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Long-term protective immunity to infectious disease depends on cell-mediated and
humoral immune responses. Induction of a strong humoral response relies on efficient
B cell activation and differentiation to long-lived plasma cells and memory B cells. For
many viral or bacterial infections, a single encounter is sufficient to induce such responses.
In malaria, the induction of long-term immunity can take years of pathogen exposure to
develop, if it occurs at all. This repeated pathogen exposure and suboptimal immune
response coincide with the expansion of a subset of B cells, often termed atypical memory
B cells. This subset is present at low levels in healthy individuals as well but it is observed
to expand in an inflammatory context during acute and chronic infection, autoimmune
diseases or certain immunodeficiencies. Therefore, it has been proposed that this subset
is exhausted, dysfunctional, or potentially autoreactive, but its actual role has remained
elusive. Recent reports have provided new information regarding both heterogeneity and
expansion of these cells, in addition to indications on their potential role during normal
immune responses to infection or vaccination. These new insights encourage us to rethink
how and why they are generated and better understand their role in our complex immune
system. In this review, we will focus on recent advances in our understanding of these
enigmatic cells and highlight the remaining gaps that need to be filled.
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INTRODUCTION

Vaccines constitute one of the most successful medical inventions known to date and have allowed
the eradication or control of several previously common and deadly diseases. However, despite
considerable efforts, vaccine development has proven difficult for some infections. For many of the
vaccines, the best correlate of protection is humoral immune responses, derived from long-lived B
cell memory, in the form of antibody-secreting plasma cells (ASCs) and memory B cells (MBCs) (1).

Long-lived B cell responses are generated following antigen encounter by naïve B cells and
subsequent interactions with activated cognate CD4 helper T (Th) cells at the T-B border in
secondary lymphoid organs (2). This initial extrafollicular interaction promotes B cell receptor
(BCR) class-switching (3) and differentiation to either of several fates, such as early memory B cells,
short-lived antibody-secreting cells (ASCs), or germinal center (GC) B cells in an antigen and
affinity-dependent manner (4–6). B cells fated for GC selection enter the B cell follicles where they
start to rapidly proliferate and form a dark zone and light zone GC structure (7). Within the GC, the
B cells will undergo isotype-dependent selection (8) and affinity maturation to eventually
org June 2022 | Volume 13 | Article 9080341
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differentiate to long-lived MBCs and ASCs (9–12). The MBCs
will then circulate between secondary lymphoid organs via the
blood, or reside at sites of infection or inflammation (13), while
the ASCs establish themselves in specialized niches that can
sustain their extensive antibody production (14).

In addition to antibody production, B cells also have
important roles as regulators of the immune response. Both by
secreting inflammatory mediators, such as TNF-a and IL-6 (15),
driving inflammation but also suppressing excessive
inflammation through secretion of IL-10 and metabolizing
extracellular ATP to ADP (16–18). Additionally, B cells are
professional antigen-presenting cells (APCs) as they express
high levels of MHC class II and can rapidly upregulate co-
stimulatory molecules, such as CD80, CD86, and ICOSL upon
stimulation. This interaction is important for subsequent B cell
responses but also to drive T follicular helper (Tfh) cell
differentiation at the B cell-T cell interfollicular region (19)
and is proposed to promote effector T cell responses at sites of
inflammation (20, 21).

In addition to the classical cell fates, B cells have also been
shown to differentiate to an alternative B cell subset, often
denoted as atypical, pro-inflammatory, exhausted, CD27–IgDlo

double negative, or tissue-like B cells, depending on the context
in which they were identified (22). In this minireview, we further
describe these cells in the context of different diseases or
vaccination and highlight what is known about their origin,
differentiation, migration and what potential function they might
have within the immune response. As the nomenclature of these
cells varies greatly between different studies, we have strived to
use the most common overlapping markers used in the
different papers.
ALTERNATIVE B CELL DIFFERENTIATION
IN DISEASE AND VACCINATION

Resting naïve and memory B cells express complement receptor
2 (CD21), a co-receptor for the BCR (23), that is important in
reducing the activation threshold upon BCR ligation (24). In
2002 Warnatz et al. described a B cell subset lacking CD21
expression in immunodeficient patients (25). Ehrhardt et al.
reported in 2005 a similar B cell subset, lacking CD21 and the
memory marker CD27 in different tissues and B cell lines (26).
Although the markers used to distinguish this alternative B cell
subset have not been firmly established, expression of the
transcription factor T-bet, the integrin CD11c, different Fc
receptor-like (FcRL) proteins, and chemokine receptors (such
as CXCR3) have been used (27). This subset of B cells is present
in healthy individuals at low levels (28) and increases with age
(29), but also expands greatly during inflammatory conditions,
including infections, autoimmune disorders, and after
vaccination (30, 31).

In2009Weiss et al. reported the expansionof a subpopulationof
B cells amongst people living in malaria-endemic areas (32). The B
cells were referred to as atypical memory B cells andwere identified
through the low expression of CD21 and CD27 (32). Several
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additional studies have since shown that CD21loCD27lo B cells
greatly expand during infection with malaria parasites (33–38).
Tissue-like memory B cells, which have a similar CD21loCD27lo

phenotype as the atypical memory B cells, but also express FcRL4
are described to expand in individuals infected with human
immunodeficiency virus (HIV) (39–41). The cells showed
reduced BCR signaling and antibody production upon
stimulation, leading to the thought that the B cells were anergic or
exhausted (39). Other infections where B cells with a
CD21loCD27loIgD− phenotype are observed to expand are
hepatitis C virus (HCV) (42, 43), severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) (44–46), hantavirus
infection (47) tuberculosis (48), and possibly others.

In the autoimmunity field, B cells lacking CD27 and IgD, often
termed double negative (DN) B cells, are seen to increase in various
diseases with inflammatory components. In systemic lupus
erythematosus (SLE), the DN B cells express CD11c, FcRL5 and
T-bet (49, 50), markers largely overlapping with those expressed
during infection. Similar CD21loCD27loCD11c+ B cells have also
been reported to expand in a subset of in patients with common
variable immunodeficiency (CVID), rheumatoid arthritis (51) and
multiple sclerosis (52).Thisphenotypicoverlap is further supported
by largely overlapping transcriptional programs based on bulk
microarray and RNA sequencing of CD11chi cells (53) and single-
cell RNA sequencing (54).
MECHANISMS OF ALTERNATIVE B CELL
DIFFERENTIATION

Although initial observations of expanded CD21lo B cell
numbers were primarily in the context of chronic immune
activation, more recent studies in both mice and humans have
shown that CD21lo T-bet+ or CD11c+ B cells expand rapidly after
infection or immunization (36, 41, 45, 55), after which they
slowly decline over several months (36, 38, 41, 56) (Figure 1).
Similarly, these cells start to decline after treatment of individuals
with HCV (43) and tuberculosis (48), indicating that the cells
need a sustained proinflammatory environment and or antigen-
stimulation to survive.

In malaria, the expansion of CD21loCD27lo B cells is associated
with the intensity of parasite transmission (33), consistent with
antigen exposure in a proinflammatory environment being
important in driving expansion or survival of these cells (32, 57,
58). Studies have linked the expansion of T-bet+ B cells to the pro-
inflammatory cytokine interferon-g (IFN-g), both in the context of
malaria (59) and SLE (50, 60). IFN-g is a T helper type 1 (Th1)
cytokine, which upon binding to the IFN-g receptor on B cells
activates the JAK-STAT signaling pathway, resulting in up-
regulation of the transcription factor T-bet (61), which is
important for IgG2a/c class-switching in mice (62) and likely
IgG3 in humans. In contrast to T-bet, upregulation of CD11c
seems to require BCR-ligation but not IFN-g (63), potentially
explaining why these proteins are not always co-expressed. The
differentiation to CD21lo T-bet+ or CD11c+ B cells has primarily
been described to start from classical MBCs (34, 64). However,
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manyof theCD21lo T-bet+ orCD11c+B cells display anunswitched
BCR (36), potentially indicating a naïve B cell origin. In support of
this, BCR sequencing shows partly overlapping repertoire and gene
characteristics betweennaïveB cells andunswitchedCD21loCD27lo

B cells (65, 66). Further, Obeng-Adjei et al. reported that Th1 and
Tfh-1 cells could induce a T-bethi phenotype in naïve B cells after
two days of co-culture together with the superantigen
staphylococcal enterotoxin B (59).

Ambegaonkar et al. further investigated which stimuli lead to
upregulation of T-bet in naïve, GC, or memory B cell subsets in
vitro (67). They found that BCR-ligation together with IFN-g and
the TLR9-ligand CpG could effectively make naïve and memory
B cells, but not GC B cells, upregulate T-bet in addition to other
surface proteins associated with CD21lo B cells. Interestingly,
naïve B cells were more capable of upregulating T-bet compared
with MBCs under the conditions tested (67). Keller et al.
investigated the contribution of different signaling pathways
important for the generation of CD21lo cells in vivo by
studying individuals with CVID (60). They observed that BCR
ligation together with CD4+ T cell-derived CD40L, IFN-g, and
IL-21 are important for the expansion of CD21loT-bethi B cells,
thus proposing that the expansion of these cells in vivo is T cell-
dependent (60). This is also consistent with recent studies in
mice, where CD11c+T-bet+ B cells generated after viral or
intracellular bacterial infection require interactions with Tfh
cells (68, 69).
ROUTE OF DIFFERENTIATION

The more efficient upregulation of T-bet in naïve and memory B
cells could indicate that CD11c+T-bet+ B cells are primarily
generated via the extrafollicular route, rather than via the GC.
Frontiers in Immunology | www.frontiersin.org 3
Both extrafollicular and GC B cells can undergo class-switch
recombination and somatic hypermutation (70, 71), although the
extrafollicular response is more rapid and associated with an
expansion of ASCs, further reviewed by Elsner and Schlomchik
(72). Jenks et al. point to several features of CD11c+ DN2 B cells,
found in SLE patients, associated with extrafollicular
differentiation, such as the cells lacking expression of CXCR5,
a chemokine receptor involved in migration to secondary
lymphoid organs, and CD62L, important for the trafficking to
lymph nodes (73). Such receptor expression has also been
described for CD11c+ B cells during malaria and hepatitis
infection (32, 74). Additionally, sequencing of BCRs showed a
similar mutation level of IgG in DN2 cells and ASCs, but lower
than for switched memory B cells, suggesting that the DN2 cells
had not gone through the GC while sharing common
developmental pathways with ASCs (73). However, in several
other studies associated with infection or vaccination, the
mutation level was similar between conventional memory B
cells and CD11c+Tbet+ B cells (64, 75, 76). Drawing strong
conclusions based on BCR sequence analysis can potentially be
misleading since it is possible that the CD11c+T-bet+ cells
originate from conventional MBCs that could have a GC
origin (34, 64). Therefore, investigating unswitched CD11c+T-
bet+ B cells with a likely naïve origin could provide more direct
support for the extrafollicular route, as these cells are more
unlikely to have entered a GC reaction.

Contrasting with an extrafollicular route of CD11c+T-bet+ B
cell differentiation, several studies have identified T-bet+ B cells
in ongoing GCs in mice after challenge with malaria parasites
(77) or influenza virus (75). Similar to peripheral T-bet+ B cells,
GC B cells also have reduced levels of CD21 but few studies
present data on CD11c expression among GC B cells.
CD21loCD27+ B cells in human peripheral blood that also have
A B

FIGURE 1 | Kinetics of CD21lo CD11c+ T-bet+ B cells during acute and chronic disease. (A) Under specific conditions such as B cell receptor (BCR) activation in
the presence of IFN-g and T cell help, B cell will acquire a phenotype characterized by reduced expression of CD21 and increased expression of CD11c (ITGAX), T-
bet (TBX21) and FCRL4/5. (B) They then rapidly expand over several weeks until they start to contract over several months in the absence of antigen (red line). In the
context of chronic infection or repeated infection (blue line), the cells can remain a substantial proportion of total B cells until treatment removes the source of antigen
and reduce the inflammatory response.
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reduced CXCR5 and CD62L and high expression of Fas, similar
to the DN2 B cells, were suggested to have a GC origin by Lau
et al. (55). This conclusion was, however, largely based on BCR
sequence analysis and mutational evolution after vaccination.

Although it is attractive to say that CD11c+T-bet+ B cells only
have one origin and differentiation route, the extrafollicular and
GC pathways are not mutually exclusive. Furthermore, it is
possible that the conditions of the inflammatory response
largely determine the route. This has been further discussed by
Elsner and Schlomchik (72), where they propose that high levels
of IFN-g suppresses Tfh development and subsequent GC
responses, promoting differentiation via the extrafollicular
route, while lower IFN-g levels can allow for Tfh-mediated T-
bet+ GC B cell differentiation. However, It remains difficult to
formally prove which route the peripheral CD11c+T-bet+ B cells
took upon differentiation, especially in humans, where fate
mapping approaches are not possible.
ASSOCIATION WITH ANTIBODY-
SECRETING CELLS

UsingRNAsequencing,Wanget al. noted thatCD11chiB cells in SLE
had upregulated genes associated with ASC differentiation, such as
PRDM1 (Blimp-1),AICDA (AID),XBP1, BMP6,EMP3, and S100A4
(49). Furthermore, after culturingCD11chi B cells togetherwith anti-
CD3-activated T cells for 11 days, 70% of the cells expressed a
CD27+CD38hi ASC phenotype (49). Consistent with this, Golinski
et al. also found that a larger proportion of CD11c+ B cells
differentiated into ASCs compared to CD11c– B cells, in addition
to secretingmore IgM and IgG after 7 days of culture in the presence
of BCR ligation, TLR9-ligand, and IL-21 (63). These observations
contrast with previous reports on restimulation of CD21lo B cells in
malaria, HIV, and Hepatitis B, where the cells displayed reduced
differentiation to ASCs compared with classical memory B cells (34,
35, 39). This could potentially be due to intrinsic differences in the
cells associated with autoimmune versus infectious diseases. But it
could also be associatedwith the experimental conditions and the cell
types included in the analysis, where a CD11c sort would likely
include more CD21+ resting memory B cells than the sort for
CD21loCD27lo B cells. However, consistent with the CD11chi

transcriptomic data (49), Hopp et al. also found the ASC-
associated genes PRDM1 and CD38 upregulated in CD21loCD27lo

B cells during acute malaria (78). Furthermore, restimulation of
sortedCD21loCD27lo B cells with superantigen activatedTfh cells led
to ASC differentiation with upregulation of CD38 and production of
IgG and IgM antibodies (78). This indicates that these cells can
differentiate to ASC although the process could be context-
dependent, such as the availability of Tfh cells.
POTENTIAL FUNCTIONSOFCD21lo B CELLS

Although CD21lo B cells can represent up to 50% of the
circulating B cells in people living in malaria-endemic areas
Frontiers in Immunology | www.frontiersin.org 4
(32–34, 79) and are generated rapidly after vaccination or
infection and have been proposed to be a normal part of the
immune response (80, 81), the potential function of these cells
remains largely unclear. Based on increased cell surface
expression of several inhibitory receptors, such as CD22,
CD85j, and FcgRIIB, and reduced responsiveness to
restimulation of sorted human CD21lo FcRL5+ or FcRL4+ B
cells, these cells have been hypothesized to be exhausted or
dysfunctional (34, 35, 39). Muellenbeck et al. showed that the
cells were enriched for self- or polyreactive BCR specificities (76),
potentially indicating that they could have been made anergic to
protect the host from autoimmunity. However, Muellenbeck
et al. also found BCR specificities of the cells overlapping with
antibodies in plasma and mRNA transcripts corresponding to
secretory antibodies, suggesting that the cells could contribute to
the circulating antibody pool (76). This potential role has been
further substantiated by findings that T-bet+ B cells can produce
antibodies binding to phosphatidylserine on red blood cells,
possibly contributing to anemia during malaria (82, 83), and
similarly able to produce self-reactive antibodies in human and
mouse models of SLE (73, 80, 81).

A recent study by Ambegaonkar et al. indicates a mechanism
of how CD21loCD27lo B cells can come across as dysfunctional in
restimulation assays, and as important contributors to the
secreted antibody pool in other studies (84). They show that
the high expression of inhibitory receptors, and especially
FcgRIIB, restricts CD21loCD27lo B cells in their response to
soluble antigen. However, in conditions where the BCR ligand
or antigen is presented to the cells while fixed in a lipid bilayer,
FcgRIIB is excluded from the immunological synapse, allowing
the engagement of CD19 with the BCR (84). Such conditions,
summarized in Figure 2, induce a strong BCR signal leading to
the expression of IRF4, which is associated with ASC
differentiation (85).

Experiments in mice have indicated that CD11c+T-bet+ B
cells are associated with protection from chronic viral infection
(86). However, this effect was not only associated with antibody
production but also with other cell-mediated mechanisms. In
addition to their potential role as ASC precursors, CD21lo B cells
upregulate proteins with important functions in the T-B synapse,
such as MHC class II and the co-stimulatory molecules CD80,
CD86, OX40, and ICOS-L (78, 80). They are also more efficient
than naïve and conventional memory B cells in taking up
antigens (84). Together this could indicate that the cells have
become more potent as APCs. Indeed, CD11c+ B cells in mice
were able to improve CD4+ T cell activation and proliferation
compared with follicular B cells (87, 88) and depletion of CD11c+

B cells in mice led to reduced Tfh cell levels (88). In contrast,
sorted human CD21lo B cell subsets provided similar CD4+ T cell
activation as CD21+ B cell subsets in an in vitro mixed-
lymphocyte reaction assay (89). However, since CD11c+ and
T-bet+ B cells also upregulate homing receptors, such as CXCR3,
they can migrate to sites of inflammation and provide localized
APC functions or potentially complete differentiation to ASCs.
Such an effect was recently described by MacLean et al. where
they showed that CXCR3+ lung-resident memory B cells were
June 2022 | Volume 13 | Article 908034
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recruited to infected foci in the lung in an IFN-g dependent
manner upon reinfection of mice with influenza virus. The cells
then differentiated to ASCs at the foci to provide localized
antibody production (90).

Overall, these studies highlight that CD21lo CD11c+ or T-bet+

B cells should no longer be considered as an exhausted or
dysfunctional B cell subset, but rather as fully capable of
responding to specific signals. Although the extent of the role
they play in a systemic immune response to infection such as
malaria or during autoimmune disease remains largely unclear,
recent studies indicate important functions that need to be
further explored.
LOCALIZATION AND HOMING OF CD21lo

B CELLS

One of the many unanswered questions regarding CD21loT-bet+

B cells is the localization and homing of such cells. A recent study
by Johnson et al., investigating T-bet+ B cells in patients
undergoing surgery and in mice, showed a similar pattern of
distribution in different tissues (75). They also showed that
influenza-specific T-bet+ B cells were differentially distributed
in the spleen, peripheral blood, bone marrow, and lung,
Frontiers in Immunology | www.frontiersin.org 5
indicating that the cells had a preferred tissue homing
associated with the infection.

Interestingly, only B cells expressing low levels of T-bet were
present in the lymphoid circulation, while T-bethi B cells were
absent from lymph nodes (75). This is consistent with previous
studies (26, 91), where B cells lacking CD27 and expressing
FCRL4 or FCRL3 were present in lymph nodes, tonsil, and payer
patches, but few, if any cells expressing high levels of T-bet (91).
Similarly, after influenza vaccination in humans, B cells expressing
TBX21, FCRL5, and ITGAX were present in peripheral blood, but
not in the draining lymph nodes (92). This partial or absent
expression of markers associated with CD11c+T-bet+ B cells could
indicate that differentiation concurrently changes the receptor
expression to promote migration from secondary lymphoid
organs to tissues, consistent with low levels of CD62L, CXCR5,
and CCR7 on these cells in the blood (32, 73). It is however
interesting to note that CD11c+ T-bet+ B cells are present in the
spleen but not in lymph nodes (75). In mice, it was recently
described by Song et al, that CD11c+T-bet+ B cells generated after
virus infection were retained in the splenic marginal zone through
interactions by LFA-1 and VLA-4, indicating a potential
mechanism of splenic retention (68), while the mechanisms of
homing to and retention in other tissues remain to be explored.
Further studies are also needed to understand how differentiation
is associated with migration.
FIGURE 2 | CD21lo B cell responsiveness is dependent on how antigen is presented. CD21lo B cells expressing CD11c, T-bet (TBX21), and FCRL5 also express
increased levels of inhibitory receptors, such as FcgRIIB. In the context of B cell receptor (BCR) ligation, FcgRIIB reduces the engagement of CD19 with the BCR,
thus preventing down stream signaling, leading to hyporesponsiveness. In contrast, CD21lo B cells binding to membrane arrayed antigens establish an
immunological synaps that excludes FcgRIIB. This allows CD19 to engage the BCR and promote downstream signaling, leading to transcription of IRF4 that in turn
can drive differentiation to antibody secreting cells. The membrane-arrayed antigens also lead to improved antigen-uptake and could potentially enhance the B cell
antigen-presenting cell functions.
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CONCLUSION

Upon immune activation, B cells differentiate to provide the host
with several important effector functions. Of these, antibody
production is without a doubt the most well described, but B cells
also provide important roles as APCs in addition to secret
different cytokines to both promote and suppress inflammatory
responses (15, 93).

Over the last decade, a phenotypically distinct, although
heterogenous B cell subset, identified through reduced
expression of CD21 and CD27 and upregulation of one or
several of T-bet, CD11c, and FcRL4/5, has gained increasing
attention. In this review, we have presented recent data
generated in different research fields from human samples and
mice, and although the inconsistent use of names and markers to
identify these cells often makes direct comparisons difficult, several
studies point toward these cells having largely overlapping
phenotypic and transcriptional signatures and homing patterns.
However, many studies also point to substantial heterogeneity in
the markers expressed by these cells between diseases and over
time and also between mice and humans. This illustrates that
further studies that directly compare the cells between diseases,
time-points, tissues, organisms, or stimulations using the same
systematic approach are needed. Such comparative studies would
also be very useful for the research community to decide on a more
systematic nomenclature for these cells.
Frontiers in Immunology | www.frontiersin.org 6
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