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Unanticipated switch of reactivity of isonitrile
via NhC bond scission: Cascade formation
of symmetrical sulfonyl guanidine

Debashish Mishra,1 Sagarika Rajkhowa,1 and Prodeep Phukan1,2,*

SUMMARY

Unanticipated formation of symmetrical sulfonyl guanidine was observed while
treating isonitriles with N,N-dibromoarylsulfonamides in absence of an external
amine source. Interesting feature of this work is that one molecule of isonitrile
initially reacts with dibromoarylsulfonamide via the C-end to produce the inter-
mediate carbodiimide while the other molecule undergoes ChN triple bond
cleavage to react as amine source with the intermediate. This switch of reactivity
from C-center to N-center of the isonitrile generated symmetrical guanidine.

INTRODUCTION

The Guanidine derivatives have received momentous attention over the past decades due to their

immense medicinal and therapeutic applicability.1–4 Presence of guanidine moiety in arginine containing

compound and many other biologically active substances makes them attractive for synthetic as well as

medicinal chemists. Relenza, Famotidine, Clonidine etc. are extensively used as antiviral, antiulcer, and

anesthetic drugs, respectively.5,6 In addition, guanidine derivatives also act as catalysts, organoligands,

superbases, and superpotent sweeteners.7–9 In view of their importance and usefulness, the development

of an efficient pathway for the synthesis of symmetrical tri-substituted guanidine has attracted great inter-

est from organic as well as medicinal chemists.

Due to their diverse applicability, chemists have already developed a number of methods for the synthesis

of substituted guanidines. Classical approach for the synthesis of guanidine involves a reaction of amine

with guanylating agents such as thiourea, iosthiourea, amidine, cyanamide, and carbodiimide.2,3,10 Among

the existing methods for the synthesis of substituted guanidine, the guanylation of amines with elec-

trophilic carbodiimides attract most.11–24 However, carbodiimide synthesis requires tedious and strict

conditions along with a transition metal catalyst.25–32 Recently, a few approaches were developed for

the synthesis of sulfonyl guanidines (Scheme 1). In most cases, the involvement of a transitionmetal catalyst

is necessary for the generation of carbodiimide intermediate which on further treatment with an amine

result in the formation of sulfonyl guanidine (Scheme 1A).33–35 A cobalt catalyzed oxidative isocyanide

insertion reaction of amines was also developed by Ji et al. for the same purpose (Scheme 1B).36

In 2019, Ji’s group also reported a cobalt-catalyzed cascade reaction of sulfonyl azides with o-diisocyanoar-

enes and anilines for the synthesis of sulfonyl guanidines. In this case, o-diisocyanoarenes act as a source

for C1-fragment of the guanidine product (Scheme 1C).37 Although various methods have been developed,

most of the reportedmethods for the synthesis of sulfonyl guanidine via carbodiimide intermediate require

a transition metal catalyst system or oxidative reaction conditions and extra amine as a nucleophilic source.

Moreover, there are only a few methods for the synthesis of symmetrical guanidine. Therefore, develop-

ment of an efficient metal-free protocol for the synthesis of symmetrical sulfonyl guanidine is highly desir-

able in the context of synthetic chemistry.

The cleavage of ChN bond is a challenging task as it is regarded as one of the strongest chemical bonds.

The metalloenzyme molybdenum nitrogenase was found to catalyze reductive cleavage of the ChN bond

of nitrile.38 During the last several decades, carbon-nitrogen bond cleavage of nitrile has been demon-

strated by using different transition metal reagents and catalysts.39–43 However, similar breakthrough

was not achieved for ChN bond of isonitrile until Yamashita reported the use of a diborane reagent in

the year 2014. They established that the use of an unsymmetrical diborane reagent facilitates the cleavage

of isonitrile carbon-nitrogen triple bond (Scheme 1D).44 Besides this report there is no method in the
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literature for the NhC bond scission of isonitrile. Recently, we have developed few metal-free protocols

where in-situ generated carbodiimides were used as an intermediate for generation of organo-nitrogen

compounds such as guanidine, isourea and isothiourea (Scheme 1E), and amidine.45,46 In one instance,

we observed simultaneous cleavage of the C–N single bond of isonitrile and 1,3-migration of the tert-butyl

counterpart to the adjacent nitrogen atom (Scheme 1F).47

Scheme 1. Synthesis of sulfonyl guanidine and NhC bond scission
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N,N-Dibromoarylsulfonamides are an important class of organic reagents used in various organic transfor-

mations.48–60 In continuation of our effort in the development of synthetic methods with such reagents,

herein, we disclose a new pathway for complete cleavage of C-N triple bond of isonitrile which leads to

the formation of symmetrical guanidines. Interesting feature of this reaction is that in the initial phase, iso-

nitrile works as a source of carbodiimide reacting via C-end of the isonitrile where no cleavage of ChN

bond occurs. However, in the second phase of the reaction, the same isonitrile molecule behaves as a ni-

trogen source via ChN bond scission for final formation of symmetrical guanidine.

RESULTS AND DISCUSSION

In order to appraise the optimum conditions, the reaction of tert-butyl isocyanide and TsNBr2 was explored

by employing various bases and solvents at different temperatures (Table 1).

Initially, the reaction of tert-butyl isocyanide (1 equiv) and TsNBr2 (1 equiv) in DCE (2 mL) was carried out in

presence of K2CO3 (2 equiv). However, the desired product was not obtained after 12 h of reaction at room

temperature (Table 1, entry 1). Interestingly, when the same reaction was carried out at 70�C within 6 h, the

corresponding symmetrical guanidine was obtained in 40% yield (Table 1, entry 2). A minor increase in re-

action yield was observed, when the temperature changes from 70ºC to 80ºC (Table 1, entry 3). When the

reaction was carried out in toluene, 46% of the desired product was obtained within 2 h (Table 1, entry 4). To

our satisfaction, the addition of a minute amount of water into the reaction system (50 mL), marginally

increased the product yield up to 49% within 2 h of reaction at 80�C (Table 1, entry 5). A notable change

in the product yield was observed when the reaction was carried out using 1.2 equivalent of tert-butyl iso-

cyanide (Table 1, entry 6). Further optimization experiments with varying amounts of tert-butyl isocyanide

under previous conditions revealed that the use of 2.2 equivalent of tert-butyl isocyanide produced the

best result with 81% of the desired product (Table 1, entry 9). On lowering the base equivalence, the prod-

uct yield was found to be diminished (Table 1, entries 11–12). We also screened the reaction with various

bases (Table 1, entries 13–15) but the results were found to be inferior.

Table 1. Optimization of reaction conditions

Entrya

tBuNC

(equiv) Solvent Base (equiv) Time (h) Temp (ºC) Yield (%)b

1 1 DCE (2 mL) K2CO3 (2) 12 h RT –

2 1 DCE (2 mL) K2CO3 (2) 6 h 70 40

3 1 DCE (2 mL) K2CO3 (2) 6 h 80 43

4 1 Toluene (2 mL) K2CO3 (2) 2 h 80 46

5 1 Toluene (2 mL) + H2O (50 mL) K2CO3 (2) 2 h 80 49

6 1.2 Toluene (2 mL) + H2O (50 mL) K2CO3 (2) 2 h 80 56

7 1.5 Toluene (2 mL) + H2O (50 mL) K2CO3 (2) 2 h 80 67

8 2 Toluene (2 mL) + H2O (50 mL) K2CO3 (2) 2 h 80 76

9 2.2 Toluene (2 mL) + H2O (50 mL) K2CO3 (2) 2 h 80 81

10 2.5 Toluene (2 mL) + H2O (50 mL) K2CO3 (2) 2 h 80 83

11 2.2 Toluene (2 mL) + H2O (50 mL) K2CO3 (1.5) 2 h 80 73

12 2.2 Toluene (2 mL) + H2O (50 mL) K2CO3 (1) 2 h 80 68

13 2.2 Toluene (2 mL) + H2O (50 mL) KF (2) 2 h 80 61

14 2.2 Toluene (2 mL) + H2O (50 mL) KHCO3 (2) 2 h 80 56

15 2.2 Toluene (2 mL) + H2O (50 mL) Cs2CO3 (2) 2 h 80 49

aReaction conditions: 1a (1.1 mmol), 2a (0.5 mmol), K2CO3 (1 mmol) at 80�C for 2 h.
bIsolated yields.
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With the optimized reaction condition in hand, initially, the scope of the reaction was investigated with

various substituted sulfonamides. A wide variety of N,N-dibromoarylsulfonamides could be transformed

using tert-butyl isocyanide to the corresponding N,Nˊ,Nˊˊ-sulfonyl guanidines in moderate to high yields

irrespective of the electronic nature and position of the substituents on the aromatic ring of the dibromoar-

ylsulfonamides. From Table 2, a marginal increase in product yield was observed with sulfonamide having

electron donating substituent on the benzene ring. The halo functionalities are also well tolerated (F, Cl,

and Br) and exhibited high reactivity.

To further explore the diversity of the products, we next investigated the scope of isocyanides under the

optimal conditions. Various acyclic and cyclic isocyanides are worked well to furnish the substituted

N,Nˊ,Nˊˊ-sulfonyl guanidine products (Table 3, 4a-4g) in high yields. We have also extended our investiga-

tions to check the compatibility of various dibromoarylsulfonamides with different isonitriles. These exper-

iments generated a library of N,Nˊ,Nˊˊ-sulfonyl guanidines (Table 3, 4h–4L). We have also tested the reac-

tion with an aromatic isocyanide such as 1-ethyl-2-isocyano-4-methylbenzene and interestingly isolated the

desired product in high yield (4m, 74%). The structure of 3k was ascertained by single-crystal X-ray crystal-

logaphy (see Figure S66 and Table S1). To demonstrate the practical utility of this method as a synthetic

Table 2. Substrate scope of sulfonamides

Reaction conditions: 1 (1.1 mmol), 2 (0.5 mmol), K2CO3(1 mmol), 80�C, 2 h. Isolated yields.
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tool, an experiment was carried out by employing 1 g of TsNBr2 for the synthesis of symmetrical guanidine

on a larger scale. The reaction in the presence of a corresponding mole equivalent of tert-butyl-isonitrile

produced the symmetrical guanidine 4a in 76%.

Based on our previous work along with literature reports,45,46,61 a plausible mechanism for the formation of

sulfonyl guanidine was proposed in Scheme 2. Initially, in presence of base, TsNBr2 eliminates a

Table 3. Substrate scope of isocyanide and compatibility

Reaction conditions: 1a (1.1 mmol), 2 (0.5 mmol), K2CO3 (1 mmol) at 80�C for 2 h. Isolated yields.
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bromonium ion and produces an intermediate I, which subsequently react with isonitrile to generate the

carbodiimide intermediate III. The reaction proceeds via the formation of a formamide IV from another

molecule of isocyanide in the presence of H2O. GC-MS analysis of the reaction mixture indicates the pres-

ence of formamide species in the reaction (see Figure S1). Finally, the in-situ generated formamide (IV) re-

acts with carbodiimide (III) to produce the corresponding sulfonyl guanidine via the loss of formic acid

which was also detected using GC-MS (see Figure S2).

To explore the possibility of the formation of unsymmetrical guanidine, we have added a different iso-

cyanide, such as cyclohexyl isocyanide, after the formation of carbodiimide in a one-pot reaction. How-

ever, a mixture of symmetrical and unsymmetrical guanidine was observed. For the exclusive synthesis

of unsymmetrical guanidine, a reaction was planned between an isolated carbodiimide intermediate

and another isonitrile. Accordingly, the carbodiimide intermediate was synthesized by reacting with

TsNBr2 and tert-butyl isonitrile at room temperature. When the isolated carbodiimide was treated

with cyclohexyl isocyanide in the presence of 50 mL of water under the same optimized conditions, we

could gratifyingly isolate the desired guanidine product in high yield. This reaction opens a new pathway

for the synthesis of tri-substituted unsymmetrical guanidine using isonitrile as a nucleophilic source

(Scheme 3).

After successfully establishing a convenient procedure for the synthesis of sulfonyl guanidine, we further

focused on their synthetic utility to deriveN,Nˊ-disubstituted symmetrical guanidine derivatives via the de-

tosylation of sulfonyl guanidine. Thus, when the derivative 4a was treated with NaH in DMF at 60�C, corre-
sponding 1,3-di-tert-butylguanidine, (8) was isolated in 63% yield (Scheme 4).62

Scheme 2. Plausible reaction mechanism

Scheme 3. Synthesis of unsymmetrical guanidine
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Conclusion

In conclusion, we have developed a metal-free protocol for the synthesis of symmetrical N,Nˊ,Nˊˊ-
substituted sulfonyl guanidines by treating N,N-dibromoarylsulfonamides with isonitriles using K2CO3 as

a base without the aid of an extra amine source. The cascade reaction proceeds via an isolable carbodii-

mide intermediate to give the corresponding guanidine product within a very short reaction time. The

wide substrate scope, good to high yields and good functional group tolerance are the remarkable

achievements of the present protocol. Further, tri-substituted guanidine was transformed into di-

substituted symmetrical guanidine.

Limitations of the study

This work reports a highly efficient metal-free protocol for the synthesis of symmetrical guanidine by treat-

ing N,N-dibromoarylsulfonamides and isonitriles without the use of an external amine source. Although a

good substrate scope ofN,N-dibromoarylsulfonamides and isonitriles have been demonstrated. However,

this method has limitation on the use ofN,N-dibromo(methanesulfonamide) due to difficulty in isolation of

pure N,N-dibromo derivative of methanesulfonamide via bromination reaction.
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NaH Merck CAS No. 7646-69-7
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Deposited data

CIF of 3k CCDC 2205824 https://www.ccdc.cam.ac.uk/structures/
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tact, Prodeep Phukan (pphukan@yahoo.com; pphukan@gauhat.ac.in).

Materials availability

All other data supporting the findings of this study are available within the article and the supplemental

information or from the lead contact upon reasonable request.

Data and code availability

Crystallographic data for the structures reported in this article have been deposited at the Cambridge

Crystallographic Data Centre (CCDC) under accession numbers CCDC 2205824 (3k). Copies of the data

can be obtained free of charge from https://www.ccdc.cam.ac.uk/structures/. All other data are available

from the lead contact upon reasonable request.

METHOD DETAILS

Preparation of substrates

General procedure for the synthesis of N,N-dibromoarylsulfonamides63,64

Procedure A: From chloramine-T trihydrate

Liquid bromine (2 mL) was added dropwise to a solution of chloramine-T (10 g) in water (200 mL) with

vigorous stirring at ambient temperature. The golden yellow precipitated of N,N-dibromo-p-tolunesul-

fonamide was washed thoroughly with water, filtered under suction and dried under desiccator for 24

hours.

Procedure B: From Aryl sulfonamide.

Arylsulfonamide (5 g) in aqueous potassium hydroxide (3.6 g) solution in water (25 mL) was placed to a

250 mL three necked flask. Then with vigorous stirring 10 g of bromine was added slowly with the help

of a burette. The golden yellow of N,N-dibromo-arylsulfonamide precipitated out from the solution was

filtered, washed with water. After workup, the isolated compound was kept under suction for 1h and dried

in a desiccator for 24 hours.

Synthesis of 2-ethyl-6-methyl isocyanobenzene45

To a solution of 2-ethyl-6-methyl aniline (22 mmol, 1 equiv) in CH2Cl2 (100 mL), 50 wt % of aqueous NaOH

(50 mL), TBAB (1 mol %) and CHCl3 (33 mmol, 1.5 equiv) was added and stirred at room temperature for 6

h. After completion of the reaction, the mixture was diluted with 200 mL of water and the organic layer

was separated. The organic layer was further washed twice with 100 mL of water and once with 100 mL

saturated NaCl solution. The organic layer was separated, dried over anhydrous Na2SO4 and concen-

trated under reduced pressure. The crude mixture was purified by flash column chromatography using

petroleum etherdichloromethane (4:1) as eluent to afford 2-ethyl-6-methyl isocyanobenzene as pale yel-

low liquid.

Preparation of products

General procedure for the synthesis of sulfonyl guanidine
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To a solution of isocyanide (1.1 mmol, 2.2 equiv) in toluene (2 mL),N,N-dibromoarylsulfonamide (0.5 mmol,

1.0 equiv) and K2CO3 (2 equiv) was added followed by 50 mL of H2O and stirred at 80�C for 2 h. After comple-

tion of the reaction as monitored by TLC, the reaction mixture was passed through a short pad of celite and

washed with ethyl acetate. The solvent was concentrated under reduced pressure and the crude was pu-

rified by flash column chromatography using petroleum ether-ethyl acetate as eluent.

Gram scale synthesis of N-(bis(tert -butylamino)methylene)-4-Methylbenzenesulfonamide (4a)

To an ice cooled solution of tert-butyl isocyanide (6.69 mmol, 2.2 equiv) in toluene (6 mL), K2CO3

(6.08 mmol, 2 equiv) and N,N-dibromo-p-toluenesulfonamide (3.04 mmol, 1g, 1 equiv) was added in

portion followed by 304 mL of H2O and stirred at 80�C for 2 h. After completion of the reaction as monitored

by TLC, the reaction mixture was passed through a short pad of Celite and washed with ethyl acetate. The

solvent was concentrated under reduced pressure and the crude was Purified by column chromatography

on silica gel (Petroleum ether: EtOAc = 8:2). Colorless solid (76%, 751 mg).

Synthesis of N-((tert-butylamino)(cyclohexylamino)methylene)-4-methylbenzenesulfonamide (7a)

To a stirred solution ofN-(tert-butyliminomethylene)-4-methylbenzenesulfonamide (0.5 mmol, 1.0 equiv) in

toluene (2 mL), cyclohexyl isocyanide (0.5 mmol, 1.0 equiv) and K2CO3 (1 mmol, 2.0 equiv) was added fol-

lowed by 50 mL of H2O and stirred at 80�C for 2 h. After completion of the reaction, the reaction mixture was

passed through a celite pad and washed with ethyl acetate. The filtrate was concentrated under reduced

pressure. Purified by column chromatography on silica gel (Petroleum ether: EtOAc = 9:1). Colorless liquid

(77%, 135 mg).

Transformations of products

Synthesis of 1,3-di-tert-butylguanidine (8)62

To a solution of NaH (0.4 mmol, 2 equiv) in dry DMF (1 mL) under N2 atmosphere, 1,3-di-tert-butyl-2-tosyl-

guanidine (0.2 mmol, 1.0 equiv) was added and heat the reaction mixture at 60�C for 2 h. After completion

of the reaction as monitored by TLC, the reaction mixture was passed through a Celite pad and washed

with ethyl acetate. The filtrate was concentrated under reduced pressure. Purified by column chromatog-

raphy on silica gel (Petroleum ether: EtOAc = 8:2). Semi solid (63%, 21 mg).

Characterization of substrates

2-Ethyl-6-methyl isocyanobenzene

1H NMR (CDCl3, 300 MHz): d 7.27–7.21 (m, 1H), 7.11 (d, J = 7.5 Hz, 2H), 2.79 (q, J = 7.5 Hz, 2H), 2.43 (s, 3H),

1.28 (t, J = 7.5 Hz, 3H).

13C NMR (CDCl3, 75 MHz): d 167.5, 140.5, 134.9, 128.8, 127.7, 126.1, 25.6, 18.9, 13.8.
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Characterization of products 3a-3n

N-(bis(tert-butylamino)methylene)-2-methylbenzenesulfonamide (3a)

Following the general procedure, compound 3a was prepared from tert- butyl isocyanide (125 mL),N,N-di-

bromo-2-methylbenzenesulfonamide (164 mg) in presence of water (50 mL) and K2CO3 (2 equiv, 138 mg).

Purified by column chromatography on silica gel (Petroleum ether: EtOAc = 7:2). Colorless solid (76%,

123 mg); mp 58�C–60�C.

1H NMR (CDCl3, 600 MHz): d 7.98 (d, J = 7.8 Hz, 1H), 7.36 (t, J = 7.2 Hz, 1H), 7.28–7.24 (m, 3H), 4.41 (br, 1H),

2.72 (s, 3H), 1.36 (s, 18H).

13C NMR (CDCl3, 150 MHz): d 153.8, 142.0, 136.8, 131.9, 131.1, 127.2, 125.3, 52.4, 29.7, 20.4.

IR (KBr, cm�1): n 3402, 3352, 2960, 1597, 1481.

HRMS m/z (ESI) calculated for C16H28N3O2S (M + H)+ 326.1897, found 326.1899.

N-(bis(tert -butylamino)methylene)-3-bromobenzenesulfonamide (3b)

Following the general procedure, compound 3b was prepared from tert- butyl isocyanide (125 mL), N,N-di-

bromo-3-bromobenzenesulfonamide (197 mg) in presence of water (50 mL) and K2CO3 (2 equiv, 138 mg). Pu-

rified by column chromatography on silica gel (Petroleum ether: EtOAc = 7:2). Colorless liquid (74%, 144 mg).

1H NMR (CDCl3, 500 MHz): d 8.01 (s, 1H), 7.79 (d, J = 6.5 Hz, 1H), 7.58 (d, J = 6.5 Hz, 1H), 7.31 (t, J = 6.5 Hz,

1H), 7.15 (br, 1H), 4.47 (br, 1H), 1.33 (s, 18H).

13C NMR (CDCl3, 125 MHz): d 153.9, 145.8, 134.0, 130.0, 128.9, 124.5, 122.2, 60.3, 29.7.

IR (KBr, cm�1): n 3351, 2930, 1547, 1486, 670.

HRMS m/z (ESI) calculated for C15H25BrN3O2S (M + H)+ 390.0845, found 390.0840.

N-(bis(tert -butylamino)methylene)-4-bromobenzenesulfonamide (3c)

Following the general procedure, compound 3c was prepared from tert- butyl isocyanide (125 mL), N,N-di-

bromo-4-bromobenzenesulfonamide (197 mg) in presence of water (50 mL) and K2CO3 (2 equiv, 138 mg).
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Purified by column chromatography on silica gel (Petroleum ether: EtOAc = 7:2). Colorless solid (77%,

150 mg); mp 72�C–74�C.

1H NMR (CDCl3, 500 MHz): d 7.74 (d, J = 7 Hz, 2H), 7.57 (d, J = 7 Hz, 2H), 7.17 (br, 1H), 4.46 (br, 1H), 1.34

(s, 18H).

13C NMR (CDCl3, 125 MHz): d 153.9, 143.2, 131.6, 127.5, 125.6, 53.7, 29.7.

IR (KBr, cm�1): n 3391, 2950, 1597, 1471, 678.

HRMS m/z (ESI) calculated for C15H25BrN3O2S (M + H)+ 390.0845, found 390.0843.

N-(bis(tert -butylamino)methylene)-2-chlorobenzenesulfonamide (3 days)

Following the general procedure, compound 3days was prepared from tert- butyl isocyanide (125 mL),N,N-

dibromo-2-chlorobenzenesulfonamide (174 mg) in presence of water (50 mL) and K2CO3 (2 equiv, 138 mg).

Purified by column chromatography on silica gel (Petroleum ether: EtOAc = 7:2). Colorless liquid (72%,

124 mg).

1H NMR (CDCl3, 500 MHz): d 8.14 (d, J = 7.5 Hz, 1H), 7.44–7.32 (m, 4H), 4.45 (br, 1H), 1.33 (s, 18H).

13C NMR (CDCl3, 125 MHz): d 153.9, 141.3, 131.9, 131.7, 131.1, 129.3, 126.4, 53.7, 29.6.

IR (KBr, cm�1): n 3357, 2897, 1638, 1479, 832.

HRMS m/z (ESI) calculated for C15H25ClN3O2S (M + H)+ 346.1351, found 346.1357.

N-(bis(tert -butylamino)methylene)-4-chlorobenzenesulfonamide (3e)

Following the general procedure, compound 3e was prepared from tert- butyl isocyanide (125 mL),N,N-di-

bromo-4-chlorobenzenesulfonamide (174 mg) in presence of water (50 mL) and K2CO3 (2 equiv, 138 mg).

Purified by column chromatography on silica gel (Petroleum ether: EtOAc = 7:2). Colorless solid (75%,

129 mg); mp 66�C–68�C.

1H NMR (CDCl3, 600 MHz): d 7.82 (d, J = 9 Hz, 2H), 7.41 (d, J = 8.4 Hz, 2H), 7.18 (br, 1H), 4.45 (br, 1H), 1.34

(s, 18H).

13C NMR (CDCl3, 150 MHz): d 153.8, 142.7, 137.3, 128.6, 127.4, 60.4, 29.7.

IR (KBr, cm�1): n 3341, 2956, 1597, 1481, 702.
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HRMS m/z (ESI) calculated for C15H25ClN3O2S (M + H)+ 346.1351, found 346.1361.

N-(bis(tert -butylamino)methylene)-2-fluorobenzenesulfonamide (3f)

Following the general procedure, compound 3f was prepared from tert- butyl isocyanide (125 mL), N,N-di-

bromo-2-fluorobenzenesulfonamide (166 mg) in presence of water (50 mL) and K2CO3 (2 equiv, 138 mg). Pu-

rified by column chromatography on silica gel (Petroleum ether: EtOAc = 7:2). Colorless liquid (71%,

116 mg).

1H NMR (CDCl3, 600 MHz): d 7.97 (d, J = 6.6 Hz, 1H), 7.45 (d, J = 6 Hz, 2H), 7.20 (t, J = 7.8 Hz, 1H), 7.11 (t, J =

9 Hz, 1H), 4.48 (br, 1H), 1.35 (s, 18H).

13C NMR (CDCl3, 150 MHz): d 158.9 (JCF = 251.5 Hz), 153.9, 133.1 (JCF = 8.8 Hz), 131.9 (JCF = 15.4 Hz), 128.9,

123.7 (JCF = 4.3 Hz), 116.4 (JCF = 22.0 Hz), 60.4, 29.6.

19F NMR (CDCl3, 564 MHz): d �110.54.

IR (KBr, cm�1): n 3289, 2887, 1595, 1484, 997.

HRMS m/z (ESI) calculated for C15H25FN3O2S (M + H)+ 330.1646, found 330.1643.

N-(bis(tert -butylamino)methylene)-4-(trifluoromethoxy)benzenesulfonamide (3g)

Following the general procedure, compound 3g was prepared from tert- butyl isocyanide (125 mL),N,N-di-

bromo-4-trifluoromethoxybenzenesulfonamide (199 mg) in presence of water (50 mL) and K2CO3 (2 equiv,

138 mg). Purified by column chromatography on silica gel (Petroleum ether: EtOAc = 7:2). Colorless liquid

(68%, 134 mg).

1H NMR (CDCl3, 600 MHz): d 7.93 (d, J = 8.4 Hz, 2H), 7.28 (d, J = 8.4 Hz, 2H), 7.15 (br, 1H), 4.50 (br, 1H), 1.34

(s, 18H).

13C NMR (CDCl3, 150 MHz): d 153.9, 151.5 (JCF = 157.2 Hz), 142.4, 137.5 (JCF = 575.8 Hz), 128.4 (JCF =

170.2 Hz), 120.6 (JCF = 18.6 Hz), 53.8, 29.6.

19F NMR (CDCl3, 564 MHz): d �57.78.

IR (KBr, cm�1): n 3349, 3311, 2928, 1575, 1434, 977.

HRMS m/z (ESI) calculated for C16H25F3N3O3S (M + H)+ 396.1563, found 396.1566.
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N-(bis(tert -butylamino)methylene)-2-(trifluoromethyl)benzenesulfonamide (3h)

Following thegeneralprocedure, compound3hwasprepared from tert- butyl isocyanide (125mL),N,N-dibromo-

2-trifluoromethylbenzenesulfonamide (191mg) inpresenceofwater (50mL) andK2CO3 (2equiv, 138mg). Purified

by column chromatography on silica gel (Petroleum ether: EtOAc = 7:2). Colorless liquid (63%, 118 mg).

1H NMR (CDCl3, 600MHz): d 8.27 (s, 1H), 7.78 (d, J= 7.2 Hz, 1H), 7.63 (t, J= 7.2 Hz, 1H), 7.57 (t, J = 7.8 Hz, 1H),

7. 28 (br, 1H), 4.44 (br, 1H), 1.31 (s, 18H).

13C NMR (CDCl3, 150 MHz): d 153.3, 142.9, 131.4 (JCF = 117.4 Hz), 129.9, 127.5 (JCF = 6.6 Hz), 122.9 (JCF =

272.5 Hz), 52.5, 29.6.

19F NMR (CDCl3, 564 MHz): d �57.44.

IR (KBr, cm�1): n 3389, 2932, 1595, 1424, 983.

HRMS m/z (ESI) calculated for C16H25F3N3O2S (M + H)+ 380.1614, found 380.1609.

N-(bis(tert -butylamino)methylene)-4-nitrobenzenesulfonamide (3i)

Following the general procedure, compound 3i was prepared from tert- butyl isocyanide (125 mL), N,N-di-

bromo-4-nitrobenzenesulfonamide (179mg) in presence of water (50 mL) and K2CO3 (2 equiv, 138mg). Purified

by column chromatography on silica gel (Petroleum ether: EtOAc = 7:2). Colorless liquid (70%, 124 mg).

1HNMR (CDCl3, 600MHz): d 8.29 (d, J=8.4Hz, 2H), 8.04 (d, J=9Hz, 2H), 7. 23 (br, 1H), 4. 53 (br, 1H), 1.35 (s, 18H).

13C NMR (CDCl3, 150 MHz): d 153.8, 149.9, 149.1, 127.0, 123.8, 53.2, 29.7.

IR (KBr, cm�1): n 3389, 2927, 1574, 1503, 1468.

HRMS m/z (ESI) calculated for C15H25N4O4S (M + H)+ 357.1591, found 357.1593.

N-(bis(tert -butylamino)methylene)-4-methoxybenzenesulfonamide (3j)
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Following the general procedure, compound 3j was prepared from tert- butyl isocyanide (125 mL), N,N-di-

bromo-4-methoxybenzenesulfonamide (172 mg) in presence of water (50 mL) and K2CO3 (2 equiv, 138 mg).

Purified by column chromatography on silica gel (Petroleum ether: EtOAc = 7:2). Colorless solid (74%,

126 mg); mp 112�C–114�C.

1H NMR (CDCl3, 600MHz): d 7.81 (d, J = 10.2 Hz, 2H), 7.16 (br, 1H), 6.91 (d, J = 10.8 Hz, 2H), 4.39 (br, 1H), 3.84

(s, 3H), 1.33 (s, 18H).

13C NMR (CDCl3, 150 MHz): d 161.6, 153.9, 136.4, 127.8, 113.5, 56.4, 55.4, 29.8.

IR (KBr, cm�1): n 3343, 3312, 2910, 1587, 1474.

HRMS m/z (ESI) calculated for C16H28N3O3S (M + H)+ 342.1846, found 342.1846.

N-(bis(tert -butylamino)methylene)benzenesulfonamide (3k)

Following the general procedure, compound 3k was prepared from tert- butyl isocyanide (125 mL),N,N-di-

bromobenzenesulfonamide (157 mg) in presence of water (50 mL) and K2CO3 (2 equiv, 138 mg). Purified by

column chromatography on silica gel (Petroleum ether: EtOAc = 7:2). Colorless solid (78%, 121 mg); mp

78�C–80�C.

1H NMR (CDCl3, 600 MHz): d 7.89 (d, J = 7.8 Hz, 2H), 7.47–7.43 (m, 3H), 7.18 (br, 1H), 4.42 (br, 1H), 1.34

(s, 18H).

13C NMR (CDCl3, 150 MHz): d 153.9, 141.4, 141.3, 128.9, 125.9, 52.6, 29.8.

IR (KBr, cm�1): n 3452, 3364, 2970, 1590, 1560, 1416, 1363.

HRMS m/z (ESI) calculated for C15H26N3O2S (M + H)+ 312.1740, found 312.1739.

N-(bis(tert -butylamino)methylene)-4-(trifluoromethyl)benzenesulfonamide (3l)

Following the general procedure, compound 3L was prepared from tert- butyl isocyanide (125 mL),N,N-di-

bromo-4-trifluoromethylbenzenesulfonamide (191 mg) in presence of water (50 mL) and K2CO3 (2 equiv,

138 mg). Purified by column chromatography on silica gel (Petroleum ether: EtOAc = 7:2). Colorless liquid

(69%, 125 mg).

1HNMR (CDCl3, 600MHz): d 8.0 (d, J= 9Hz, 2H), 7.71 (d, J= 9.6 Hz, 2H), 7.22 (br, 1H), 4.49 (br, 1H), 1.35 (s, 18H).

13C NMR (CDCl3, 150 MHz): d 153.9, 147.6, 132.9 (JCF = 38.4 Hz), 126.4, 125.6 (JCF = 4.3 Hz), 123.6 (JCF =

324.6 Hz), 52.7, 29.7.
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19F NMR (CDCl3, 564 MHz): d �62.89.

IR (KBr, cm�1): n 3389, 3336, 2957, 1567, 1443, 978.

HRMS m/z (ESI) calculated for C16H25F3N3O2S (M + H)+ 380.1614, found 380.1603.

N-(bis(tert -butylamino)methylene)-4-butylbenzenesulfonamide (3m)

Following the general procedure, compound 3m was prepared from tert- butyl isocyanide (125 mL), N,N-

dibromo-4-butylbenzenesulfonamide (186 mg) in presence of water (50 mL) and K2CO3 (2 equiv, 138 mg).

Purified by column chromatography on silica gel (Petroleum ether: EtOAc = 7:2). Colorless liquid (76%,

139 mg).

1H NMR (CDCl3, 600MHz): d 7.77 (d, J = 7.8 Hz, 2H), 7.23 (d, J = 8.4 Hz, 2H), 7.11 (br, 1H), 4.39 (br, 1H), 2.64 (t,

J = 7.8 Hz, 2H), 1.62–1.57 (m, 2H), 1.34–1.26 (s, 20H), 0.92 (t, J = 7.8 Hz, 3H).

13C NMR (CDCl3, 150 MHz): d 153.9, 146.4, 141.3, 128.3, 125.9, 60.3, 35.4, 33.2, 29.6, 22.1, 13.8.

IR (KBr, cm�1): n 3316, 2937, 1577, 1453.

HRMS m/z (ESI) calculated for C19H34N3O2S (M + H)+ 368.2366, found 368.2369.

N-(bis(tert -butylamino)methylene)naphthalene-1-sulfonamide (3n)

Following the general procedure, compound 3n was prepared from tert- butyl isocyanide (125 mL),N,N-di-

bromo-2-naphthalenesulfonamide (183 mg) in presence of water (50 mL) and K2CO3 (2 equiv, 138 mg). Pu-

rified by column chromatography on silica gel (Petroleum ether: EtOAc = 7:2). Colorless liquid (73%,

131 mg).

1H NMR (CDCl3, 600MHz): d 8.43 (s, 1H), 7.95–7.88 (m, 4H), 7.61–7.56 (m, 2H), 7.28 (br, 1H), 4.45 (br, 1H), 1.35

(s, 18H).

13C NMR (CDCl3, 150 MHz): d 153.9, 140.9, 134.2, 132.1, 129.0, 128.6, 127.8, 127.7, 126.9, 126.0, 122.6,

53.6, 29.6.

IR (KBr, cm�1): n 3423, 3356, 2945, 1596, 1456.

HRMS m/z (ESI) calculated for C19H28N3O2S (M + H) + 362.1897, found 362.1903.
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Characterization of products 4a-4m

N-(bis(tert -butylamino)methylene)-4-methylbenzenesulfonamide (4a)

Following the general procedure, compound 4a was prepared from tert- butyl isocyanide (125 mL), N,N-di-

bromo-p-toluenesulfonamide (164mg) in presenceofwater (50mL) andK2CO3 (2 equiv, 138mg). Purifiedby col-

umnchromatographyon silicagel (Petroleumether: EtOAc=7:2). Colorless solid (81%,130mg);mp94�C–96�C.

1H NMR (CDCl3, 400 MHz): d 7.76 (d, J = 8.4 Hz, 2H), 7.23 (d, J = 8 Hz, 2H), 7.18 (br, 1H), 4.40 (br, 1H), 2.38 (s,

3H), 1.33 (s, 18H).

13C NMR (CDCl3, 100 MHz): d 153.9, 141.5, 141.2, 128.9, 128.8, 125.9, 50.9, 29.8, 21.4.

IR (KBr, cm�1): n 3321, 2940, 1587, 1483.

HRMS m/z (ESI) calculated for C16H28N3O2S (M + H)+ 326.1897, found 326.1896.

N-(bis(isopropylamino)methylene)-4-methylbenzenesulfonamide (4b)

Following the general procedure, compound 4b was prepared from isopropyl isocyanide (105 mL), N,N-di-

bromo-p-toluenesulfonamide (164mg) in presenceofwater (50mL) andK2CO3 (2 equiv, 138mg). Purifiedby col-

umnchromatographyonsilicagel (Petroleumether: EtOAc=7:2).Colorless solid (78%,115mg);mp96�C–98�C.

1H NMR (CDCl3, 500MHz): d 7.77 (d, J = 8 Hz, 2H), 7.23 (d, J = 7.5 Hz, 2H), 3.89–3.62 (m, 2H), 2.39 (s, 3H), 1.16

(d, J = 6.5 Hz, 12H).

13C NMR (CDCl3, 125 MHz): d 153.6, 141.5, 141.3, 128.9, 125.9, 43.4, 22.9, 21.4.

IR (KBr, cm�1): n 3340, 2980, 1576, 1470.

HRMS m/z (ESI) calculated for C14H24N3O2S (M + H)+ 298.1584, found 298.1581.

N-(bis(cyclohexylamino)methylene)-4-methylbenzenesulfonamide (4c)
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Following thegeneralprocedure, compound4cwaspreparedfromcyclohexyl isocyanide (135mL),N,N-dibromo-

p-toluenesulfonamide (164mg) inpresenceofwater (50mL) andK2CO3 (2equiv, 138mg). Purifiedbycolumnchro-

matography on silica gel (Petroleum ether: EtOAc = 7:2). Colorless solid (75%, 141 mg); mp 110�C–112�C.

1H NMR (CDCl3, 500 MHz): d 7.76 (d, J = 8 Hz, 2H), 7.23 (d, J = 8.5 Hz, 2H), 2.39 (s, 3H), 1.87–1.85 (m, 4H),

1.70–1.68 (m, 4H), 1.61–1.58 (m, 5H), 1.36–1.33 (m, 4H), 1.21–1.19 (m, 5H).

13C NMR (CDCl3, 125 MHz): d 153.5, 141.5, 141.4, 128.9, 125.9, 50.0, 33.0, 25.3, 24.3, 21.4.

IR (KBr, cm�1): n 3337, 2957, 1567, 1457.

HRMS m/z (ESI) calculated for C20H32N3O2S (M + H)+ 378.2210, found 378.2208.

N-(bis(butylamino)methylene)-4-methylbenzenesulfonamide (4days)

Following the general procedure, compound 4d was prepared from butyl isocyanide (116 mL), N,N-dibromo-

p-toluenesulfonamide (164 mg) in presence of water (50 mL) and K2CO3 (2 equiv, 138 mg). Purified by column

chromatography on silica gel (Petroleum ether: EtOAc = 7:2). Colorless solid (72%, 116 mg); mp 68�C–70�C.

1H NMR (CDCl3, 600 MHz): d 7.74 (d, J = 7.8 Hz, 2H), 7.21 (d, J = 9 Hz, 2H), 3.15 (br, 2H), 2.38 (s, 3H), 1.48 (s,

4H), 1.29–1.25 (m, 6H), 0.87 (q, J = 7.2 Hz, 6H).

13C NMR (CDCl3, 150 MHz): d 155.3, 141.5, 141.2, 128.9, 125.8, 41.2, 29.6, 21.3, 19.8, 13.6.

IR (KBr, cm�1): n 3353, 2948, 1581, 1451.

HRMS m/z (ESI) calculated for C16H28N3O2S (M + H)+ 326.1897, found 326.1907.

N-(bis(pentylamino)methylene)-4-methylbenzenesulfonamide (4e)

Following the general procedure, compound 4ewas prepared from pentyl isocyanide (168 mL),N,N-dibromo-

p-toluenesulfonamide (164 mg) in presence of water (50 mL) and K2CO3 (2 equiv, 138 mg). Purified by column

chromatography on silica gel (Petroleum ether: EtOAc = 7:2). Colorless solid (70%, 123 mg); mp 56�C–58�C.

1HNMR (CDCl3, 600MHz): d 7.76 (d, J = 8.4 Hz, 2H), 7.22 (d, J= 7.8 Hz, 2H), 3.14 (br, 4H), 2.38 (s, 3H), 1.68 (br,

1H), 1.51 (s, 4H), 1.29–1.26 (m, 9H), 0.87 (t, J = 6.6 Hz, 6H).

13C NMR (CDCl3, 150 MHz): d 155.2, 141.6, 141.3, 128.9, 125.9, 41.5, 29.7, 28.8, 22.2, 21.4, 13.9.

IR (KBr, cm�1): n 3373, 2948, 1576, 1463.

HRMS m/z (ESI) calculated for C18H32N3O2S (M + H)+ 354.2210, found 354.2229.
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N-(bis(benzylamino)methylene)-4-methylbenzenesulfonamide (4f)

Following the general procedure, compound 4f was prepared from benzyl isocyanide (133 mL),N,N-dibromo-

p-toluenesulfonamide (164 mg) in presence of water (50 mL) and K2CO3 (2 equiv, 138 mg). Purified by column

chromatography on silica gel (Petroleum ether: EtOAc = 7:2). Colorless solid (67%, 131 mg); mp 72�C–74�C.

1H NMR (CDCl3, 600 MHz): d 7.57 (d, J = 9.6 Hz, 2H), 7.21–7.15 (m, 10H), 7.09 (d, J = 9 Hz, 2H), 4.25–4.24 (m,

6H), 2.32 (s, 3H).

13C NMR (CDCl3, 150 MHz): d 155.3, 141.8, 140.8, 139.2, 129.0, 128.5, 127.3, 127.1, 126.0, 45.4, 44.4, 21.4.

IR (KBr, cm�1): n 3411, 2897, 1603, 1487.

HRMS m/z (ESI) calculated for C22H24N3O2S (M + H) + 394.1584, found 394.1582.

N-(bis((2,4,4-trimethylpentan-2-yl)amino)methylene)-4-methylbenzenesulfonamide (4g)

Following the general procedure, compound 4g was prepared from 1,1,3,3-tetramethylbutyl isocyanide

(190 mL), N,N-dibromo-p-toluenesulfonamide (164 mg) in presence of water (50 mL) and K2CO3 (2 equiv,

138 mg). Purified by column chromatography on silica gel (Petroleum ether: EtOAc = 7:2). Colorless solid

(73%, 159 mg); mp 82�C–84�C.

1HNMR (CDCl3, 600MHz): d 7.77 (d, J = 8.4 Hz, 2H), 7.28 (br, 1H), 7.21 (d, J = 8.4 Hz, 2H), 4.32 (br, 1H), 2.37 (s,

3H), 1.79 (s, 2H), 1.56 (s, 2H), 1.39–1.38 (m, 12H), 1.0 (s, 9H), 0.91 (s, 9H).

13C NMR (CDCl3, 150 MHz): d 153.1, 141.6, 141.3, 128.8, 125.9, 56.5, 54.6, 52.9, 51.2, 31.4, 21.3.

IR (KBr, cm�1): n 3351, 2977, 1583, 1441.

HRMS m/z (ESI) calculated for C24H44N3O2S (M + H)+ 438.3149, found 438.3147.

N-(bis(isopropylamino)methylene)-4-nitrobenzenesulfonamide (4h)
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Following the general procedure, compound 4h was prepared from isopropyl isocyanide (105 mL), N,N-di-

bromo-4-nitrobenzenesulfonamide (174mg) in presence of water (50 mL) and K2CO3 (2 equiv, 138mg). Purified

by column chromatography on silica gel (Petroleum ether: EtOAc = 7:2). Colorless liquid (68%, 111 mg).

1H NMR (CDCl3, 600 MHz): d 8.29 (d, J = 9 Hz, 2H), 8.06 (d, J = 9 Hz, 2H), 4.06–3.84 (m, 2H), 1.19 (d, J =

5.4 Hz, 12H).

13C NMR (CDCl3, 150 MHz): d 153.5, 149.8, 149.2, 127.1, 123.8, 43.6, 22.9.

IR (KBr, cm�1): n 3337, 2953, 1547, 1519, 1428.

HRMS m/z (ESI) calculated for C13H21N4O4S (M + H)+ 329.1278, found 329.1279.

N-(bis(isopropylamino)methylene)benzenesulfonamide (4i)

Following the general procedure, compound 4i was prepared from isopropyl isocyanide (105 mL),N,N-dibro-

mobenzenesulfonamide (157mg) in presence of water (50 mL) and K2CO3 (2 equiv, 138mg). Purified by column

chromatography on silica gel (Petroleum ether: EtOAc = 7:2). Colorless solid (81%, 115 mg); mp 56�C–58�C.

1H NMR (CDCl3, 600 MHz): d 7.88 (d, J = 8.4 Hz, 2H), 7.47–7.41 (m, 3H), 3.93–3.68 (m, 2H), 1.15 (d, J =

7.8 Hz, 12H).

13C NMR (CDCl3, 150 MHz): d 153.7, 144.1, 131.1, 128.4, 125.9, 43.4, 22.8.

IR (KBr, cm�1): n 3331, 2959, 1577, 1452.

HRMS m/z (ESI) calculated for C13H22N3O2S (M + H)+ 284.1427, found 284.1435.

N-(bis(butylamino)methylene)benzenesulfonamide (4j)

Following the general procedure, compound 4j was prepared from butyl isocyanide (115 mL), N,N-dibro-

mobenzenesulfonamide (164 mg) in presence of water (105 mL) and K2CO3 (2 equiv, 138 mg). Purified by

column chromatography on silica gel (Petroleum ether: EtOAc = 7:2). Colorless liquid (78%, 121 mg).

1H NMR (CDCl3, 600 MHz): d 7.90 (d, J = 7.2 Hz, 2H), 7.49–7.43 (m, 3H), 3.18 (br, 2H), 1.59 (s, 2H), 1.52 (s, 2H),

1.35–1.26 (m, 6H), 0.91 (t, J = 7.2 Hz, 6H).

13C NMR (CDCl3, 150 MHz): d 155.3, 144.0, 131.1, 128.4, 125.8, 41.2, 29.6, 19.8, 13.6.

IR (KBr, cm�1): n 3335, 2963, 1558, 1487.

HRMS m/z (ESI) calculated for C15H26N3O2S (M + H)+ 312.1740, found 312.1747.
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N-(bis(pentylamino)methylene)benzenesulfonamide (4k)

Following the general procedure, compound 4kwas prepared from pentyl isocyanide (168 mL),N,N-dibromo-

benzenesulfonamide (157 mg) in presence of water (50 mL) and K2CO3 (2 equiv, 138 mg). Purified by column

chromatography on silica gel (Petroleum ether: EtOAc = 7:2). Colorless solid (71%, 120 mg); mp 52�C–54�C.

1H NMR (CDCl3, 600 MHz): d 7.86 (d, J = 7.2 Hz, 2H), 7.47–7.40 (m, 3H), 3.15 (br, 4H), 1.49 (s, 4H), 1.28–1.23 (s,

8H), 0.85 (t, J = 6.6 Hz, 6H).

13C NMR (CDCl3, 150 MHz): d 155.3, 144.0, 131.1, 128.4, 125.8, 41.5, 29.6, 28.7, 22.2, 13.8.

IR (KBr, cm�1): n 3357, 2945, 1538, 1451.

HRMS m/z (ESI) calculated for C17H30N3O2S (M + H)+ 340.2053, found 340.2057.

N-(bis((2,4,4-trimethylpentan-2-yl)amino)methylene)-4-bromobenzenesulfonamide (4L)

Following the general procedure, compound 4L was prepared from 1,1,3,3-tetramethylbutyl isocyanide

(190 mL), N,N-dibromo-4-bromobenzenesulfonamide (197 mg) in presence of water (50 mL) and K2CO3 (2

equiv, 138 mg). Purified by column chromatography on silica gel (Petroleum ether: EtOAc = 7:2). Colorless

liquid (69%, 173 mg).

1H NMR (CDCl3, 600MHz): d 7.77 (d, J = 8.4 Hz, 2H), 7.57 (d, J= 8.4 Hz, 2H), 7.28 (br, 1H), 4.39 (br, 1H), 1.79 (s,

2H), 1.71 (s, 2H), 1.40 (s, 12H), 1.01 (s, 9H), 0.92 (s, 9H).

13C NMR (CDCl3, 150 MHz): d 153.1, 143.5, 131.5, 127.6, 125.5, 56.6, 54.8, 52.8, 51.3, 31.4.

IR (KBr, cm�1): n 3339, 2986, 1547, 1465, 702.

HRMS m/z (ESI) calculated for C23H41BrN3O2S (M + H) + 502.2097, found 502.2086.

N-(bis((2-ethyl-6-methylphenyl)amino)methylene)-4-methylbenzenesulfonamide (4m)
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Following the general procedure, compound 3o was prepared from 1-ethyl-2-isocyano-3-methylbenzene

(159 mL), N,N-dibromo-p-toluenesulfonamide (164 mg) in presence of water (50 mL) and K2CO3 (2 equiv,

138 mg). Purified by column chromatography on silica gel (Petroleum ether: EtOAc = 7:2). Brown color solid

(74%, 165 mg); mp 128�C–130�C.

1H NMR (CDCl3, 600 MHz): d 8.95 (br, 1H), 7.79 (d, J = 7.8 Hz, 2H), 7.31–7.29 (m, 1H), 7.26–7.21 (m, 4H), 7.15–

7.12 (m, 1H), 7.03–7.01 (m, 2H), 5.45 (br, 1H), 2.80–2.74 (m, 1H), 2.63–2.57 (m, 1H), 2.43 (s, 3H), 2.40–2.39 (m,

1H), 2.37 (s, 3H), 2.07 (s, 3H), 1.71 (br, 1H), 1.26 (t, J = 7.8 Hz, 3H), 1.0 (t, J = 7.8 Hz, 3H).

13C NMR (CDCl3, 150 MHz): d 153.9, 143.1, 141.9, 141.5, 140.8, 137.3, 136.5, 132.3, 131.5, 129.4, 129.2, 128.9,

128.2, 128.1, 127.4, 126.3, 126.2, 60.3, 24.8, 24.4, 21.4, 18.5, 18.0, 14.7, 14.4.

IR (KBr, cm�1): n 3327, 2937, 1567, 1463.

HRMS m/z (ESI) calculated for C26H32N3O2S (M + H)+ 450.2210, found 450.2213.

Characterization of product 7a

N-((tert-butylamino)(cyclohexylamino)methylene)-4-methylbenzenesulfonamide (7a)

1H NMR (CDCl3, 500 MHz): d 7.75 (d, J = 8 Hz, 2H), 7.22 (d, J = 8 Hz, 2H), 7.17 (br, 1H), 4.23 (br, 1H), 2.38 (s,

3H), 1.86–1.84 (m, 2H), 1.72–1.69 (s, 3H), 1.68–1.67 (m, 1H), 1.58–1.33 (m, 15H).

13C NMR (CDCl3, 125 MHz): d 153.9, 141.4, 141.3, 128.9, 125.9, 125.8, 50.2, 33.9, 29.6, 29.5, 25.3, 24.2, 21.4.

IR (KBr, cm�1): n 3341, 2984, 1551, 1455.

HRMS m/z (ESI) calculated for C18H30N3O2S (M + H) + 352.2053, found 352.2043.

Characterization of product 8

1,3-di-tert-butylguanidine (8).

1H NMR (CDCl3, 600 MHz): d 7.94 (br, 3H), 2.89 (s, 9H), 2.81 (s, 9H).

13C NMR (CDCl3, 150 MHz): d 162.4, 61.4, 36.3, 31.2.

IR (KBr, cm�1): n 3342, 3321, 2947.

HRMS m/z (ESI) calculated for C9H21N3Na (M + Na)+ 194.1628, found 194.1620.
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