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Abstract
Background: The development of multidrug resistant strains of extended-spectrum β-lactamase-producing Escherichia coli 
has become a global problem; therefore, the discovery of new antibacterial agents is the only available solution.
Objective: To improve and propose new compounds with antibacterial activity, the three-dimensional quantitative 
structure–activity relationship and molecular docking studies were carried out on Aztreonam analogs as E. coli inhibitors in 
DNA gyrase B
Method: This study’s 3D-Quantitative structure–activity relationship model was created using on the Comparative Molecular 
Field Analysis and the Comparative Molecular Similarity Indices Analysis. Using the Comparative Molecular Field Analysis 
(Q2 = 0.73; R2 = 0.82), excellent predictability was achieved, and the best Comparative Molecular Similarity Indices Analysis 
model (Q2 = 0.88; R2 = 0.9). The generated model’s ability to predict outcomes was assessed through external validation 
using a test set compound and an applicability domain technique. In this study, the steric, electrostatic, and hydrogen bond 
acceptor fields played a key role in antibacterial activity.
Results: The results of the molecular docking revealed that the newly generated compound A6 has the highest binding 
affinity with DNA gyrase B. It forms 10 hydrogen bonds with amino acid residues of Asn104, Asn274, Asn132, Ser70, Ser237, 
Thr105, Glu273, and 2 salt bridges with amino acid residues of Ser70 and Glu273 and one pi–pi interacting with Gys271 
amino acid residue in the binding site of 5G1, and this result was validated by a new assessment method. We created some 
novel, highly effective DNA gyrase B inhibitors based on the earlier findings, and the most accurate model predicted their 
inhibitory actions. The ADMET characteristics and pharmacological similarity of these novel inhibitors were also examined.
Conclusion: These findings would be very beneficial in guiding the optimization process for the identification of novel drugs 
that can address the issue of multiple drug resistance.
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Introduction

In the medical field, treating bacterial infections is becoming 
the most difficult endeavor. Gram-negative bacteria, specifi-
cally Escherichia coli, pose a serious risk to global public 
health because of their high level of antibiotic resistance.1,2 
In the past 20 years, there has been a 10-fold increase in the 
global community’s prevalence of bacteria that produce 
extended-spectrum β-lactamases (ESBL) E. coli among 
healthy individuals: from 2.6% in 2001–2005 to 26.4% in 
2016–2020.3 Due to their ability to increase patient risk of 
morbidity and death in the intensive care unit (ICU), these 
bacteria are of great clinical concern in hospitals.4,5

The bacterial enzyme DNA gyrase B is not present in humans, 
making it a viable target for treating diseases associated with E. 
coli.6,7 GyrA and GyrB are the two heterodimeric subunits that 
makeup gyrase. According to Bush et al.,8 the inhibitor mole-
cules cause oxidative damage, bind the gyrase DNA complex, 
and stop DNA replication from causing cell death.

Β-lactam antibiotics are among the most popular drug classes; 
they are usually safe and efficient, but their effectiveness against 
Gram-negative organisms has decreased due to resistance devel-
oped by bacterial enzymes that produce β-lactamase.9 The first 
drug of the novel class of β-lactam antibiotics known as mono-
bactams is Aztreonam. According to Brogden and Heel,10 it does 
not affect Gram-positive bacteria and is selectively active against 
aerobic Gram-negative bacteria.

Aztreonam analogs have independently shown antibacte-
rial action. Numerous compounds with Aztreonam scaffolds 
have been tested for antibacterial activity and shown to be 
effective. According to F. Reck et al.,9 Aztreonam scaffolds 
within the same structure may even increase the activity that 
each of them individually demonstrated.

Technological advancements in drug design require 
advanced experimental and computational techniques. These 
days, the approaches or procedures used in drug design are cru-
cial for predicting biological profiles, finding hits, producing 
leads, and expediting the process of turning leads into viable 
therapeutic candidates. When designing medications and agro-
chemicals, docking techniques and quantitative structure–
activity relationship (QSAR) have proven to be useful 
prediction tools. To create a trustworthy statistical model for 
forecasting novel chemical substances’ activity, QSAR meth-
ods have been used in research spanning decades to develop 
the relationship between the properties of chemical substances 
and their biological activities.11,12 The collected experimental 
values must come from trustworthy experiments, as the devel-
oped model is dependent upon the biological activity profile of 
the substances utilized in the model-building process. 
Therefore, in this investigation, 45 variants of Aztreonam were 
employed to construct the QSAR model (27), which was pro-
duced through the use of field-based Comparative Molecular 
Field Analysis (CoMFA) and Comparative Molecular 
Similarity Indices Analysis (CoMSIA). In the present research, 
modern approaches for drug discovery have been utilized, 
including 3D-QSAR, molecular docking as well as ADMET 

research of Aztreonam analogs as E. coli inhibitors, and the 
overall workflow for this study is shown in Figure 1.

Materials and methods

Experimental dataset and structure contraction

For 3D-QSAR, ADMT, and molecular model purposes, 45 
data sets of Aztreonam derivatives (Figure 2) were used, and 
they have been shown to have strong and specific inhibitory 
activity against the Gram-negative bacterium E. coli were 
gathered from published research.9 The previous value of the 
minimum inhibitory concentration (MIC) activity was 
expressed in µg/ml. The data on antibacterial activity were 
expressed as MIC against E. coli. MIC was transformed to 
pMIC by taking log (1/MIC) by using ChemMaster software 
(https://crescentsilico.wordpress.com/chemmaster/), and in 
all later models created, the pMIC values served as the depend-
ent variable. Table 1 displays the pMIC values.

Molecular alignment and minimization

Compound molecular alignment is a crucial stage in building 
3D-QSAR models,15 and it was conducted by Using Maestro 
Schrodinger software. The ligand-based alignment technique 
used in this study involves isolating a template molecule first, 
and then all data set molecules were minimized by using the 
standardized Tripos force field. Lastly superimposing all data 
set molecules on selected template compound as shown in 
Figure 3.

3D-QSAR model

Field-based studies utilizing the 3D-QSAR (CoMFA and 
CoMSIA) model were carried out utilizing Maestro 
Schrodinger software version (v12.8; Schrodinger 2023, 
New York, NY, USA).16,17 The compound activities and 
descriptors were imported into the Maestro spreadsheet to 
create the field-based 3D-QSAR model using the Maestro 
software. The software arbitrarily divided the dataset into 
two sets, by designating 70% of the data sets (32 compounds) 
as the training sets for developing the models and 30% of the 
data sets (13 compounds) as the test sets for evaluating the 
effectiveness of the developed models.18,19

Field-based CoMSIA 3D-QSAR model, utilizing a 
Gaussian function, the similarity indices were calculated. 
The hydrophobic, steric, electrostatic, H-bond donor, and 
H-bond acceptor fields were among the similarity index 
descriptors. Steric and electrostatic fields were incorporated 
into the CoMFA technique.14,18

3D-QSAR model validation and model analysis 
(PLS)

The partial least squares (PLS) method was used to create the 
3D-QSAR model. PLS assesses a straight-line association 

https://crescentsilico.wordpress.com/chemmaster/
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between biological activity values and the CoMFA and 
CoMSIA descriptors by utilizing the maximum of N/5 PLS 
factor with three outliers (N = number of ligands in the training 
set). In PLS analysis which took as its most ideal model was 
distinguished by the high correlation coefficient (R2), high 
cross-validated Q2, lower SD, and lower RMSE value. To 
ensure the robustness of the QSAR model, a four-component 
model with good statistics was chosen to forecast the activity 
of test set molecules.18

In silico ADMET and drug-likeness prediction

The physicochemical, pharmacokinetic, toxicity, and drug-
likeness profiles of the compounds were estimated using 
ADMETlab 2.0 (absorption, distribution, metabolism, excre-
tion, and toxicity)20 and Swiss ADME http://www.swis-
sadme.ch/index.php online software tools. The chemical 
structure of the compounds was submitted in the form of a 
canonical simplified molecular input line entry system 
(SMILE) to Swiss ADMELab2.0 software to predict the 

physicochemical, ADMET, and drug-likeness profile of the 
compounds, synthetic associability, and drug-likeness pre-
diction like Lipinski.

Molecular docking

Through the use of a technique called molecular docking, one 
can determine the low-energy binding affinity of a molecule 
(ligand) in the receptor’s active site (protein). Essentially, the 
algorithms that perform molecular docking start by placing a 
tiny ligand at a specific binding site of the target protein. This 
ligand can provide several conformations. To quantify the 
binding energy and ultimately determine the optimal mode of 
binding, how the ligand and the protein are also evaluated 
using scoring functions.21

The glide docking module of Schrödinger suite 2023 ver-
sion 1 (Schrödinger Inc., New York, NY, USA) was used for 
the molecular docking investigation of the drugs in this 
work. For the stages involved in protein and ligand prepara-
tion, the latter was carried out.

Figure 1. Overall work flow 3D-QSAR, molecular docking, and ADMETstudies of aztreonam analogues as E. colis inhibitors.

http://www.swissadme.ch/index.php
http://www.swissadme.ch/index.php
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Figure 2. (Continued)
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Figure 2. Aztreonam analogues.

Protein preparation

The protein with antimicrobial properties was obtained from 
the Protein Data Bank (http://www.rcsb.org), (PDB: 5G18).22 
The E. coli gyrase B (GyrB) crystal structure bound with a 
natural product antibiotic (PDB: 5G18) was used as a template 
for the docking.23,24 After that, using the Maestro Schrödinger 
suite 2021 version 1, the protein was prepared using the protein 
preparation wizard. The protein was prepared by filling miss-
ing residues in the area around the binding site of protein 
(5G18), by assigning bond orders, establishing disulfide bonds, 
including any of the missing hydrogen atoms, and eliminating 
water molecules larger than 5 Å, and protein was minimized 
the by using OPLS3e force field.

Ligand preparation

The ligand compounds were prepared using the ligprep wiz-
ard in Maestro Schrödinger suites. 3D structures of active 
compounds for docking study were constructed using the  
sketch option in Maestro Schrodinger option in Maestro. 
Furthermore, energy minimization of the ligands was carried 
out, and minimizing macromolecular structures was used by 
the OPLS3e force field.

Preparation of grid generation and docking poses

To prepare and select the binding site for the docking, Glide 
was applied to generate a grid by selecting atoms of the 
bound ligand, aztreonam (AZR) in a 20 Å. The ligands’ pro-
tonation states were computed using a pH of 7.4 ± 1.0 as the 
basis, and they were subsequently docked following Glide 

extra precision (XP).25,26 The top dock score poses of the 
compounds were further analyzed and visually inspected 
using PyMOL version 2.5 ( Schrodinger,Inc., New York, NY, 
USA) to examine their detailed binding interaction.27,28

Results

Molecular alignment

Molecular structural alignment is crucial in determining the 
predictive capacity of built CoMSIA and CoMFA models. 
The result of molecular alignment of all the dataset com-
pounds was conducted using Maestro Schrodinger software 
and presented in Figure 3. Compound AZT2 (most active) 
was used as a template molecule, and all the dataset com-
pounds were superimposed on it.

CoMSIA and CoMFA models

Results of the CoMSIA and CoMFA models observed 
(pMIC50) and predicted activity of aztreonam analogs are 
presented in Table 1. The PLS statistical results of built 
models are also available in Table 2. According to Table 2, 
the PLS result displays that the CoMSIA and CoMFA mod-
els exhibit high R2 values of 0.90 and 0.82, respectively, and 
F values of 90.1 and 84.3, respectively, small standard error 
SD values of 0.029 and 0.454, respectively, and the minor 
values of RMSE values of 0.27 and 0.32, respectively.

The results of the external validation assessment con-
ducted on the CoMSIA and CoMFA models are presented in 
Table 2. Externally validated methods, Leave-One-Out cor-
relation coefficient (Q2 LOO) value (0.8859 and 0.72, 

http://www.rcsb.org
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respectively) for training tests, and Pearson-r values (0.64 
and 0.63, respectively) for test set were used. Furthermore, a 
58:42 ratio between the steric and electrostatic contributions 
was discovered, suggesting that steric interactions hold a sig-
nificantly greater significance than electrostatic ones.

3D-QSAR contour map analysis
For the result of the CoMSIA/CoMFA contour map, we selected 
the most active compound, AZT2, as a reference for insight into 
different fields of the compound. The CoMSIA steric area, elec-
trostatic, hydrophobic, hydrogen bond acceptor, and hydrogen 

Table 1. Aztreonam analogues studied and their observed and predicted antibacterial activity.

ID Data set CoMSIA CoMFA

Code Mw MIC(μg/ml) MIC (mM/ml) Y(Obs) Y(Pred) Y(Pred) Error

1 AZT 26 435.43 0.125 0.000287 6.0110 6.7979 6.604 0.7869
2 AZT 17 466.40 0.06 0.000129 6.9070 7.7331 8.469 0.8261
3 AZT 25* 453.42 0.125 0.000276 7.2320 8.2534 7.837 1.0214
4 AZT 28 449.46 0.25 0.000556 7.3600 7.6244 7.859 0.2644
5 AZT 19 507.50 0.25 0.00493 7.5370 8.3211 8.659 0.7841
6 AZT 33 521.53 4 0.007669 7.5540 7.4882 7.875 −0.0658
7 AZT 29* 504.49 2 0.003964 7.7370 7.8420 8.013 0.1050
8 AZT 24 5018.52 1 0.00199 7.8690 8.6180 8.355 0.7490
9 AZT 31 532.55 4 0.007511 8.1110 7.9351 8.291 −0.1759
10 AZT 6* 520.49 0.5 0.000960 8.1150 8.8095 8.645 0.6945
11 AZT 9 519.51 0.5 0.000962 8.1240 8.6960 8.98 0.5720
12 AZT 35 502.48 0.5 0.000995 8.3780 9.4827 8.474 1.1047
13 AZT 7 502.48 0.5 0.000995 8.4020 8.7192 8.63 0.3172
14 AZT 16* 502.48 0.5 0.000995 8.4130 8.3873 9.24 −0.0257
15 AZT 32 502.48 1 0.001990 8.4240 8.0622 8.174 −0.3618
16 AZT 20 517.50 2 0.003865 8.4400 8.3211 8.659 −0.1189
17 AZT 15* 516.51 64 0.123908 8.7010 8.7370 8.599 0.0360
18 AZT 34 534.52 1 0.001871 8.7220 8.6634 8.517 −0.0586
19 AZT 39 551.53 16 0.029010 8.7230 9.3607 8.476 0.6377
20 AZT 27 551.53 2 0.003626 8.7260 7.9002 9.276 −0.8258
21 AZT 18* 550.54 0.5 0.000908 8.7280 8.6146 8.93 −0.1134
22 AZT 22* 550.54 1 0.001816 8.7410 8.6146 8.042 −0.1264
23 AZT 30 591.58 0.25 0.000423 8.7900 8.4154 9.39 −0.3746
24 AZT 41 591.58 8 0.013523 8.9760 9.1200 8.607 0.1440
25 AZT 12 546.49 32 0.058555 9.0020 8.5344 7.906 −0.4676
26 AZT 13* 532.51 0.5 0.974418 9.0020 8.5184 8.158 −0.4836
27 AZT 14 531.52 1 0.001881 9.0020 8.6391 9.161 −0.3629
28 AZT 11 573.56 0.25 0.043587 9.0170 9.2148 8.542 0.1978
29 AZT 10 545.55 1 0.001833 9.0180 9.1786 8.542 0.1606
30 AZT 21* 617.64 1 0.001619 9.0420 8.6146 9.027 −0.4274
31 AZT 4 516.51 4 0.007744 9.2540 8.9918 9.465 −0.2622
32 AZT 5 531.52 2 0.003763 9.3070 9.2415 8.607 −0.0655
33 AZT 45* 573.56 16 0.027896 9.3170 9.7583 8.856 0.4413
34 AZT 23 503.47 1 0.001896 9.3740 8.6180 8.38 −0.7560
35 AZT 1 488.46 1 0.00419 9.5420 9.1087 9.028 −0.4333
36 AZT 3 488.46 0.125 0.000255 9.5590 9.1156 8.355 −0.4434
37 AZT 37 474.43 0.125 0.0002634 9.5790 9.5296 8.52 −0.0494
38 AZT 36 514.49 0.125 0.000243 9.5930 9.4827 9.715 −0.1103
39 AZT 38* 528.52 1 0.001892 9.6140 9.3607 8.729 −0.2533
40 AZT 43 706.71 0.125 0.000177 9.6180 9.7583 9.028 0.1403
41 AZT 44* 571.55 0.06 0.001057 9.6420 9.2058 8.725 −0.4362
42 AZT 42 571.55 0.125 0.000219 9.6590 8.2445 8.057 −1.4145
43 AZT 8 518.48 0.125 0.000241 9.7010 9.3363 9.013 −0.3647
44 AZT 40 547.52 0.125 0.000228 9.7520 9.7785 9.611 0.0265
45 AZT 2* 518.48 0.25 0.000482 9.8900 9.8473 9.593 −0.0427

*= test set.
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bond donor contour maps as shown in Figure 4(a)–(e) respec-
tively. The CoMFA steric and electrostatic contribution contour 
maps are illustrated in Figure 5(a) and (b).

Moreover, a PLS analysis plot showing the correlation 
between predicted and experimental activities for training 
and test sets was obtained for both CoMSIA and CoMFA 
models, and it is available in Figure 6.

The correlations of predicted and observed pMIC values 
are displayed in Figure 6.

Design of new compounds

From aztreonam analogs, AZT 2 is the most active molecule 
in 3D-QSAR and molecular docking investigations. Using 
AZT 2 as a template, we created AZT 2 analogs (A1-7), and 
their activity was predicted using the CoMSIA/SEA model. 
Figure 7 and Table 3 list the new candidate compounds that 
have antibacterial action. A3 was the most active analog of 
AZT2.

ADMET prediction and drug-likeness of new 
compounds

The result of ADMET properties, drug-likeness, and toxicity 
study by utilizing ADMETlab 2.0 and Swiss ADME http://
www.swissadme.ch/index.php online software tools con-
ducted on Aztreonam (AZT2) and its derivatives A2–7 
reported in Table 4.

Molecular docking

The result of the molecular docking study was conducted 
between the target protein (PDB ID: 5G18), the reference 
compound (AZT), Aztreonam derivatives, and seven newly 
generated AZT2 derivatives(A1–7) by using Schrodinger 
Maestro docking software as shown in Figures 8–10.

Discussion

CoMSIA and CoMFA study

One of the most important steps in creating 3D-QSAR mod-
els is molecular alignment. For this study, a ligand-based 
alignment technique was chosen, in which a template mole-
cule (AZT2) is isolated first and then all other molecules are 
aligned over it. All the dataset structures are aligned to the 
template common substructure using Maestro Schrodinger 
software during the process. Figure 3 displays the overlay 
structures of the aligned data set.

The models created for a collection of 45 data sets of 
aztreonam derivatives have been used to calculate the pre-
dictive capacity of the CoMFA and CoMSIA models (Table 
1). The most important statistics are the test set statistics that 
show how accurate the predictions are, such as the root mean 
square error (RMSE), Q2, and Pearson-r (Table 2). Stability 
is a marker of the model’s sensitivity to omission from the 
training set. As PLS was increased, the developed model’s 
stability showed promise. PLS overview displays that the 
CoMSIA model exhibits high R2 (0.90) and F (90.1) values, 
a small standard error SD (0.029). The F value could be used 
to determine the ratio of the observed activity variation to the 
model variance. A strong marker of the statistical signifi-
cance of the regression is the large value of F (90.1). In addi-
tion, the data used to create the regression model are the 
most appropriate due to the high value of R2 (squared corre-
lation coefficient) (0.90) and the minor values of RMSE 
(0.27) and SD of regression (0.029).

The model was also validated by the externally vali-
dated correlation coefficient (Q2). Since the Q2 Leave-
One-Out (Q2 LOO) value (0.8859) was acquired by external 
validation by separating the data into training and group 
tests, it is more accurate and robust than the R2 value. 
Another crucial metric for illustrating the correlation 
between the test sets observed and expected activity is the 

Figure 3. Superposition and alignment of the 45 studied compounds using AZT2 as a template.

http://www.swissadme.ch/index.php
http://www.swissadme.ch/index.php
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Pearson-r value (0.64). This was also observed by Ugbe 
et al.14 Accurate estimates of the test E. coli inhibitors had 
been made by the two models. The CoMFA and CoMSIA 
models were predicted to have R2 values of 0.84 and 0.90, 
respectively (Table 2).

According to the PLS summary, the CoMFA model has 
high R2 (0.82) and F (84.3) values, small estimation error SD 
(0.454), and the cross-validated determination coefficient Q2 
(0.72) with four optimum number of components. Test sets 
are typically utilized for cross-checking and validating the 
QSAR model’s external prediction capability. The 13 test 
sets that were chosen at random underwent the same optimi-
zation and alignment processes as the training sets. The high 
R2 value (0.92) was obtained from the external validation, 
showing that the CoMFA model’s predictive capacity is 
acceptable. Furthermore, a 58:42 ratio between the steric and 
electrostatic contributions was discovered, suggesting that 
steric interactions hold a significantly greater significance 
than electrostatic ones.

3D-QSAR contour map analysis

Field-based QSAR is a technique for modeling the correla-
tion between a collection of 3D characteristics of matched 
compounds (such as CoMFA and CoMSIA) and known 
activity values.29 Field-based QSAR can infer the contribu-
tion of the ligand’s electrostatic, hydrophobic, and steric 
fields to biological activity or inactivity by starting with a 
group of connected ligands exhibiting recognized behav-
iors.30. We used the most active compound, AZT2, as a refer-
ence to create a CoMSIA/CoMFA contour map from which 
to show the data found in the best 3D-QSAR model. Two 
fields-based 3D QSAR styles are available for the model’s 
construction and testing: the first field makes use of the five 
Gaussian fields (CoMSIA) in the model, and the second, a 
force field that employs the model’s force-field electrostatic 
and steric field (CoMFA).

In the CoMSIA steric area, at this level, 80% of the con-
tributions are represented by the green contour (sterically 
advantageous) and 20% by the yellow contour (sterically 
unfavorable). The red contour in the CoMSIA electrostatic 

field indicates a favorable electronegative charge and the 
blue contour (indicating electropositive charge favorable) 
corresponds to 80% and 20% of the level contribution, 
respectively. Similarly, in the CoMFA electrostatic field, 
the blue (electropositive charge favorable) and red (elec-
tronegative charge favorable) contours reflect 20% and 
80% of the level contribution, respectively. CoMFA and 
CoMSIA contour maps were produced to streamline regions 
where the activity can be decreased or increased. CoMSIA 
contour maps are displayed in Figure 4(a)–(e).

Figure 4(a) displays the CoMSIA steric contribution con-
tour map. Green contours around the NH2 and COOH posi-
tions of the lactamase group indicate that bulky groups in 
these positions can increase activity, while yellow contour 
around sulphonyl positions of the lactam group and small 
substitutions in these positions have decreased activities. 
Figure 4(b) displays the electrostatic contour map for the 
CoMSIA model. Bleu contour is near to position β-lactam 
ring which means that the substitution with electron-donat-
ing groups (-COONH2) would increase the activity. While 
red contours around the β-lactam ring can decrease the activ-
ity. This bulky electron-donating substitution group 
(-COONH2) selection is required in this region which indi-
cates that improving biological activity. That can explain 
why compound AZT2 with the –COONH2 on the ortho posi-
tion of the β-lactam ring is more active than the compound 
AZT1 with the same ortho position.

The CoMSIA hydrophobic contribution contour map is 
shown in Figure 4(c). Yellow contour around the β-lactam 
ring and two methyl groups near oxime functional groups 
indicate that hydrophobic groups may increase the activity, 
while the white contour around the amide position of the β-
lactam ring and near the ester indicates that hydrophilic groups 
are favored. Figure 4(d) displays the hydrogen bond acceptor 
field contribution contour map in CoMSIA. Magenta contour 
around the oxygen atom near to sulfonamide positions of the 
β-lactam ring and position near oxime in the ester group 
explain that substituent with the ability to accept hydrogen 
bonds can boost activity, whereas the red contour covering the 
hydrogen atom exposed the significance of the hydrogen 

Table 2. The PLS statistical results of CoMFA and CoMSIA models in different molecular field combinations.

Model QSAR statistic Fractions

Q2 R2 R2 CV R2 scramble Stability SD F P RMSE Pearson-r S E H HBD HBA

CoMFA 0.73 0.82 0.0471 0.6308 0.628 0.454 84.3 1.43E-08 0.32 0.631 0.678 0.322 — — —
CoMSIA 0.88 0.90 0.0105 0.6973 0.816 0.029 90.1 0.000671 0.27 0.6439 0.373 0.084 0.145 0.152 0.246

SD: standard deviation of the regression; R2: value of R2 for the regression; R2 CV: cross-validated R2 value, computed from predictions obtained by a 
leave-N-out approach. The value of N is specified in the Build Field-Based Model Dialog Box.; R2 scramble: average value of R2 from a series of models 
built using scrambled activities. Measures the degree to which the molecular fields can fit meaningless data, and should be low. Stability: stability of the 
model predictions to changes in the training set composition. This statistic has a maximum value of 1 (meaning stable); F: variance ratio. Large values of 
F indicate a more statistically significant regression; P: Significance level of variance ratio. Smaller values indicate a greater degree of confidence; RMSE: 
root-mean-square error of the test set; Q2: value of Q2 for the predicted activities of the test set; Pearson-r: value of Pearson-r for the predicted activities 
of the test set.
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bonds donor group. Figure 4(e) is shown in the CoMSIA of 
the hydrogen bond donor contribution contour map. The activ-
ity would be enhanced by substituting a donor hydrogen bond 
at the COOH locations of the functional group that is closest 

to the oxime, as indicated by the cyan contour around these 
areas.

The CoMFA steric and electrostatic contribution contours 
map are illustrated in Figure 5(a) and (b). The steric 

Figure 4. CoMSIA contour maps analysis of AZT2 with 2 Å grid spacing (a) steric, green color indicates positive and yellow indicates 
negative contribution (b) electrostatic, blue color indicates positive and red color indicates negative contribution, (c) hydrophobic fields, 
yellow color indicates positive and white color indicates negative contribution, (d) hydrogen bond acceptor, red color indicates positive 
and magenta indicates negative contribution and (e) H-bond donor fields, purple color indicates positive and cyan color indicates 
negative contribution.
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contribution contour map is displayed in Figure 5(a) using 
green and yellow colors, whereas Figure 5(b) displays elec-
trostatic interactions with red and blue contours. In the steric 
contribution contour map, bulky substituents are favored 
around green regions, while in yellow regions bulky substit-
uents are unflavored. Moreover, in the electrostatic interac-
tions contour map, blue regions indicate that nucleophilic 
groups are favored, while red regions are unflavored, this 
funding is supported by Edache et al.,31 reported in 2023.

The PLS analysis method demonstrated a linear correla-
tion between the observed and predicted pMIC values. 
Predicted and observed pMIC values demonstrated the great 
predictive power of the models, as Figure 6 illustrates. 

Previous research published in 2022 by Ugbe et al.14 cow-
orkers provided evidence for this.

Design of new compounds

This study’s main goal is to build novel Aztreonam analogs 
that inhibit E. coli by using the structural properties of the 
most active molecule (AZT 2) as a guide for our extraction 
of recommendations from 3D-QSAR and molecular docking 
investigations. Seven Aztreonam derivatives were created in 
this study to enhance and suggest a novel antibacterial agent. 
The newly created molecules were matched to the database 
using AZT 2 as a template, and their activity was predicted 

Figure 5. CoMFA contour maps analysis of AZT2 with 2 Å grid spacing (a) steric, green color indicates positive and yellow indicates 
negative contribution; and (b) electrostatic, blue color indicates positive and red color indicates negative contribution.

Figure 6. The predicted versus experimental PMIC50 values for 45 compounds model. (a) CoMSIA model; (b) CoMFA model. Filled blue 
circles color represent predictions for the training set; while filled red circle color represents predictions for the test set.
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using the CoMSIA/SEA model Figure 7 and Table 3 list the 
new candidate compounds that have antibacterial action.

ADMET prediction and drug-likeness of new 
compounds

Predicting pharmacokinetics and toxicity aids in optimizing the 
pharmacological characteristics of recently produced drugs.15 
Table 4 displays the in silico estimation of the pharmacokinetic 
and toxicity profiles of Aztreonam (AZT2) and its derivatives 
A2–7, utilizing ADMETlab 2.020 to estimate absorption, distri-
bution, metabolism, excretion, and toxicity and Swiss ADME 
http://www.swissadme.ch/index.php online software tools.

Models based on field data (CoMSIA/SEA) anticipate 
nearly identical activities for all newly developed compounds. 
We thus employed the pharmacokinetic parameters ADMET 
and drug-likeness to confirm that the proposed compounds are 
effective medications. For in silico ADMET properties 

prediction, the ADME online tool was utilized. From Table 4, 
it is evident that Aztreonam (AZT2) and all the newly designed 
compounds (A2–7) exhibited better solubility (<−2 < very < 0 
Log S) and partition coefficient (Log P) profile. For partially 
dissociated compounds (Log D), the partition coefficients fell 
within the optimal range.

In this study, we took MDCK and Pgp-inhibitor to evalu-
ate the absorption profiles of newly designed compounds. 
Madin−Darby canine kidney cells (MDCK) has been devel-
oped as an in vitro model for permeability screening. Its 
apparent permeability coefficient, Papp is commonly 
regarded as the in vitro gold standard for determining how 
well substances are absorbed by the body. Pgp (P-glycoprotein) 
inhibitor is another parameter to measure the absorption of 
compounds. The P-glycoprotein is a membrane protein 
belonging to the superfamily of ATP-binding cassette (ABC) 
transporters. Given that it can detect several xenobiotic that 
are structurally distinct and appear to be unrelated, it is likely 
the most promiscuous efflux transporter. Notably, a large 
number of these xenobiotic are also substrates for CYP3A4. 
As evident in Table 4 almost all of the newly designed com-
pounds have successfully passed the absorption pharmacoki-
netic evaluation parameters.

Distribution of newly designed compounds is evaluated 
by plasma protein binding (PPB). Drug pharmacodynamics 
behavior is strongly influenced by the binding of a drug to 
proteins in plasma, as PPB is one of the main routes of drug 
uptake and distribution. PPB has a direct impact on oral bio-
availability since the process of a drug binding to serum pro-
teins affects the drug’s free concentration.

The second parameter to evaluate the distribution of com-
pounds was in blood–brain barrier (BBB). BBB crossing is nec-
essary for drugs that act on the central nervous system (CNS) to 

Figure 7. Structures of newly designed molecules.

Table 3. Predicted pMIC of newly designed compounds based 
on CoMFA and CoMSIA 3D-QSAR models.

New 
compounds

Predicted pMIC

CoMSIA CoMFA

AZT2
 A1 8.254 8.29
 A2 9.208 9.23
 A3 10.072 9.493
 A4 9.593 9.369
 A5 9.228 9.332
 A6 9.347 9.322
 A7 9.002 9.326

http://www.swissadme.ch/index.php
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get to their molecular target. In contrast, BBB penetration may 
be minimal or nonexistent for medications with a peripheral tar-
get to prevent CNS side effects and third parameter was volume 
distribution (VD). One crucial criterion to characterize the in 
vivo distribution of medications is VD, a theoretical idea that 
links the actual starting concentration in the bloodstream with 
the dose that was provided. Practically speaking, we may infer 
the distribution characteristics of an unknown molecule based 
on its VD value, including the conditions under which it binds 
to plasma proteins, the amount it distributes across bodily flu-
ids, and the amount it absorbs into tissues. All of the newly 
designed compounds have successfully passed the distribution 
evaluation based on the above parameters.

Metabolism (CYP 2D6/3A4 inhibitor and 2D6/3A4 sub-
strate) of the new compound is successfully passed, while 
excretion (CL and T1/2) was under normal value.

All of the compounds were anticipated to be nonmutagenic 
(AMES toxicity), noncarcinogenic, nonhuman hepatotoxic 
(H-HT), nonrat oral acute toxicity (ROA), and non-hERG 
inhibitors; nonetheless, they had a weak hepatotoxic profile. 
Promising projected pharmacokinetic and safety profiles were 
shown by the majority of the substances.

The newly designed compounds (A1-7), estimate the quan-
titative drug-likeness (QED), synthetic accessibility score (SA 
score), pfizer rule (rule of 5), and molecular docking as 

illustrated in Table 5. Each of these properties was chosen for 
its relevance in assessing the drug-likeness and synthetic fea-
sibility of molecules, crucial factors in drug discovery and 
design. All newly generated compounds are acceptable for 
QED value, except compound A1, and compounds A4–7 
accept the rule of five or pfizer rule, but compounds A1–3. 
These parameters are important as indicators of drug likeness. 
The newly designed compounds (A1–7) also predict their syn-
thetic accessibility. All compounds synthetic accessibility 
scores were less than 5.00, and this indicated that they are easy 
laboratory synthesis. This funding is supported by previous 
research done by Fabian Audu Ugbe et al.32 in 2023.

Molecular docking study

A molecular docking study was conducted to get an addi-
tional understanding of the drug’s mechanism of action and 
their binding interaction, and it was done by using 
Schrodinger Maestro docking software. E. coli DNA GyrB 
has been proposed as the main binding target for antibacte-
rial activity.33 It had been reported that DNA supercoiling 
activity was inhibited by Aztreonam overlapping in the ATP 
binding site of GyrB. The crystal structure of E. coli DNA 
gyrase B linked to the natural product antibiotic AZT was 
used to conduct a molecular docking investigation of 

Figure 8. (a) 2D docking poses showing interactions of compound AZT in the binding sites of DNA gyrase B 5G18, (b) 3D docking 
poses showing interactions of compound AZT in the binding sites of DNA gyrase B 5G18, (c) polar (hydrogen bond) binding interaction 
of JJ2 with PFK amino acid residues of ARG 203 and ASP199. (c) Surface representation showing AZT in the binding sites of DNA 
gyrase B 5G18 with lipophilicity coloring. White representing hydrophobic pockets and red representing hydrophilic pockets. AZT is 
shown in ball-stick model.
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Aztreonam derivatives (PDB ID: 5G18)22 as shown in 
Figure 8. The binding modes of AZT2 have the greatest 
binding affinity with DNA gyrase B as displayed in Figure 
9. It forms 7 hydrogen bonds and 2 salt bridges with Asn104, 
Ser70, Ser237, Asn132, Thr235, Lys234, and Ser130 amino 
acid residues in the binding site of 5G18. The OH group at 
SOOHN of the monolactam portion of AZT 2 produces 
hydrogen bonds with the carbonyl oxygen side chain of 
Asn104, and the hydroxyl group at COOH of the thiazoline 

group forms hydrogen bonds with the carbonyl oxygen side 
chain of Thr235 and Ser30, respectively. The carbonyl oxy-
gen at the monolactam moiety of AZT 2 and the carbonyl 
oxygen at the thiazoline portion form hydrogen bonds with 
the carbonyl oxygen side chain of Asn104 and Ser130, 
respectively. The NH at monolactam group forms hydrogen 
bonds with the carbonyl oxygen side chain of Ser237 and 
the N+H3 moiety forms hydrogen bonds with the carbonyl 
oxygen side chain of Ser70 and Ser237, respectively. 

Figure 9. (a) 2D docking poses showing interactions of compound AZT2 in the binding sites of DNA gyrase B 5G18 and (b) 3D 
docking poses showing interactions of compound AZT2 in the binding sites of DNA gyrase B 5G18.
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Moreover, protonated (positively charged) nitrogen at mon-
olactam moiety creates a salt bridge with a side chain of 
negatively charged hydroxyl group oxygen atoms, and the 
deprotonated (negatively charged) oxygen at COOH moiety 

creates a salt bridge with positively charged nitrogen atom 
at the side chain of Lys 234.

Furthermore, the newly generated compound A6 as shown 
in Figure 10 has highest binding affinity with DNA gyrase B. 

Figure 10. (a) 2D docking poses showing interactions of compound A6 in the binding sites of DNA gyrase B 5G18 and (b) 3D docking 
poses showing interactions of compound A6 in the binding sites of DNA gyrase B 5G18.
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Table 5. Drug likeness prediction of the newly design 
compounds (A1–7), their synthetic accessibility and molecular 
docking results.

Compounds QED SAscore Docking score Pfizer

A1 — 4.34 −6.248 Rejected
A2 0.056 4.156 −6.277 Rejected
A3 0.029 4.489 −7.314 Accepted
A4 0.052 4.55 −7.084 Accepted
A5 0.027 4.654 −7.514 Accepted
A6 0.022 4.672 −8.83 Accepted
A7 0.042 4.533 −7.576 Accepted

Source: Xiong et al.20

It forms 10 hydrogen bonds with amino acid residues of 
Asn104, Asn274, Asn132, Ser70, Ser237, Thr105, Glu273, 
and 2 salt bridges with amino acid residues of Ser70 and 
Glu273 and one pi-Alkyl connect with Gys271 residue of 
amino acid in the binding site of 5G18. In general, the root-
mean-square deviation natural ligand (PDB: 5G18) and 
redocking compounds were 1.3195 and 1.0254, respectively.

Strengths and limitations of the study

The strength parts of this study was giving insight into the sci-
entific knowledge for researcher toward 3D-QSAR, ADMT, 
and molecular docking studies of Aztreonam analogues as E. 
colis inhibitors. The limitation of this study was that it takes 
time to obtain acceptable chemical coverage for training and 
test set datasets, and deficient datasets impact the application 
domain and result of the models. Moreover, lengthy software 
setup periods, virus-ridden data, and unanticipated computer 
malfunctions can all result in the loss of work.

Conclusion

Using a set of Aztreonam derivatives with antibacterial 
potency against E. coli, the 3D-QSAR models for CoMFA 
and CoMSIA were created for this investigation. The mod-
els’ Q2 and R2 values show good statistical findings.

For the chemical test set, CoMFA and CoMSIA were 
found to have good predictive power, indicating that these 
models might be usefully applied to the prediction of pMIC50 
values. Furthermore, the key locations that improve bioac-
tivity and H-bond interactions were identified as steric, elec-
trostatic, and hydrophobic based on the contour maps of the 
CoMFA/CoMSIA models.

A docking study was conducted to examine and deter-
mine the interactions of potential antibacterial agents in 
the DNA gyrase active site. AZT2 proved to be the most 
effective of these compounds, and the newly designed 
compound A6 has the highest binding and biological 
activity observed from these findings. These findings 
offered vital hints for creating brand-new E. coli 

inhibitors with highly anticipated strong potency. Based 
on the structure–activity relationship from the current 
investigation, a set of seven new derivatives was created. 
On these novel compounds, in silico analyses of their tox-
icity, distribution, metabolism, excretion, and absorption 
were performed to look into their activities by the stand-
ard. Five of the seven compounds that were produced are 
lead-like molecules with superior pharmacological char-
acteristics than those of the research series. The knowl-
edge gained from this investigation can also be applied to 
the development of strong E. coli DNA gyrase inhibitors.
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