests

yielded more significant P values, reflecting increased power

compared to univariate tests (Figure S2). In terms of number of

significant associations, multivariate analysis outperformed uni-

variate in both cohorts. When their respective genome-wide

significance thresholds are applied, multivariate analysis uncov-

ered 75 locus-metabolic network associations, whereas univariate

analysis found only 40 (almost all of which were detected by

multivariate analysis), leading to the detection of 7 novel loci

instead of one (Figure 3). This demonstrates the relative gain of

multivariate testing compared to univariate testing. Notably,

multivariate analysis still uncovered more associations (69% more)

than univariate analysis even when applying the more stringent

genome-wide threshold for 130 independent metabolites. Multi-

variate also outperformed univariate when assessing only known

loci, i.e. those with prior genome-wide significant association to

metabolites in the NHGRI Catalogue of Published GWAS [1]

(Figure S3).

From the multivariate analysis, our strongest association signal

overall was due to a nonsynonymous SNP, rs1303 (Glu400Asp)

located in the last exon of SERPINA1. This variant was associated

with metabolic networks 1 and 2 (P = 5.4610248 and P = 7.4610222,

respectively; Figure S4). To explore the extent to which rs1303

perturbs protein structure, we utilized the PolyPhen2 algorithm [27].

PolyPhen2 predicted the Glu to Asp mutation to be benign (naı̈ve

Bayes posterior probability = 0.0 and 0.005 for the HumDiv and

HumVar training sets, respectively). The next strongest signal overall

was an intronic SNP (rs16939881) at the AQP9 locus, associated with

metabolic networks 1, 2, 3, and 4 (P = 2.9610227, P = 4.9610215,

P = 2.3610218 and P = 2.0610214, respectively; Figure S4). The

metabolic network associations at AQP9 remained highly significant

after conditioning on the previously identified LIPC locus, 250 Kb

downstream (Table S2). We focus on our two top signals for

subsequent in-depth analyses. Because our top signals are within the

SERPINA1 and AQP9 genes, we assume these to be the most likely

candidate genes.

Fine-mapping and conditional analysis of SERPINA1 and
AQP9

Using the 1000 Genomes Phase I integrated variant set and the

IMPUTE2 algorithm [28], we generated denser maps of genetic

variants for the SERPINA1 and AQP9 loci. We then performed a

multivariate test for each SNP with metabolic networks 1–4 as well

as a conditional analysis to ascertain any independent signals in

each region.

After 1000 Genomes imputation, rs1303 remained the top

signal at the SERPINA1 locus for metabolic networks 1 and 2.

Conditioning on rs1303 revealed an independent association

between another nsSNP, rs28929474, and metabolic networks 1

and 2 (P = 1.7610219 and P = 3.7610213 respectively) (Figure S5).

Rs28929474 (Glu366Lys) lies in the last exon of SERPINA1 and,

unlike rs1303, it was predicted by PolyPhen2 to be a probable

damaging mutation with a naı̈ve Bayes posterior probability = 1.0

for both HumDiv and HumVar.

Imputation of the AQP9 locus with the 1000 Genomes panel yielded

less confidently inferred genotypes than the HapMap2 panel at the top

SNP rs16939881 (posterior probability .0.90 for a genotype call).

Consequently we had less power at rs16939881, however it still

remained significantly associated with metabolic networks 1, 2, and 3.

Even with reduced power, conditional analysis showed that the signal

at AQP9 could be explained by rs16939881 alone (Figure S6).

Novel variants drive expression of SERPINA1 and AQP9 in
multiple tissues

We next investigated metabolic network associated variants for

eQTL effects on SERPINA1 and AQP9. We used three resources

(a) the DILGOM cohort, a Finnish population-based cohort

(N = 518) with gene expression data (from whole blood) and serum

metabolomic data [29], (b) a subset of the EUFAM study (N = 54)

Figure 1. Overview of the study design.
doi:10.1371/journal.pgen.1002907.g001

Genetic Association Analysis of Metabolic Networks

PLOS Genetics | www.plosgenetics.org 3 August 2012 | Volume 8 | Issue 8 | e1002907



with familial low HDL cholesterol phenotype [30] and subcuta-

neous adipose tissue gene expression data, and (c) the Human

Liver Cohort, a Caucasian cohort (HLC; N = 178) with liver tissue

gene expression data [31–33]. These three resources also comprise

genome-wide SNP data. We summarize the eQTL analyses in

Table S3.

In the DILGOM study, the SNP explaining the most variance

in SERPINA1 expression (rs11628917; linear regression

P = 6.0610210; adjusted R2 = 0.07) was also strongly associated

with metabolic networks 1 and 2 from the YFS and NFBC66 joint

analysis (P = 9.6610214 and P = 1.9610211) (Figure 4). In our

data, there was moderate linkage disequilibrium (LD; r2 = 0.47;

D9 = 0.99) between the top SERPINA1 SNP (rs1303) and the blood

eQTL (rs11628917). Conditional analysis showed that the

association of rs11628917 with both metabolic networks could

be explained by rs1303, suggesting non-independence. Rs1303

itself was nominally associated with SERPINA1 expression

(P = 0.01). The independent signal at rs28929474 showed no

evidence of influencing SERPINA1 expression (and was not in LD

with any eQTLs), suggesting that its primary effect may be protein

structure destabilization. No blood eQTLs were detected for

AQP9.

In the EUFAM study, the top and bottom 10th percentiles of

HDL-C concentrations (Finnish population age and sex specific

Figure 2. Serum metabolic networks. A Pearson correlation matrix of serum metabolites across both YFS and NFBC66 cohorts was hierarchically
clustered and the resulting heatmap and dendrogram are presented here with red indicating high positive correlation, blue high negative correlation,
and white no correlation. Clusters of tightly correlated metabolites, metabolic networks, are labeled 1–11.
doi:10.1371/journal.pgen.1002907.g002
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percentiles) were used to define high and low HDL-C groups

(N = 19 and N = 35, respectively). First, we tested for differences in

AQP9 and SERPINA1 between high and low HDL-C groups. Both

AQP9 and SERPINA1 expression were upregulated in adipose

tissue of individuals with low HDL-C (fold changes 3.47 and 2.29,

P = 9.061024 and P = 0.03, respectively). Analysis of genetic

variants did not yield any eQTLs at the AQP9 the locus. Given

the independent but proximal signals at AQP9 and LIPC, we did

detect an eQTL 210 Kb downstream within the LIPC locus that

influenced the adipose expression of AQP9 (rs1825955; P = 4.861023)

but not LIPC. There was low LD between rs1825955 and the top

multivariate AQP9 SNP rs16939881 (r2 = 0.17; D9 = 0.94). SERPINA1

also did not harbour adipose eQTLs (including rs11628917, P.0.05),

indicating either potentially tissue-specific function of the SNP or lack

of statistical power.

The HLC allowed for the analysis of gene expression in the

human liver. In the HLC, we detected eQTLs for both SERPINA1

and AQP9 (Figure 4). An eQTL in the promoter region of SERPINA1

explained 3.9% of the liver expression of the gene (rs1884549;

P = 4.361023). Rs1884549 was also associated with metabolic

network 1 (P = 9.6610222) and in moderate LD (r2 = 0.38;

D9 = 0.99) with rs1303. A variant within AQP9 was associated with

its expression in the liver (rs16953360; P = 4.661023; adjusted

R2 = 0.04) as well as metabolic networks 1–4 (P = 1.0610225;

Table 1. Loci detected using joint multivariate association analysis.

Locus Top SNP Chr MAF
Top multivariate
Pvalue** Metabolic network Top metabolite* Novel

PCSK9, USP24 rs1998013 1p32.3 0.02 4.77E-13 1 IDL-FC# N

ANGPTL3, DOCK7 rs10889332 1p31.3 0.29 8.40E-15 1,2,3,4 MobCH# N

GALNT2 rs10127775 1q42.13 0.44 1.49E-09 1,3 L-HDL-PL N

APOB rs673548 2p24.1 0.27 9.64E-14 1,2,4 S-VLDL-TG# N

GCKR rs1260326 2p23.3 0.36 1.31E-12 2,3,4,7 S-HDL-P N

SLC1A4 rs10211524 2p14 0.39 3.13E-10 2 Val N

G6PC2 rs560887 2q24.3 0.31 3.57E-15 8 Glc# N

ADAMTS3 rs12507628 4q13.3 0.18 2.84E-09 4 S-HDL-L N

PPM1K, HERC6 rs1440581 4q22.1 0.47 1.05E-10 2 Val# N

CYP4V2, KLKB1 rs1912826 4q35.2 0.43 3.72E-12 2,4 Phe N

PFN3, F12, GRK6 rs2731672 5q35.3 0.27 3.15E-14 2 Phe N

ELOVL2 rs3798722 6p24.2 0.12 3.65E-09 5 DHA N

PPP1R3B, TNKS rs4841132 8p23.1 0.15 2.35E-09 4 M-HDL-FC N

LPL rs12678919 8p21.3 0.09 9.22E-13 1,2,3 M-VLDL-PL# N

ABCA1 rs4149310 9q31.1 0.1 2.31E-10 1,3 XL-HDL-P N

FADS1/2/3 rs102275 11q12 0.43 3.88E-264 1,2,3,4,5,9,10 LA# N

APOA1/C3/A4/A5 rs964184 11q23 0.14 8.44E-20 1,2,3,4 S-VLDL-P# N

SPRYD4, GLS2 rs2657880 12q13.2 0.14 7.08E-30 8 Gln# N

LIPC rs1532085 15q22.1 0.44 8.69E-104 1,2,3,4,10 XL-HDL-TG# N

CETP rs173539 16q13 0.28 2.78E-70 1,2,3,4,10 XS-VLDL-L# N

TAT rs4788815 16q22.3 0.35 4.02E-13 2 Tyr# N

HP, HPR, DHX38 rs217181 16q22.3 0.18 1.47E-36 2,6 Gp# N

GLTPD2, TM4SF5, VM01 rs12051548 17p13.2 0.06 1.08E-11 1 SM N

LDLR rs6511720 19p13.2 0.1 3.87E-09 4 Tot-CH N

APOE/C1/C2 rs445925 19q13.32 0.06 5.71E-42 1,3,4 L-LDL-FC# N

PLTP rs4810479 20q13.12 0.27 2.15E-42 1,2,3,4 XL-HDL-TG# N

GSC2, SLC25A1, CLTCL1 rs712964 22q11.21 0.41 2.94E-11 6 Cit# N

GC rs1851024 4q13.3 0.05 1.07E-14 1,4 Alb Y

CXCL5, PF4, PPBP rs16850360 4q13.3 0.03 3.40E-10 4 Alb Y

EREG rs2168889 4q13.3 0.05 5.76E-14 4 Alb Y

SERPINA1 rs1303 14q32.13 0.24 5.42E-48 1,2 IDL-C Y

AQP9 rs16939881 15q22.1 0.05 2.92E-27 1,2,3,4 XL-HDL-TG# Y

MYO1E, CCNB2, RNF111 rs2306786 15q22.2 0.17 9.55E-11 2 Tot-TG Y

ZFHX3 rs10500569 16q22.3 0.23 7.00E-12 2 Tyr Y

*Complete metabolic network loadings, indicating the relative contributions of single metabolites to the overall association, are given in Figure S4.
**Multiple test corrected significance threshold for a metabolic network association was P,4.561029.
#Indicates that the top metabolite was also detected by univariate test.
doi:10.1371/journal.pgen.1002907.t001
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P = 4.7610214; P = 8.1610218; P = 7.1610214 respectively). SNPs

rs16953360 and rs16939881 are in very strong LD (r2 = 0.97;

D9 = 0.98).

SERPINA1 and AQP9 expression is associated with
metabolites

We next investigated whether there was a relationship between

SERPINA1 and AQP9 and metabolites levels in the DILGOM

cohort. To do this, we considered those metabolic networks

associated with SERPINA1 and AQP9 SNPs then regressed

individual metabolite levels on gene expression (Table S4). Genetic

variation in AQP9 was associated with metabolic networks 1–4 and

here we observed significant association between expression of

AQP9 and two metabolites from network 1 (XL-HDL-TG:

P = 8.561029; MobCH3: P = 7.261025). SERPINA1 harboured

genetic variants associated with metabolic networks 1 and 2, and

expression of SERPINA1 was associated with eight metabolites,

four from metabolic network 1 and four from metabolic network 2

(Table S4).

SERPINA1 and AQP9 expression is associated with
atherosclerosis

Since genetic variation and gene expression of SERPINA1 and

AQP9 were associated with lipoprotein levels, lipid transporters

central to atherosclerosis, we investigated the relationship between

these genes and atherosclerosis.

We first investigated a mouse model (BxH-ApoE, N = 298) on

a hyperlipidemic apolipoprotein-E (ApoE) null background with

liver gene expression profiles and quantified aortic lesions [34–

36]. BxH-ApoE consisted of an F2 population derived from a

backcross of mice highly susceptible to atherosclerosis (C57BL/6J

ApoE2/2) and highly resistant (C3H/HeJ ApoE2/2). The F2

population was then fed on a high-fat, western diet for 16 weeks

then euthanized at 24 weeks. Using linear regression, we tested

for association between liver expression of Serpina1a (the mouse

ortholog of SERPINA1) and AQP9 and the area of atherosclerotic

lesion in the aorta. Expression of AQP9 showed significant

association with atherosclerotic plaque area (P = 5.061023;

Figure 4), with samples in the top decile of AQP9 expression

having on average 29% larger lesion area than those in the

bottom decile. The association remained significant after

correction for gender, total cholesterol, triglycerides and HDL.

On this background, Serpina1a expression did not show associa-

tion with lesion area (P = 0.58).

Finally, we utilized the Tampere Vascular Study (TVS) a

collection of atherosclerotic plaque samples from patients

undergoing peripheral vascular surgery (carotid and femoral

endarterectomy and aortic bypass procedures due to atheroscle-

rosis) and control samples from individuals undergoing coronary

artery by-pass surgery (Materials and Methods). In TVS, both

SERPINA1 and AQP9 showed strong association with lesion

status (Figure 4). AQP9 was expressed at a 4.67 fold higher

level in lesions compared to controls (Mann Whitney P =

4.64610212), and similarly SERPINA1 exhibited 6.33 fold higher

expression (Mann Whitney P = 2.49610213). The TVS results

suggest that both AQP9 and SERPINA1 are candidate genes for

atherosclerosis.

Discussion

We have empirically demonstrated the power of multivariate

association testing of metabolite networks. We detected 7 novel

loci and investigated the gene expression of our top loci,

SERPINA1 and AQP9, in multiple human tissues as well as their

potential role in atherosclerosis.

SERPINA1 was associated with metabolic networks 1 and 2 (top

metabolites: total cholesterol in IDL and mean diameter of VLDL,

respectively), which are mainly related to cholesterol and

triglyceride pathways of apoB-containing lipoproteins as well as

diabetes associated amino acids [37]. SERPINA1 encodes alpha 1-

antitrypsin (A1AT), a protease inhibitor that protects surrounding

tissues at sites of inflammation, and various studies have suggested

A1AT’s role in atherosclerosis. A1AT has been detected within

HDL particles but not LDL [38], although complexes of A1AT

and LDL have been found in the intimal arterial wall and in

human atherosclerotic lesions in the coronary artery [39].

Proteolytic degradation of LDL by murine peritoneal macrophag-

es has been shown to be enhanced by A1AT binding, and

immunostaining and in situ hybridization have also suggested that

A1AT is produced by macrophages in the arterial wall [39].

AQP9 encodes aquaporin 9, a liver glycerol channel [40], and

contains variants which showed association with metabolic

networks 1 and 2 (top metabolites: triglycerides in very large

HDL and mean diameter of VLDL) as well as networks 3 and 4

(top metabolites: mean diameter of HDL and phosphatidylcho-

line). The proximity of AQP9 to the well-known LIPC gene 250 Kb

downstream raises the question of whether the AQP9 and LIPC loci

harbour independent effects. Our conditional analyses of meta-

bolic network associated SNPs indicate that these are indeed

independent genetic signals. In addition, LIPC expression in whole

blood from DILGOM was not associated with metabolites from

the relevant networks 1, 2, 3, or 4, and LIPC liver expression in

mouse only slightly attenuated the association of AQP9 with

atherosclerotic lesion area in a linear model (P = 0.059). In human

aorta, LIPC was nominally differentially expressed between

healthy and plaque samples (P = 0.01) and did not affect the

substantially larger aortic differential expression of AQP9. Previous

experiments have shown AQP9’s involvement in gluconeogenesis.

AQP9 mRNA and protein have been shown to be greater in

Figure 3. Associations detected between genomic loci and
metabolic networks. A Venn diagram showing the number of
associations between all genomic loci and metabolic networks stratified
by joint multivariate and univariate analysis (for univariate, at least one
metabolite from a network need be associated).
doi:10.1371/journal.pgen.1002907.g003
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human obese T2D patients relative to lean normoglycemics in

adipose tissue [41]. The opposite is true in liver, suggesting that

reduction in glycerol influx in hepatocytes via AQP9 could prevent

excessive lipid accumulation and may reduce hyperglycaemia in

obesity [41]. Further, AQP92/2 mice have previously been shown

to have elevated levels of plasma glycerol and triglycerides, and

inhibition of AQP9 by a small molecule inhibitor showed that it is

required for glycerol-dependent glucose production in murine

hepatocytes [42,43].

Our findings for SERPINA1 and AQP9 are consistent with the

above studies suggesting associations with cardiometabolic risk

factors and show that (a) common variants in both are associated

with metabolic networks, (b) these variants modulate gene

expression and suggest that there may be potential heterogeneous

genetic control in different tissues, (c) expression of both genes was

associated with metabolites from the relevant networks, and finally

(d) gene expression was positively associated with atherosclerotic

lesion area in mice (AQP9) and upregulated in atherosclerotic

Figure 4. Connecting genetic variation, gene expression, metabolites, and atherosclerosis for SERPINA1 and AQP9. (a) Boxplots show
SNPs associated with metabolic networks are also cis eQTLs for SERPINA1 (human blood and liver) and AQP9 (human liver). Boxplots consist of median
log2-normalised expression for each genotype with first and third quartiles designated by box edges. Whiskers extend to +/21.5 times interquartile
range. (b) Human blood expression of SERPINA1 and AQP9 was associated with metabolites derived from the same metabolic networks as their
corresponding genetic variants. Edge widths are proportional to the strength of association (P value). (c) Liver expression of AQP9 (but not SERPINA1)
in mice on a hyperlipidemic APOE2/2 background showed significant positive association with aortic lesion area. (d) Boxplots for log2-normalised
expression of SERPINA1 and AQP9 in healthy human arterial tissue versus that for atherosclerotic plaques.
doi:10.1371/journal.pgen.1002907.g004
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tissue in humans (SERPINA1 and AQP9). We also speculate that

the roles of SERPINA1 and AQP9 in atherosclerosis are tissue-

specific where AQP9 displays an effect in both liver and arterial

tissue and SERPINA1 only in the latter.

Of the five other novel loci, there were variants proximal to

ZFHX3 on Chr 16, MYO1E on Chr 15, as well as three

independent signals at 4q13. ZFHX3 encodes ATBF1, a

transcription factor involved in neuronal differentiation and

survival [44,45] that has also been previously implicated in

Kawasaki disease, atrial fibrillation and ischemic stroke [46,47].

Variants at the ZFHX3 locus were associated with metabolic

network 2 where the metabolite with the greatest loading was

tyrosine. Little is known about the role of the tyrosine in

circulation, however a recent study [37] investigating the

predictive ability of five amino acids for type 2 diabetes onset

suggested that amino acid metabolism, including tyrosine, plays a

role in the pathophysiology of metabolic syndrome, where it is

known that individuals with either metabolic syndrome and/or

diabetes are at increased risk for stroke. At 4q13, a band that

contains the ALB albumin gene, metabolic networks 1 and 4 were

associated with variants 30 Kb upstream of group-specific

component, a vitamin D binding protein (top metabolites:

triglycerides in IDL and albumin, respectively). Metabolic network

4, with albumin as the top metabolite, was also associated with

variants 10 Kb upstream of EREG and independent variants 8 Kb

upstream of CXCL5. EREG encodes epiregulin, part of a family of

epidermal growth factors for which there is evidence that osmotic

pressure has a role in signal transduction [48], and CXCL5 encodes

a cytokine that has previously been linked with obesity and insulin

resistance [49]. Finally, 15q22 harboured intronic variants within

the MYO1E gene, a non-muscle class I myosin protein, associated

with metabolic network 2 (top metabolite: total triglycerides).

Myosin 1E has previously been shown to bind phospholipids [50],

regulate podocyte function and glomerular filtration [51], as well

as contain nsSNPs which display linkage to kidney disease [52].

This study illustrates the importance of accounting for fine-scale

phenotypic structure. Although the current GWAS paradigm is

based on the testing of one phenotype and one marker at a time,

the quantitative phenotype profiles of individuals and correspond-

ing biological samples are rapidly expanding in scope and depth.

We are being faced with more complex multivariate phenotypic

information, and biologically heterogeneous phenotypes can now

be fine-mapped to reveal more informative patterns of association.

Powerful statistical approaches that leverage the network covari-

ance can provide novel insights and link genetics with disease.

Materials and Methods

Cohorts
The Cardiovascular Risk in Young Finns Study (YFS) is a

population based prospective cohort study. It was conducted at 5

university departments of medical schools in Finland (i.e. Turku,

Helsinki, Kuopio, Tampere and Oulu), with the aim of studying

the levels of cardiovascular risk factors in children and adolescents

in different parts of the country. The latest follow-up was

conducted in 2007. The serum samples for this metabolomics

study were collected at the latest follow up. The study and data

collection protocols have been described in detail in [10]. The YFS

study protocols have been approved by local ethics committees.

The Northern Finland Birth Cohort 1966 (NFBC66) has been

described in detail previously [11]. The original study design

focused to study factors affecting pre-term birth, low birth weight,

and subsequent morbidity and mortality. Mothers living in the two

northern-most provinces of Finland were invited to participate if

they had expected delivery dates during 1966. Individuals still

living in the Helsinki area or Northern Finland (N = 4,703) were

asked to participate in a detailed biological and medical

examination as well as a questionnaire at the age of 31 years.

The NFBC66 study protocols have been approved by local ethics

committees.

The subjects used in the adipose tissue eQTL analysis were

obtained from the EUFAM study (European Multicenter Study of

Familial Dyslipidemias) database [30] including a Finnish cohort

with familial low HDL-C phenotype. The Ethical Committee of

the Department of Medicine, Helsinki University Central Hospital

approved the EUFAM study. Top and bottom 10th percentiles of

HDL-C concentrations (Finnish population age and sex specific

percentiles) were used to define the high and low HDL-C groups,

respectively, and subject who were not matched for BMI were

removed. Subcutaneous adipose tissue biopsies were obtained

from 54 individuals. Out of these, 35 individuals had low HDL-C

and 19 individuals high HDL-C. Individuals in both low and high

HDL-C groups were matched by age and gender. Fat biopsies

were collected, RNA extracted and quantified as previously

described [53]. RNA labeling, array processing and scanning were

done according to the standard protocol by Affymetrix using HG-

U133 (Plus 2.0) arrays. Pre-processing of the expression data was

done using GC-RMA normalization. Genotyping was performed

using the HumanCNV370v1_C platform at the Broad Institute.

SNPs with genotype rate ,90% were excluded from the analyses

and samples were removed if fewer than 95% of SNPs could be

genotyped in them.

In the Tampere vascular study (TVS), vascular samples were

collected from patients undergoing peripheral vascular surgery due

to symptomatic atherosclerosis (cerebrovascular disease due to

carotid stenosis, peripheral arterial disease). All of these patients

had a polyvascular disease which had affected at least two different

vascular beds. Control samples were taken from left internal

thoracic arteries (LITA) during coronary artery by-pass surgery

(n = 25). Atherosclerotic plaques were collected by endarterectomy

from the following arterial sites: femoral artery (n = 24) carotid

artery (n = 29) and abdominal aorta (n = 15) all together from a

total of 93 patients. The vascular samples were classified according

to the American Heart Association classification (AHA) [54]. The

carotid and femoral artery samples were of type V or VI, aortic

samples were type VI and all control vessels were macroscopically

and microscopically healthy. The samples were taken from

patients subjected to open vascular surgical procedures at the

Division of Vascular Surgery, Tampere University Hospital. The

study was approved by the Ethics Committee of Tampere

University Hospital. All patients gave informed consent.

The HLC and BxH-ApoE data was obtained from the Sage

BioNetworks repository. A detailed description of the HLC data

can be found here [31,32]. Detailed information on mouse

experiments and sample handling can be obtained here [34,35].

An outlier with extreme lesion area (Z-score = 4.166,

P = 1.561025) was removed from analysis. Inclusion of the outlier

did not affect significance.

NMR metabolomics
The samples from the NFBC66, YFS and DILGOM cohorts

were analyzed using the same high-throughput serum NMR

metabolomics platform [17] providing information on lipoprotein

subclass distribution and lipoprotein particle concentrations, low-

molecular-weight metabolites such as amino acids, 3-hydroxybu-

tyrate, and creatinine, and detailed molecular information on

serum lipids including free and esterified cholesterol, sphingomy-

elin, saturation and v-3 fatty acids. Further details of the NMR
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spectroscopy, data analyses as well as the full metabolite

identifications have been described previously [17,29].

Metabolomic data processing
Individuals known to be on lipid-lowering therapy or pregnant

were excluded from analysis. To calculate residuals for all

metabolites, each study included the following as covariates:

gender, age (only YFS, the NFBC66 is a birth cohort), and

loadings of the first 10 principal components from genetic data to

correct for cryptic population stratification. Residuals were

normalized using an inverse normal transformation to have a

mean of zero and a standard deviation of 1. In combining the

metabolomic data for the YFS and NFBC66, residuals for all

metabolites also included the cohort as a covariate. Processing of

metabolites from the DILGOM cohort has been described

previously [29].

Genotyping and imputation
The YFS and NFBC66 cohorts studied were genotyped using

standard protocols on the Illumina 670 BeadArray and Illumina

370CNVduo (Illumina, Inc. San Diego, CA, USA) respectively.

Prior to imputation, stringent quality filtering was employed for

each cohort. Quality control was performed independently for

each study prior to imputation. Low quality SNPs (.5%

missingness) and poor DNA samples (.5% individual missingness)

were removed. In addition, individuals with high genomic

heterozygosity (indicative of sample contamination), gender

discrepancies or closely related individuals were removed from

the data.

Genotype imputation was performed using the MACH

algorithm [14] and the CEPH reference panel from HapMapII

[15]. After filtering, sample numbers were 1,905 and 4,703 for the

YFS and NFBC66 cohorts respectively. After imputation, SNPs

were filtered within each cohort via the estimated squared

correlation between imputed and true genotypes (Rsq,0.30),

estimated minor allele frequency (MAF,0.01), and Hardy-

Weinberg equilibrium exact test (P,1.061026). After SNP

filtering, 2,406,682 and 2,360,512 SNPs in the YFS and NFBC66

cohorts respectively were taken forward for further genome-wide

analyses. The intensity cluster plots for the top, directly-genotyped

SNPs were visually inspected for failures in genotype assay and

calling.

Metabolite clustering
In order to define matrices of related endogenous variates,

groupings of metabolites must be defined. Normalized metabolite

measurements across the YFS and NFBC66 cohorts were pooled,

and the metabolite-metabolite Pearson correlation matrix was

hierarchically clustered. From the resulting dendrogram, metab-

olite cluster detection was done using a dynamic tree cutting

algorithm [18] with a minimum cluster membership of one

metabolite. We selected the dynamic tree cutting algorithm

because it has been shown to outperform other popular methods

in simulations as well as give biologically relevant results on real

data [29,55,56]. In order to maximize power to detect associa-

tions, Ferreira and Purcell showed that, within a phenotype set,

one should maximize both the number of phenotypes and the level

of correlation between phenotypes [4], however in practice these

two parameters are inversely related. That is, given a of phenotype

measures and individuals, increasing the number of phenotype

clusters leads to increasing correlation within clusters and vice

versa. For the dynamic tree cut algorithm, we investigated the

sensitivity of cluster splitting using the deepSplit parameter. Lower

integers values of deepSplit correspond to lower sensitivity for cluster

splitting and thus fewer clusters. Both high and low sensitivity

(deepSplit = 4 and deepSplit = 0, respectively) for cluster splitting were

explored using the YFS discovery cohort. The high setting

assigned 11 metabolic networks (Figure S1) whereas the low

setting assigned 5 metabolic networks (Figure S7). Both clusterings

were empirically assessed using the multivariate test above, and

both settings detected the same number of loci at genome-wide

significance. This was consistent with the inverse relationship

between intra-cluster correlation and number of metabolites per

cluster. Given no difference in locus detection, we considered the

biological interpretation of the clusters. We noted that the low

setting could not differentiate TG-rich VLDL particles nor lipid

poly-unsaturation and conflated various energy metabolites

with small HDL metabolism. Since it presented more straight-

forward biological interpretation, we proceeded to downstream

analysis with the high sensitivity, corresponding to 11 metabolic

networks.

Statistical analysis
Association testing of SNPs and metabolites was done using two

strategies: univariate linear regression and multivariate Canonical

Correlation Analysis (CCA). For the former, we used the standard

framework Yi~azbXizei where Yi is the normalized metabolite

measure for individual i, Xi is the genotype of the individual at a

given SNP (encoded as 0, 1, or 2 for the number of minor alleles),

and ei is a normally distributed random variable with mean equal

to zero and constant variance. To implement linear regression, we

used the PLINK analysis software [57]. The reported P values

assume a NULL hypothesis of no association, b = 0.

When testing hypotheses that include multiple endogenous

variables, the relationships among the endogenous variables must

be taken into account in addition to those between the endogenous

and exogenous variables. Given these two sets of variables, the aim

is to simultaneously find the best predictor of the linear functions

of one set as well as the linear function of the other set it best

predicts. This yields a pair of variates which are referred to as the

first pair of canonical variates. Using the residuals of these linear

functions, the process can be repeated to obtain the second pair of

canonical variates, and so on. The full sequence of these pairs of

variates and their correlations then fully describe the invariant

relationships between the endogenous variable set and the

exogenous variable set [58].

For multivariate testing, we use the CCA framework imple-

mented in the PLINK.multivariate analysis tool [4] and the R

statistical programming language. In this case, the exogenous set

consists of only one variable, the SNP, and consequently only one

pair of canonical variates is calculated.

Wilks’ lambda (l) is a multivariate analogy of the F-test in one-

way analysis of variance. In a genetic setting, l is a statistic which

tests for differences between the means of the three genotype

groups (AA, AB, and BB) on a combination of endogenous variates

(a network of metabolite variables). In this case, l= 12r2 where r
is the canonical correlation coefficient between the SNP and the

network of metabolite variables. The calculation of a P-value arises

from a transformation of Wilks’ lambda into a statistic which is

approximately F distributed.

Genomic inflation of test statistics can be an indicator of subtle

biases in the data and testing (e.g. cryptic population structure). To

assess genomic inflation, we compared our observed distribution of

2log10(P) values to that expected in the absence of association. A

linear model was then fitted to the lowest 90% of the distribution

and genomic inflation was taken as the slope of the fitted line.

Table S1 gives genomic inflation values for multivariate testing of

YFS, NFBC66 and meta-analysis across all metabolic networks.
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A locus was defined as a 200 kb genomic region centered on the

top significantly associated SNP. To determine the independence

of the locus-network signals, conditional multivariate association

analysis was used for signals either at 4q13.3, close to LIPC (i.e.

AQP9 variants), or close to FADS1/2/3 (i.e. CD5/CD6 and

INCENP/FTH1/BEST1 variants). For the top SNP(s) at a

proximal locus (Table S2), each metabolite in a network was

regressed onto the proximal SNP(s) and the resulting residuals

were used as endogenous variables in the multivariate test of the

target locus. An attenuated signal indicates non-independence, e.g.

the SNPs tag the same causal variant. As a result, two loci (CD5/

CD6 and INCENP/FTH1/BEST1) were largely attenuated and not

regarded as independent from the FADS1/2/3 locus.

Due to the different number of statistical tests, genome-wide

significance differs between multivariate and univariate testing.

Here, as the basis of genome-wide significance, we use the

common threshold of 5.061028, derived from the number of

independent common haploblocks in genomes of European

descent [59]. Univariate testing of all 130 metabolites, implies a

Bonferroni corrected significance level of 5.061028/

130 = 3.8610210. Multivariate testing of the metabolic networks

we identify here (N = 11) gives a Bonferroni corrected significance

level of 5.061028/11 = 4.561029.

Analysis of the DILGOM cohort considered the bead-weighted

and quantile normalized gene expression data from the Illumina

HT-12 expression array as described previously [55] and

metabolomic measures also described previously [29]. Only those

metabolites which were part of the original metabolic network

associated with a particular locus were considered. For example,

because genetic variation at SERPINA1 was associated with

metabolic networks 1 and 2, expression of SERPINA1 was only

tested for association with metabolites from networks 1 and 2.

Since loci were associated with different metabolic networks,

different numbers of tests were performed for each candidate gene.

We therefore implemented appropriate multiple testing thresholds

for each gene where significance was set at P,(0.05/total_num-

ber_metabolites_in_tested_networks).

For the EUFAM study, statistical eQTL analyses were

performed using a linear regression model adjusting for the

gender, BMI, and low/high HDL-C affection status. Probe

intensities were treated as dependent and genotypes as indepen-

dent variables. The comparison of gene-expression between the

low and high HDL-C groups was performed using a linear

regression model. Fold change for each probe was calculated by

dividing the mean probe intensity in the low HDL-C group by the

mean probe intensity in the high HDL-C group.

For the TVS study, all vascular specimens were immediately

frozen and RNA was extracted as previously described [60]. RNA

was reverse transcribed into cRNA, biotin-UTP labelled using the

Illumina TotalPrep RNA Amplification Kit (Ambion) and cRNA

hybridized to the Illumina HumanHT-12 v3 Expression Bead-

Chip. BeadChips were scanned with the Illumina iScan system.

Data processing was conducted using R language and appropriate

Bioconductor modules. Robust multi-array averaging (RMA) [61]

was used to correct negative intensity values after background

subtraction. Between arrays normalization was done using robust

spline normalization (RSN) [61]. Quality control was performed

using sample clustering and multi-dimensional scaling. Seven

outliers were removed due to low expression profiles, 4 from

carotid artery group and 3 from LITA group.

Fold changes (FCs) for differentially expressed genes were

calculated from log2-transformed median expression values

between case (carotid, abdominal, femoral) and control group

(LITA), and the significance of the differences were evaluated with

non-parametric Mann-Whitney U test due to non-normal

distribution of expression values and relatively small sample sizes

of TVS. If there were more than one probe presenting a gene in

the expression chip, the probe with highest median expression

value was selected for FC calculation.

Supporting Information

Figure S1 Hierarchical clustering and detection of 11 metabolite

networks.

(TIFF)

Figure S2 Comparison of P values from association testing of

metabolic networks versus single metabolites. Testing multiple

metabolites simultaneously shows an enrichment of low multivar-

iate P values. Multivariate and univariate P values were compared

across all 11 metabolic networks for the 2,406,682 SNPs in the

YFS cohort. The different multiple testing burden are shown by

dotted lines: horizontal red for multivariate and vertical blue for

univariate testing. The univariate P value for a SNP was

determined via the minimum after testing all single metabolites

in a network.

(TIFF)

Figure S3 Associations detected between metabolic networks

and loci previously associated with metabolism.

(TIFF)

Figure S4 Loadings from multivariate metabolic network tests.

(TIFF)

Figure S5 Conditional analysis of the SERPINA1 loci.

(TIFF)

Figure S6 Conditional analysis of the AQP9 loci.

(TIFF)

Figure S7 Hierarchical clustering and detection of 5 metabolite

networks.

(TIFF)

Materials S1 Section describing metabolic networks. Full

descriptions, abbreviations, inter-metabolite correlations, and

supporting association analyses.

(PDF)

Table S1 Multivariate testing displays little evidence of test

statistic inflation.

(XLSX)

Table S2 Conditional association analysis for selected loci. For

each network, the metabolite levels were adjusted by regressing out

the effects of the SNPs in the ‘Conditional Locus’ column. The

corrected metabolite levels in each network were then retested

against the target SNP. The multivariate P values using both

uncorrected metabolite levels (‘Unconditional Pvalue’) and

corrected metabolite levels (‘Conditional Pvalue’) are given.

(XLSX)

Table S3 Expression quantitative trait loci across tissues for

AQP9 and SERPINA1.

(XLSX)

Table S4 Expression of novel candidate genes is associated with

metabolite levels.

(XLSX)
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