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Structural rearrangements of the histone octamer
translocate DNA

Silvija Bilokapic® !, Mike Strauss? & Mario Halic® '

Nucleosomes, the basic unit of chromatin, package and regulate expression of eukaryotic
genomes. Nucleosomes are highly dynamic and are remodeled with the help of ATP-
dependent remodeling factors. Yet, the mechanism of DNA translocation around the histone
octamer is poorly understood. In this study, we present several nucleosome structures
showing histone proteins and DNA in different organizational states. We observe that the
histone octamer undergoes conformational changes that distort the overall nucleosome
structure. As such, rearrangements in the histone core a-helices and DNA induce strain that
distorts and moves DNA at SHL 2. Distortion of the nucleosome structure detaches histone
a-helices from the DNA, leading to their rearrangement and DNA translocation. Biochemical
assays show that cross-linked histone octamers are immobilized on DNA, indicating that
structural changes in the octamer move DNA. This intrinsic plasticity of the nucleosome is
exploited by chromatin remodelers and might be used by other chromatin machineries.
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genetic material. The basic building block of chromatin is

the nucleosome, which contains ~ 150 base pairs (bp) of
DNA wrapped around an octamer composed of two copies each
of histones H2A, H2B, H3, and H4!~3. The nucleosome structure
is stabilized by electrostatic interactions between the phosphate
backbone of the DNA and positively charged residues on
histones!.

Nucleosomes are highly dynamic and can move along the
DNA in an uncatalyzed or chromatin remodeling enzyme-driven
way*®°, Uncatalyzed nucleosome sliding is an intrinsic property of
nucleosomes and resembles the sliding achieved by chromatin
remodeling enzymes*®. At increased temperatures or when
contacts of the histone core with the DNA are weakened,
nucleosomes display high uncatalyzed mobility’~1*. Nucleosomes
are positioned on the DNA with the help of chromatin remo-
deling enzymes that use the energy from ATP hydrolysis to move
them in vivo*®!!, Different subfamilies of chromatin remodelers
catalyze various nucleosomal transformations. Some chromatin
remodelers can change the composition of the histone octamer,
whereas others slide nucleosomes without disassembling the
octamer®. It has been shown that imitation switch (ISWI) chro-
matin remodelers can conformationally rearrange the histone
octamer and such rearrangement is essential for translocating
DNA®!2, These results are consistent with prior observations
showing flexibility of a nucleosome in the context of transcription
and nucleosome assembly!3~1°. Our recent structures of nucleo-
somes provided a mechanistic explanation of DNA unwrapping
that is utilized by RNA polymerase II and other DNA-based
enzymes®.

Nucleosome positioning has a central role in transcription,
DNA replication, repair, and recombination. Mutations in chro-
matin remodelers are strongly associated with, or even drive
cancers, highlighting the importance of nucleosome organization
in genome stability?"*2, Despite the importance of nucleosome
remodeling, relatively little is known about the structural
mechanisms of histone octamer translocation on the DNA. In
this work, we solved cryo-electron microscopy (EM) structures
with differently organized histone octamers and DNA. Our
structures show conformational changes in the histone octamer
that are required for DNA translocation and thermally driven
nucleosome sliding. We propose that the same intrinsic property
of the nucleosome is also utilized by chromatin remodeling
enzymes'?.

The packaging of DNA into chromatin regulates access to

Results

Cryo-EM structure of nucleosome core particles. We collected
cryo-EM data of nucleosome core particles (NCPs) assembled on a
601 DNA at physiological conditions (Supplementary Fig. 1a-c)?>4,
In the electron micrographs, NCPs are present in various orienta-
tions: as a disk, tilted views, and side views (Supplementary
Fig. 1d, e). In two-dimensional (2D) class averages, high-
resolution details such as the DNA dyad, major and minor
DNA grooves, and histone a-helices are visible (Supplementary
Fig. le). We solved the structure of the NCP to 4.5 A resolution
using all particles (Supplementary Fig. 1f-h). Further classification
of NCPs revealed several defined classes. The first class (Class 1—
canonical nucleosome) is resolved to an average resolution of 3.8
A (Fig. 1a, Supplementary Fig. 2a-c and Table 1) and is similar to
previous structures of the NCP12~%’, The second class (Class 2—
distorted nucleosome) was reconstructed to 4.0 A and shows a
nucleosome with differently organized DNA (Fig. la and Sup-
plementary Fig. 2d-f). Although we used a high-affinity binding
and positioning 601 DNA sequence, the histone octamer is better
resolved than the DNA in both classes (Supplementary Fig. 2g),
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suggesting the DNA is at least partially mobile around the NCP.
We also observe that ~15 % of nucleosome particles have
unwrapped DNA in agreement with the structures we have
recently described?’.

We compared the Class 1 and Class 2 cryo-EM structures to
the previously determined X-ray structure of the NCP assembled
on 601 DNA (PDB:3LZ1)%’. We observed that the X-ray structure
fits well into the Class 1, but not into the Class 2 structure

Class 2 : Distorted

Class 1 : Canonical
DNA entry/exit

Resolution: 4.0 A

Class 2 : Distorted

[11.0-2.0A
[ ]2.0-3.0A
[]3.0-4.0A
W>40A

Fig. 1 Structural plasticity of the nucleosome core particle (NCP). a Cryo-
EM maps of the NCP in two distinct conformations. Class 1 (left, blue)
resembles canonical nucleosome, whereas Class 2 (right, red) is in
distorted conformation. Class 1is resolved to 3.85 A and Class 2 to 4.05 A
(0.143 cutoff in FSC curve). Class 1 contains 51000 particles and Class 2
contains 58 000 particles. b Global changes in the nucleosome structure.
Comparison of X-ray structure (PDB:3LZ1) and Class 2 (distorted
nucleosome) models. The nucleosome core particle contracts along the
symmetry axis by 8% (distance between nucleotides 2 and 38) and
expands in the perpendicular direction by 5% (distance between
nucleotides 17 and 58). ¢ RMSD between the X-ray structure (PDB:3LZ1)
and the Class 2 model, showing the extent of rearrangements in the NCP.
The X-ray structure and the Class 2 model were superimposed and RMSD
of Ca was calculated and depicted. DNA at SHL 1-2 and SHL 6-7 shows the
largest movements between these two structures (>4 A). H3 al, a2, and
a3 show the largest rearrangements in the histone octamer
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Fig. 2 Structural rearrangements in the histone core. Comparison of the X-ray structure (PDB:3LZ1, yellow) and the Class 2 model (red). Arrows depict the
direction of the helix movements. The degree of movement between X-ray structure and the Class 2 model is shown, rounded to half an A. a
Conformational rearrangement of H3 ol and DNA at SHL 2. H3 «1 moves 4.5 A in Class 2 when compared with the X-ray structure. DNA at SHL 1.5 moves
4.5 A towards SHL 2. b Conformational rearrangement of the H3 a2, H3 a1, and DNA at SHL 2. The H3 a2 tilts by 2 A at its N-terminal end. The H3 «1
moves 4.5 A. H3 a1 and H3 a2 move toward each other and push the DNA at SHL 2.5 outward. € Conformational rearrangement of H3 o2, H3 «3, and DNA
at the dyad. H3 o2 tilts and moves inward by 3 A at its C-terminal end. H3 a3 also moves inward by 3 A. Concomitantly, the DNA at the dyad moves more
than 3 A toward the centre of the nucleosome. d Conformational rearrangement of H2B a2. H2B a2 tilts by 2 A toward the center of the nucleosome at SHL
3.5 and 2 A away from the center at SHL 5.5. This pushes the DNA at SHL 5.5 outward and pulls the DNA at SHL 3.5 inward

(Supplementary Fig. 2h). A closer examination revealed that most
of the DNA and many histone core a-helices are in a different
conformation in Class 2 than in the X-ray structures (Supple-
mentary Fig. 2h). For comparison, we also fitted the X-ray
structure to the previously published cryo-EM map of the
nucleosome (EMD-8140)26. Contrary to the Class 2 map, the X-
ray structure fits well into this cryo-EM map?®. The observed
differences might be explained by the buffer conditions that were
used. To obtain the EMD-8140 cryo-EM map, nucleosomes were
prepared without any salt, whereas our nucleosomes were
prepared at more physiological conditions. In our recent work?"
we have solved the structure of the nucleosome at low-salt
condition to 3.7A (Class LS). In this dataset, most wrapped
nucleosome particles were in the canonical nucleosome con-
formations?’, consistent with the previously published cryo-EM
map of the nucleosome?®. Our data suggest that at physiological
conditions a fully wrapped nucleosome is more dynamic and can
be found in multiple conformations.

Nucleosome distortion. We refined the X-ray model of the
nucleosome for both Class 1 and Class 2 cryo-EM maps (Fig. 1b
and Supplementary Fig. 3a, b). In both classes, the resolution of
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the histone octamer is 4.0 A or better with many side chains
resolved (Supplementary Fig. 3a). This allowed us to build an
accurate model (Supplementary Fig. 3c). The refined model for
Class 1 is highly similar to the X-ray structure (PDB:3LZ1),
indicating that this cryo-EM map resembles the canonical
nucleosome conformation (Supplementary Fig. 3b). We super-
imposed X-ray (PDB:3LZ1) and the Class 2 cryo-EM models, and
observed many differences. First, the comparison of these models
revealed global changes in the nucleosome structure. We observed
that the nucleosome shrinks along the symmetry axis and
expands in the perpendicular direction (Fig. 1b). Although in the
X-ray structure the distance from the dyad to the opposite side of
the histone octamer is 66 A, this distance shrinks in Class 2 to 61
A. Concomitantly, the perpendicular distance between the
superhelices’> SHL 2 and SHL 6 expands from 66 A in the X-ray
structure to 70 A in Class 2 (Fig. 1b). Our data show that the
nucleosome is highly dynamic in solution. The nucleosome
contracts 8% along the symmetry axis and expands 5% in the
perpendicular direction. It has also been proposed that nucleo-
somes in solution might exist in multiple states of DNA con-
formation, with only some of these having been seen in the X-ray
structures?830
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We calculated the root-mean-square deviation (RMSD) of the
X-ray structure and cryo-EM maps to depict regions that display
highest movements. Although in Class 1 and Class LS?? structures
we observe only minor movements (Supplementary Fig. 3d), the
RMSD data show larger rearrangements in the Class 2 structure
(Fig. 1c). We observe that the DNA and histones at SHLs 1.5-2.5
and at the entry/exit site (SHL 6-7) show the highest variability
between these two structures (Fig. 1c). Our data show that the
nucleosome can adopt multiple conformations providing a
structural basis for nucleosome plasticity. The nucleosome
plasticity may contribute to chromatin regulation in many
processes.

Structural rearrangement of the histone octamer. Con-
comitantly, with the structural changes in the DNA, we observe
rearrangements of many a-helices in the histone core. In parti-
cular, the histone H3 al and a2 helices display strong movements
in the Class 2 structure when compared with the X-ray, Class
LS29, and Class 1 structure (Fig. 1c). Our structures show that H3
al moves 4.5 A in the Class 2 map compared with the X-ray
structure. H3 al coordinates the DNA at SHL 1.5 and the
movement of H3 al also pushes the DNA more than 4.5A
toward SHL 2.5 (Fig. 2a). H4 al coordinates the DNA at SHL 1.5
together with H3 al and moves in the same direction as H3 al.
Although H3 al, H4 al, and the DNA at SHL 2 move by >4 A,
the contacts between histones and DNA stay preserved in the
Class 2 structure.

In the Class 1 and Class LS structures, the N-terminal tail of
histone H4 interacts with the DNA at SHL 2.5 (Supplementary
Fig. 4a). As DNA slides away in the Class 2 structure, the
interaction of the H4 N-terminal tail with the DNA at SHL 2.5 is
lost. This is most likely, because the positively charged H4K16
and H4R17 are too distant from the DNA phosphate backbone of
SHL 2.5, which moves >4 A in the Class 2 structure. This leads to
the rearrangement of the H4 tail, which is more flexible in the
Class 2 structure and inserts into the major grove of the DNA at
SHL 2 (Supplementary Fig. 4a). The H4 tail insertion also results
in widening of the major groove at SHL 2 by > 1 A and suggests
that the H4 tail might interact with bases as predicted by
molecular dynamics simulations’!. Deletion of the H4 tail was
shown to reduce uncatalyzed histone octamer sliding on the
DNA®32, This suggests that the H4 tail contributes to the octamer
movement on DNA, either by promoting movement or by
stabilizing a distinct conformation of the DNA.

Concomitantly, with the movement of H3 al, we also observed
rearrangement of the long H3 a2 helix that spans from SHL 0.5 to
SHL 2.5. In the Class 2 structure H3 a2 is tilted (Fig. 2b, ¢ and
Supplementary Fig. 4b). The loop connecting the H3 al and a2

Distorted DNA 1

|| PDB:3LZ1 M Class 2 : Distorted

helices interacts with the DNA at SHL 2.5, whereas the loop
connecting helices a2 and a3 interacts with the DNA near the
dyad. In the Class 2 structure, H3 a2 tilts more than 2 A at its N-
terminal end, which pushes the DNA at SHL 2.5 outward and in
the direction of SHL 2 (Fig. 2b). Simultaneously, the C-terminal
end of H3 a2 tilts in the opposite direction, pulling the DNA at
SHL 0.5 inward for >3 A (Fig. 2c and Supplementary Fig. 4b).
This also leads to inward movement of H3 a3 and the DNA at the
dyad (Fig. 2¢). Our data raise the possibility that H3 a2 serves as a
lever that pushes the DNA at one end and pulls the DNA at the
opposite end (Fig. 2b, ¢ and Supplementary Fig. 4b).

We also observed that H4 a2 bends outward at SHL 2.5 to
compensate for the nucleosome contraction (Supplementary
Fig. 4c). The H4 Loop 2 connects H4 a2 and a3, and interacts
with the DNA at SHL 2.5, and movement of the H4 a2 pushes the
DNA at SHL 2.5 outward by 3 A (Supplementary Fig. 4c).

Although movements were most pronounced for histone H3
around SHL 2, we also observed smaller rearrangements in H2A/
H2B helices (Fig. 1c). At SHL 3.5, the long H2B a2 and H2A a2
helices tilt toward the dyad and pull the DNA inward (Fig. 2d and
Supplementary Fig. 4d). At SHL 5.5, the H2B a2 and H2A a2
helices tilt and push the DNA outward (Fig. 2d and Supplemen-
tary Fig. 4d). These conformational rearrangements of the
histones H2A/H2B promote nucleosome contraction at SHL 3.5
and stretching at SHL 5.5. In Class 2, the H2B C-terminal helix
also moved outward. We also observed that the nucleosome
conformation in Class 2 favors insertion of the H2A N-terminal
tail at SHL 4.5 (Supplementary Fig. 4e). It has been shown that
the deletion of the H2A N-terminal tail increases uncatalyzed
nucleosome mobility®?, indicating that the H2A tail stabilizes the
nucleosome and DNA in the remodeled conformation.

Our data show that structural rearrangements of the histone
core a-helices move DNA in the nucleosome and lead to the
nucleosome distortion. These movements are coordinated by tilts
of the long a2 helices of H3, H2A, and H2B, which interact with
the DNA at two distant locations. These helices serve as levers
that push the DNA on one side and pull the DNA on the other
side. The long H4 a2 helix bends and pushes the DNA outward to
compensate for the nucleosome contraction along its length. Our
structures show that rearrangement of the histone octamer
contracts the nucleosome along the symmetry axis and expands it
in the perpendicular direction (Fig. 1b).

DNA distortion at SHL 2.5. In the Class 2 structure, we observed
the movement of DNA with the largest movements in the SHL 2
region (Fig. 1c). Our structures show that at SHL 1.5 the DNA is
moved away from the dyad and in the direction of SHL 2.
Simultaneously, DNA at SHL 3.5 is moved in the direction of the

b Class 2

B SHL 1.5
B-DNA helix

SHL 2.5
distorted DNA

Fig. 3 Structural rearrangement of the histone core distorts the DNA at SHL 2. a Depiction of the DNA organization in the nucleosome in the X-ray
structure and Class 2 cryo-EM map at SHL 2. At SHL 1.5, the DNA moves outward and toward SHL 2.5. At SHL 3.5, DNA is pulled inward and toward SHL
2.5. b Close-up view at SHL 2.5 in the Class 2 cryo-EM map. In the Class 2 map, the DNA at SHL 2.5 is less defined and does not resemble a B-DNA helix,
indicating distortion in the DNA structure at SHL 2.5. At SHL 1.5 and SHL 3.5, the DNA is well resolved and resembles a B-DNA helix
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Fig. 4 Conformational changes in the histone octamer translocate DNA. a Cryo-EM map of the NCP Class 3 (translocated nucleosome) at 4.8 A (0.143
FSC cutoff). Class 3 contains 39 000 particles. b Global changes in the Class 3 structure. The histone octamer in the Class 3 NCP is 62 A wide along the
symmetry axis (distance between nucleotides 2 and 38) and 70 A in the perpendicular direction (distance between nucleotides 17 and 58). ¢, d Fitting of
the Class 3 (purple) model into the Class 3 map. On the side A, the H3 a1 interacts with the left DNA strand of the superhelix SHL 1.5 ¢. On the side B, the
H3 a1 interacts with the right DNA strand of SHL 1.5 d. The H4 « is detached from the DNA at SHL 1.5 on both sides. @ Comparison of the X-ray structure
(yellow), the Class 2 (red), and the Class 3 models (purple). The degree of movement between the Class 2 and the Class 3 models is shown. The H3 ol
moves back 3 A in the Class 3 compared with the Class 2. The H3 a1 reverts to similar position that it occupies in X-ray structures, but now it interacts with
another DNA strand. DNA at SHL 1.5 moves 5 A toward SHL 2 compared with X-ray structures. The H4 a1 moves back 2 A in the Class 3 compared with
the Class 2. f The H4 al detached from the DNA at SHL 1.5 and interacts with the DNA at SHL 0.5. DNA at SHL 1.5 moved 4 A toward SHL 2 compared
with X-ray structures and detaches from the H4 1. DNA at SHL 0.5 moved 3 A toward SHL 2 compared with X-ray structures and now interacts with the
H4 1. g The model for Class LS_C1 (Class LS reconstructed with C1 symmetry) was fitted into Class LS_C1 and Class 3 cryo-EM maps. In the Class 3 map,
DNA at one entry/exit site is shorter than in Class LS_C1 map, indicating that ~1bp of DNA moved toward the other end

dyad and toward SHL 2 (Fig. 3a). This generates tension in the
DNA structure at SHL 2.5. In the Class 2 cryo-EM map, at SHL
1.5 and SHL 3.5, DNA is well resolved with the typical appear-
ance of a B-DNA helix. At SHL 2.5, however, the DNA is dis-
torted and does not resemble a B-DNA helix anymore, suggesting

DNA of different length and sequence, SHL 2 and SHL 5 could
accommodate a difference of 1bp?®2*333% Our data show that
movement of DNA at SHL 1.5 and SHL 3.5 toward SHL 2.5 leads
to distortion of the DNA. Although our resolution is not suffi-
cient to observe DNA movement at the nucleotide level, our data

that the DNA might have adopted another conformation at this
location (Fig. 3b and Supplementary Fig. 4f). We observed that in
the cryo-EM map of Class 2, the density at SHL 2.5 is smaller
when compared with other SHLs (Fig. 3b and Supplementary
Fig. 4f). This suggests that less DNA might be coordinated at SHL
2.5 in the Class 2 structure, and that several DNA bp might be
translocated. Consistently, in X-ray structures of the NCP with
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suggest that the strain created by histone movements at SHL 1.5
and 3.5 might generate sufficient force to move several bp of
DNA at SHL 2.

DNA translocation by the histone octamer. In the structure of
the distorted nucleosome (Class 2), a-helices of the histone
octamer rearranged but remained attached to the same DNA
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SHL. This class reveals intrinsic nucleosome plasticity and shows
how the octamer can be distorted without breaking contacts with
the DNA. In addition to the structures of the distorted nucleo-
some (Class 2), we obtained a nucleosome structure that shows
detachment of histone a-helices from the DNA and their trans-
location on the DNA (Class 3—translocated nucleosome) (Fig. 4).

The Class 3 cryo-EM map is resolved to 4.8 A, with the
resolution of the histone core between 4.5 A and 5.0 A, and the
DNA 5.0-5.5 A (Fig. 4a and Supplementary Fig. 5a-¢). The overall
structure of the nucleosome in the Class 3 cryo-EM map
resembles Class 2 structure (Figs. 1b and 4b). The distance from
the dyad to the opposite side of the histone octamer is 62 A,

a . b s
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. 17} .
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Fig. 5 Conformational rearrangement of the histone octamer is required for nucleosome sliding. a Thermal mobilization of nucleosomes on 227 bp DNA
sequence containing 601 sequence in the middle. Native nuclesomes are re-positioned at 60 °C. Nucleosomes with cross-linked octamer did not move.
b Quantification of three independent thermal shift assays showing that the cross-linked octamer does not move on DNA. The band intensity was
quantified at starting and remodeled position at each time point. SD of three independent experiments is shown. ¢ Salt-induced disassembly of native and
cross-linked nucleosomes. Cross-linked nucleosomes disassemble at elevated salt concentration, indicating that histone octamer did not cross-link with the
DNA. d Thermal mobilization of nucleosomes on 227 bp DNA sequence containing 601 sequence in the middle. NCP with the disulfide bridge between H3
F104C and H4 V43C is immobilized in the thermal shift assay. Upon addition of the reducing agent (DTT), nucleosomes are mobile again. e Model showing
the conformational changes in the histone octamer that lead to nucleosome distortion. Tilting of the long a2 helices of H3, H2A, and H2B contracts the
nucleosome along the symmetry axis and stretches the nucleosome in the perpendicular direction. This rearrangement of the octamer also moves the
DNA. DNA gyres move by >4 A at SHL 1.5-2.5 and SHL 5.5-6.5. Canonical nucleosome is shown in gray, distorted in red. f Model showing DNA
translocation at SHL 2. In the first step of DNA translocation, DNA and the H3/H4 o helices move > 4 A, leading to nucleosome distortion (Class 2). In the
next step, the H3 a1 dissociates from the DNA and translocates to DNA strand, which was previously bound by the H4 al. The H4 ol detaches from the
DNA at SHL 1.5 and binds the DNA at SHL 0.5. This leads to translocation of the DNA by the histone octamer at SHL 2. The DNA is pushed further and
moves by >5A when compared with X-ray structures. Arrows indicate direction of the movement. Canonical nucleosome is shown in gray, distorted in
red, and translocated in purple
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whereas the perpendicular distance between the SHL 1.5 and SHL
5.5 is 70 A (Fig. 4b). The most pronounced changes between the
Class 2 and the Class 3 structures are again at SHL 2. In the Class
3 structure, we observe distinct movements of the histone
octamer and the DNA on each side of the nucleosome. On side A
of the Class 3 nucleosome, DNA at SHL 1.5 and H3 al are in a
conformation that is highly similar to the Class 2 structure
(Fig. 4c and Supplementary Fig. 5f, g). In this conformation, the
H3 al helix and the DNA are moved but preserve the contact
(Fig. 4c). On side B of the Class 3 structure, the H3 al helix
moved back for 3A and reverted to a similar position that it
occupied in the X-ray structures (Fig. 4d, e), whereas the DNA
moved forward for 5 A, indicating a movement of ~ 1bp. This
leads to detachment of the H3 al from the DNA and its
translocation to another DNA strand of the same SHL. The
interaction of H3R69 and H3L65 with the DNA is lost and
stronger interaction is now formed by H3R63 (Fig. 4c, d). In Class
3, side B, the H3 al interacts with the DNA strand, which
interacted with the H4 al in previous nucleosome structures. The
H4 ol helix also moved back in the Class 3 structure and
detached from the DNA at SHL 1.5 (Fig. 4d-f). The contacts of
H4 with SHL 1.5 are lost and primary contact is now formed with
the DNA at SHL 0.5. The DNA at SHL 0.5 moved 3 A toward the
H4 al and H4R35 makes the main contact of the H4 al with the
DNA (Fig. 4f and Supplementary Fig. 5h). This translocated H4
al from SHL 1.5 to SHL 0.5.

The rearrangement of the H3 al leads to further movement of
the DNA at SHL 1.5 toward SHL 2.5. In the Class 3 structure, the
DNA at SHL 1.5 moved for > 5 A when compared with the X-ray
structures (Fig. 4e). We also observe a further tilt of the H3 a2 at
the side B, but not on side A of the Class 3 structure
(Supplementary Fig. 5i). The H3 a2 tilts for 3.5A at its N-
terminal part that interacts at SHL 2.5 when compared with the
X-ray structures (Supplementary Fig. 5i). This puts even more
strain on the DNA at SHL 2 region and leads to even greater
distortion of DNA at SHL 2 and SHL 3. Similar to the Class
2 structure, in the Class 3 structure the H4 tail inserts into the
major grove of SHL 2 (Supplementary Fig. 5j).

In the Class 3 structure we also observe movement of the DNA
relative to the entire histone octamer. When compared with the
Class LS structure?”, in the Class 3 structure the density for ~ 1 bp
of the DNA is missing at one DNA entry/exit site, indicating that
the entire DNA moved inward (Fig. 4g and Supplementary
Fig. 5k). This is consistent with the direction of the DNA
movement at SHL 1 and 2, and shows that in the Class 3 map the
DNA moved ~ 1 bp relative to the histone octamer.

The Class 3 structure reveals the mechanism of histone
octamer translocation on the DNA. Deformation of the histone
octamer in the Class 2 structure generates the strain that leads to
translocation of the DNA by the octamer as observed in the Class
3 structure. In the first step of the octamer translocation, H3 al
translocates to the DNA strand that is normally bound by the H4
al, whereas H4 al detaches from the DNA at SHL 1.5 and
translocates to the DNA at SHL 0.5. This pushes the DNA for ~ 1
bp over the histone octamer and shows the first step of DNA
sliding by the histone octamer.

Histone octamer plasticity is required for nucleosome sliding.
Our structures indicate that rearrangements of the histone octa-
mer translocate DNA. To test whether histone octamer plasticity
is essential for nucleosome sliding, we have assembled nucle-
somes with 227 bp-long DNA that contains strong positioning
601 DNA sequence in the center. Previously, it has been reported
that nucleosomes can slide in a non-catalyzed way on various
weakly positioning DNA sequences at physiological or slightly
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elevated temperatures®”®10, We have observed that at elevated
temperatures, nucleosomes can slide even on the strongly posi-
tioning 601 DNA sequence (Fig. 5a, b and Supplementary Fig. 6b,
¢). To determine whether rearrangements in the histone octamer
are required for nucleosome sliding, we have cross-linked the
nucleosome. The cross-linked histone octamer is rigid and unable
to go through conformational changes. Although the histone
octamer was cross-linked and migrates as one band on the
denaturing gel (Supplementary Fig. 6a), the octamer was not
cross-linked with DNA. The DNA can be disassembled from the
cross-linked nucleosomes by increased salt or temperature
(Fig. 5¢ and Supplementary Fig. 6d, e). In thermal shift assays we
observed that the native nuclesomes re-position on the long 601
DNA at elevated temperature. The cross-linked histone octamer,
however, was not able to move on the DNA and remains on the
601 DNA sequence (Fig. 5a-d and Supplementary Fig. 6b).

Next, we have introduced a site-specific disulfide cross-link
between H3 and H4, which was previously shown to impair
catalyzed nucleosome sliding'%. The disulfide bridge between H3
F104C and H4 V43C was sufficient to immobilize histone
octamer on DNA and we did not observe non-catalyzed
nucleosome sliding of the cross-linked sample (Fig. 5d and
Supplementary Fig. 7a, b). The addition of a reducing agent
removed the disulfide bridge between H3 and H4, and re-enabled
histone octamer sliding on DNA (Fig. 5d).

These data show that plasticity of the histone octamer and
rearrangements in the histone octamer are required for non-
catalyzed nucleosome sliding.

Discussion

The NCP has been crystallized numerous time; however, changes
in the histone octamer core have not been observed. Our struc-
tures show that the rearrangement of the histone octamer is
coupled with DNA translocation (Fig. 5e, f). The molecular basis
for DNA translocation could be the outcome of two possibilities.
The histone octamer deformation could be a consequence of
DNA movement and changes in the octamer core subsequently
accommodate the DNA in its new conformation. Alternatively,
structural changes in the histone octamer might be the driving
force for DNA translocation.

Our results show that the histone octamer core is structurally
plastic and can adopt multiple distinct conformations. These
structural rearrangements of the histone core translocate DNA in
an uncatalyzed manner and are required for nucleosome sliding
(Fig. 5). Structural rearrangement of the histone core is also used
by chromatin remodeling enzymes to mobilize DNA within
chromatin'?, Cross-linking of residues between H3 and H4 has
been shown to impair the function of several chromatin remo-
deling enzymes'?, and our structures show that these residues
move apart in the Class 2 and the Class 3 map when compared
with the X-ray structure (Supplementary Fig. 7a, b). Cross-linking
of these residues would block transition of the histone octamer
into the conformation observed in the Class 2 and the Class
3 structures. This indicates that the Class 2 and the Class
3 structures resemble a conformation that is also exploited by
ISWI chromatin remodeling enzymes to slide nucleosomes.
Recent structure of Snf2-Nucleosome complex shows that Snf2
pulls the DNA out of the nucleosome plane without distorting the
histone octamer (Supplementary Fig. 7c)*. This is consistent
with the finding that cross-linking of residues between H3 and H4
did not affect remodeling by Snf2 enzyme, indicating that these
enzymes employ different mechanisms'2. Most chromatin
remodeling enzymes have been shown to bind near SHL 2 where
we also observe the most pronounced rearrangements in our
structures®®*~#2, Our data show conformational changes in the
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nucleosome that are also exploited by several chromatin remo-
deling enzymes. In this simple model, chromatin remodeling
enzymes would provide energy to direct nucleosomes to less
favorable sequences, analogous to thermal shift.

A recent study has shown that ISWI remodelers translocate ~
7 bp of DNA out of the exit site before any DNA is translocated
inward®. This suggested that histone octamer might deform to
accommodate less DNA. Our structures show that the histone
octamer can deform, which also deforms the DNA, especially at
SHL 2 (Fig. 3). Our data show that the histone octamer defor-
mation can compensate for tension generated by missing DNA
bps and explains how DNA can be first translocated outward
before new DNA is translocated inward*»*4. In the Class
3 structure, the DNA at SHL 1 and 2 is moved 5 A relative to
histones, indicating a translocation of 1 bp. In agreement, in the
Class 3 structure ~ 1 bp of DNA is missing at the DNA entry/exit
site from which DNA is translocating.

In our structures we observed that movement of DNA leads to
rearrangement of the H4 tail. The H4 tail is essential for enzyme-
driven chromatin remodeling, and the chromatin remodelers
ISWI and Chd]1 require the basic &)atch of the H4 tail (K16-R17-
HI8-R19) for the activity®*?4>=>0, In the Class 1 structure, we
observed that the H4 tail interacts with the phosphate backbone

of DNA at SHL 2.5. When DNA at SHL 2.5 translocates away
(Class 2, 3), the basic patch of the H4 tail cannot reach the DNA
at SHL 2.5, and the H4 tail becomes more flexible and inserts into
the major groove at SHL 2. This rearrangement of the tail might
serve as a signal for the distorted state of the nucleosome for
chromatin remodeling complexes and might regulate their
binding and activity.

In our recent study ~10% of nucleosomes had unwrapped
DNA®. In the current dataset we observed that ~15% of
nucleosome particles show DNA unwrapping. The increased
proportion of unwrapped nucleosomes is likely because of the
increased salt concentration®!. Although in the previous dataset
nucleosomes were at frozen at 50 mM NaCl, in this dataset the
sample contained 150 mM salt. At even higher salt concentration,
nucleosomes unwrap even more and start to disassemble?’.

In all crystal structures of the NCP, the histone octamer is
found in the same conformation®3. In this study we present
structures of the nucleosome with a differently organized histone
octamer. Our structures show that the nucleosome has con-
siderable structural plasticity at its disposal and can adopt mul-
tiple conformations. Structural plasticity of the octamer permits
uncatalyzed DNA translocation and is also required for the
function of several chromatin remodeling complexes'?. It is likely

Table 1 Cryo-EM data collection, refinement, and validation statistics
Class 1 Class 2 Class 3
EMD-4297 EMD-4298 EMD-4299
PDB ID 6FQ5 PDB ID 6FQ6 PDB ID 6FQ8
Data collection and processing
Magnification 105000 105000 105000
Voltage (kV) 300 300 300
Electron exposure (e - /A2) 100 100 100
Defocus range (pm) —10to —3.0 —10to —3.0 —10to —3.0
Pixel size (A) 1.4 1.4 14
Symmetry imposed C2 C2 C1
Initial particle images (no.) ~ 410 000 ~ 410 000 ~410 000
Final particle images (no.) 51000 58 000 39000
Map resolution (A)
FSC threshold 3.85 4.05 4.8
Map resolution
range (A) 3.7-5.0 3.9-5.0 4.5-6.0
Refinement
Initial model used 3LZ1 3LZ1 3LZ1
Model resolution (A)
FSC threshold 3.8 4.0 4.8
Model resolution
range (A) 235-3.8 235-4.0 235-4.8
Map sharpening B-factor (A%) —-100 —-100 —-100
Model composition
Non-hydrogen atoms 12 215 1987 1917
Protein residues 771 752 744
Ligands 0 0 0
B factors (A2)
Protein 102.30 185.18 20417
Ligand 0 0 0
R.m.s. deviations
Bond lengths (A) 0.008 0.009 0.009
Bond angles (°) 1140 1.164 1.216
Validation
MolProbity score 1.23 1.50 1.53
Clashscore 3.63 7.97 8.49
Poor rotamers (%) 0.31 0.32 0.16
Ramachandran plot
Favored (%) 97.63 97.69 97.66
Allowed (%) 2.37 2.31 234
Disallowed (%) 0.0 0.0 0.0
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to be that structural rearrangements of the histone octamer have a
role be}lond DNA translocation and nucleosome remodel-
ing! 14171920 Eor example, histone variants or some histone
modifications might stabilize distinct conformations of the
nucleosome and this might be essential for their function.
Probably, other chromatin-modifying machineries might also
exploit the intrinsic plasticity of the nucleosome for their
functions.

Methods

Nucleosome reconstitution. Xenopus laevis histones were co-expressed and co-
purified as soluble H2A/H2B and (H3/H4)2 histone pair523’52’53‘ Escherichia coli
Rosetta cells containing plasmid for histone co-expression were induced with 0.2
mM IPTG overnight at 18 °C. Pelleted cells were resuspended in 50 mM sodium
phosphate pH 8.0, 2 M NaCl, 20 mM imidazole, 3 mM B-mercaptoethanol, 1 mM
phenylmethylsulfonyl fluoride, and lysed using a French press. The cleared
supernatant was incubated with Ni Sepharose 6 Fast Flow resin (GE Healthcare).
After binding, the resin was extensively washed and histone proteins eluted with
the buffer containing 300 mM imidazole. The histone proteins were further pur-
ified on ion-exchange and size-exclussion column®3. The histone octamer was
assembled in 25 mM HEPES/NaOH pH 7.5, 2 M NaCl, 1 mM dithiothreitol (DTT).
A 2.8-fold excess of H2A/H2B histone dimer was mixed with H3/H4 histone
tetramer and the octamer was purified by size-exclusion chromatography equili-
brated in 15 mM HEPES/NaOH pH 7.5, 2mM NaCl, 1 mM DTT (Supplementary
Fig. 1a, b). Histone mutants H3 F104C and H4 V43C were purified in the presence
of excess DTT during all the steps of protein purification!2. To purify the Cysteine
variants, only the gel filtration step was carried out. The assembly of Cysteine
variants octamer was carried out in the presence of 10 mM freshly made DTT in
the buffers.

DNA for nucleosome reconstitution was PCR amplified from a plasmid
containing the strong positioning 601 DNA sequence**. Oligonucleotides used are
listed in Supplementary Table 1. One hundred and forty-nine base pairs (149 bp) of
601 DNA was used for nucleosome reconstitution for cryo-EM structures. For
sliding assay, 227 bp 601 DNA was used (+ 40 bp on each side or + 80 bp on one
side of the 601 sequence). PCR products were purified by phenol chloroform
extraction. After ethanol precipitation, DNA was resuspended in 15 mM HEPES/
NaOH pH 7.5, 2 M NaCl, 1 mM DTT. The nucleosome reconstitution was done by
‘double bag’ dialysis>»*. The dialysis buttons, containing 0.25 ml of the histone
octamer:DNA mixture in 2 M salt buffer, were placed inside a dialysis bag, filled
with 50 ml of the size-exclusion buffer. The dialysis bag was immersed into a 1 liter
of buffer containing 15 mM HEPES/NaOH pH 7.5, 1 M NaCl, 1 mM DTT, and
dialysed overnight at + 4 °C. The next day, the dialysis bag, containing 50 ml of 1
M salt buffer and the dialysis buttons, was immersed into a 1 liter low-salt buffer
(100 mM NaCl, 15 mM HEPES/NaOH pH 7.5, 1 mM DTT) and dialysed for 5-6 h.
At the end of the buffer exchange process, the final buffer concentration was 150
mM NaCl, 15 mM HEPES/NaOH pH 7.5, 1 mM DTT.

Nucleosome cross-linking. The glutaraldehyde was added to a final concentration
of 0.1% (v/v) and the samples were incubated for 5 min at the room temperature
for cryo-EM grid preparation. The cross-linking was quenched with 50 mM Tris/
HCI pH 7.5 (final concentration) and incubated at least 30 min at + 4 °C. The
samples were concentrated to 2 mgml~! for cryoEM grids preparation.

For nucleosome sliding assays, samples were cross-linked for 30 min at 4 4 °C,
to reduce any histone octamer movements prior the assay. The cross-linking was
quenched with 50 mM Tris/HCI pH 7.5 (final concentration).

Dislufide cross-linking was done by extensive dialysis of the NCP under
reducing conditions. The NCP containing H3 F104C and H4 V43C mutations was
assembled by ‘double bag’ dialysis under oxidizing conditions (final dialysis buffer:
15mM HEPES pH 7.5, 1 mM DTT). After the assembly, three dialysis steps under
reducing conditions (the dialysis buffer: 15 mM HEPES pH 7.5) were carried out.
Two dialysis steps were done overnight.

Nucleosome sliding. For thermal shift assays, 10 ul of each nucleosome sample
were incubated at 60 °C (227 bp-long 601 DNA sequence). The time points were
taken as indicated. The site-specific disulfide cross-link between H3 F104C and H4
V43C was removed by adding 5mM DTT (final concentration) and incubating the
sample 1 h on ice before the thermal shift assay. The thermal shift assays were
analyzed on a 5% native PAGE. The gel was run in 0.2 x TBE buffer at 200 V for 75
min in the cold room. The gel was stained with SYBR Gold.

Thermal disassembly of the nucleosome. Ten microliters of each nucleosome
sample (40 ng ul =1, 15 mM HEPES pH 7.5, 1 mM DTT) was incubated on ice or at
the indicated temperatures (70, 74, 78, 81, 84, 86, or 90 °C) in a PCR machine for
15 min. The glycerol (final concentration 4% v/v) was added to the samples and
they were analysed using 6% native PAGE. The gel was run in 1 x TBE buffer at
150 V for 70 min in the cold room. The gel was stained with SYBR Gold.
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Salt disassembly of the nucleosome. Ten microliters of each nucleosome sample
(40 ng pl 1, 15 mM HEPES pH 7.5, 1 mM DTT) was supplemented with the buffer
containing additional NaCl so that the final salt concentration is as indicated on the
Figures (0, 0.1, 0.2, 0.3, 0.5, 0.75, 1, or 1.5 M NaCl). The samples were incubated at
25 °C for 30 min. The glycerol (final concentration 4% v/v) was added to the

samples and they were analysed using 6% native PAGE. The gel was run in 1 x TBE
buffer at 150 V for 70 min in the cold room. The gel was stained with SYBR Gold.

Cryo-EM grid preparation and data collection. We used Quantifoil R2/1 holey
carbon grids. The sample was vitrified with Leica EM GP automatic plunge freezer.
Temperature was kept at + 15 °C and the humidity at 95%. Three microliters of NCP
sample were applied to freshly glow-discharged grid, blotted for 3 s, and plunge-frozen
in the liquid ethane. The data were recorded on a FEI Titan Halo (FEI) at 300 kV with a
Falcon 2 direct electron detector (FEI) (750 micrographs) (MPI for Biochemistry,
Martinsried, Germany). The nominal magnification was 75 000 resulting in an image
pixel size of 1.4 A per pixel on the object scale. Data were collected in a defocus range of
10 000-30 000 A with a total exposure of 100 e A~2. Forty frames were collected and
aligned with the Unblur software package using a dose filter™.

Several thousand particles were manually picked and carefully cleaned in
XMIPP>® to remove inconsistent particles. The resulting useful particles were used
for semi-automatic and automatic particle picking in XMIPP. The contrast transfer
function parameters were determined using CTFFIND4%’. The 2D class averages
were generated with Relion software package®® and inconsistent class averages were
removed from further data analysis. The three-dimensional refinements and
classifications were done in Relion. Particles were split into two datasets and refined
independently, and the resolution was determined using the 0.143 cutoff (Relion
auto-refine option). Local resolution was determined with Relion 2.0. and all maps
were filtered to the local resolution with a B-factor determined by Relion. The initial
reference was filtered to 60 A in Relion. C2 symmetry was applied during
refinements for Class 1 and Class 2, whereas Class 3 was refined with C1 symmetry.

In our data sets, most particles were in the top view as observed by angular
distribution. To exclude the possibility that orientation bias might lead to the
distortion of the Class 2 structure, we have manually selected classes to enrich for
disk views. In the Class 2A, 50% of particles are in the disk orientation
(Supplementary Fig. 7d, e). This particles were reconstructed to 6.5 A and the
resulting map resembles Class 2 structure (Supplementary Fig. 7d-f). The Class 2
model fits well into this map, whereas the X-ray model does not fit (Supplementary
Fig. 7f). This shows that distortion of the nucleosome observed in the Class
2 structure is not a result of orientation bias.

Molecular models were built using Coot>® and refined in Phenix®,
Visualization of all cryo-EM maps was done with Chimera®!. The Chimera
software package was used for superposition of Class 1-3 maps and rigid body
fitting of models into superimposed maps. The movements were determined by
calculating RMSD of Ca. We have build independent models for two half data sets,
to determine the accuracy and uncertainty of models atoms from the models built
with the combined maps were randomly displaced to 0.5 A, and refined against one
of two half maps obtained from independent half datasets. To show uncertainty,
model variation was calculated in Chimera as RMSD of Ca backbone between two
models (halfl and half2 model) (Supplementary Fig. 3f and 5e). These data show
that for Class 1 and Class 2 uncertainty is < 0.5 A for most of the model. For Class 3
uncertainty is < 1.0 A for most regions.

Data availability. EM densities have been deposited in the Electron Microscopy
Data Bank under accession codes EMD-4297 (Class 1), EMD-4298 (Class 2), and
EMD-4299 (Class 3). The coordinates of EM-based models have been deposited in
the Protein Data Bank under accession codes PDB 6FQ5 (Class 1), 6FQ6 (Class 2),
and 6FQ8 (Class 3). All other data are available from the corresponding author
upon reasonable request.
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