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Modulating the gut microbiota
ameliorates spontaneous
seizures and cognitive deficits in
rats with kainic acid-induced
status epilepticus by inhibiting
inflammation and oxidative
stress

Xue Wang1, Chunyu Yang2, Liu Yang1 and Yongbo Zhang1*

1Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China,
2Department of Neurology, Dehui People’s Hospital, Jilin, China

Introduction: Epilepsy is a highly prevalent neurological disease whose

treatment has always been challenging. Hence, it is crucial to explore

the molecular mechanisms underlying epilepsy inhibition. Inflammation and

oxidative stress are important pathophysiological changes in epilepsy that

contribute to the development of spontaneous seizures and cognitive deficits.

In recent years, altered gut microbiota composition was found to be involved

in epilepsy, but the underlying mechanism remains unclear. Modulation of the

gut microbiota showed a positive impact on the brain by regulating oxidative

stress and inflammation. Hence, this study evaluated the e�ect of modulating

gut dysbiosis by treating epileptic ratswith prebiotics, probiotics, and synbiotics

and investigated the underlying molecular mechanism.

Materials and methods: Epileptic rat models were established by injecting

1 µl of kainic acid (KA, 0.4 µg/µl) into the right amygdalae. The rats were

divided into Sham, KA, KA+prebiotic [inulin:1 g/kg body weight (bw)/day],

KA+probiotics (10 × 109cfu of each bacteria/kg, bw/day), and KA+synbiotic

groups (1:1 mixture of prebiotics and probiotics). Seizures were monitored,

and cognitive function was assessed in all rats. Biochemical indicators, namely,

oxidative stress, DNA damage, glutamate levels, and inflammation markers,

were also determined.

Results: The KA-induced status epilepticus (SE) rats exhibited spontaneous

seizures and cognitive deficits. This was accompanied by the activation

of glial cells, the inflammatory response (IL-1 β, IL-6, and TNF-α), lipid

peroxidation (MDA), DNA damage (8-OHdG), the release of glutamate,

and a decline in total antioxidant ability (GSH). These changes were

alleviated by partial treatment with prebiotics, probiotics, and synbiotics.
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Conclusion: Modulating gut dysbiosis ameliorates spontaneous seizures and

cognitive deficits in rats with KA-induced status epilepticus. The underlying

mechanism may potentially involve the inhibition of inflammation and

oxidative stress.
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Introduction

Epilepsy is a highly prevalent neurological disease affecting

millions of people worldwide (1). Patients with recurrent

seizures usually have disorders in cognition, sleep, and

neuropsychiatry, which result in a low quality-of-life (2–4).

Despite various anti-seizure medications (ASMs) used in the

clinical treatment of epilepsy, the seizures of 30% of patients

cannot be well-controlled, leading to the development of

refractory epilepsy (5). It is not sufficient to control seizures

by using ASMs only; the ultimate goal of epilepsy treatment

is to find a breakthrough in inhibiting its occurrence and

development. Neuroinflammation and oxidative stress are

important pathophysiological changes in epilepsy and are

associated with an enhanced risk of developing the disease (6).

Hence, targeting inflammation and oxidative stress are crucial

therapeutic approaches to inhibit the development of epilepsy

and its associated comorbidities.

The microbiota-gut-brain axis is gradually recognized to

play an important role in the central nervous system. The

bidirectional connection between the brain and gut is mediated

by the immune system, enteric nervous system (ENS), vagus

nerve, andmicrobial metabolites (7). Some studies have reported

the presence of an altered gut microbiota composition in

drug-resistant patients, suggesting that gut dysbiosis might be

involved in the mechanism of epilepsy (8, 9). Host bacteria

have been found to regulate the maturation and function of

microglia and the microglia-mediated inflammatory response

(10, 11). In addition, oxidative stress during seizures is

mainly caused by NADPH oxidases, especially those expressed

in activated microglia (12, 13). The effect of gut bacteria

on regulating neuroinflammation and oxidative stress has

been directly confirmed in models of Alzheimer’s disease

(14). Therefore, modulating the gut microbiome may be a

potential intervention strategy to inhibit the development

of epilepsy.

The addition of probiotics, prebiotics, and synbiotics can

be used to modulate gut microbiota. Probiotics are live

microorganisms that exert beneficial effects on body health

by improving intestinal and immune homeostasis (15, 16).

Lactobacilli and bifidobacteria are well-known probiotic strains

that have shown positive effects on several neurological

and psychological diseases (17–19). Prebiotics, regarded as

non-digestible food fibers, can improve the health of the

host by selectively increasing the growth and activity of gut

microbes, especially Lactobacillus and Bifidobacterium (20).

Synbiotics are a combination of prebiotics and probiotics,

in which the prebiotic components are beneficial for the

growth and metabolism of the probiotics (20). In this

study, we aimed to investigate the effects of prebiotics,

probiotics, and synbiotics on kainic acid-induced status

epilepticus in rats and elucidate the underlying mechanism of

their action.

Materials and methods

Animals

Male Wistar rats (Beijing Vital River Laboratory Animal

Technology Co. Ltd, China) weighing 280–300 g were used

in this study. All experimental rats were raised in a standard

environment with a 12-h light/dark cycle, constant temperature

(22 ± 2◦C), and free access to water and chow. All procedures

in the experiment followed guidelines on the care and use

of laboratory animals by the Capital Medical University

(China). The ethics approval for this study was obtained

from the Animal Studies Subcommittee of Capital Medical

University (China).

Drug preparation

Kainic acid (KA; Abcam, Cambridge, UK) was used to

induce status epilepticus brain insults. To create a working

solution, 0.4 µg KA was dissolved in 1 µl phosphate-

buffered saline (PBS). Inulin (1 g/kg bw/day; Chicory,

Sigma-Aldrich, MO, USA) was used as the prebiotic

supplement. Probiotics containing Bifidobacterium and

Lactobacillus were provided by Shanxi Sciphar Natural Products

Co., Ltd. Approximately 10 × 109 cfu of each probiotic

per kg bodyweight was used for treating the experimental

rats. The synbiotics used were a 1:1 mixture of prebiotics

and probiotics.
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Seizure induction and experimental
groups

Rat epilepsy models were anesthetized and positioned in

a stereotaxic frame. Then, 1 µl KA solution was injected into

the right amygdalae (2.5mm caudal to the bregma; 4.5mm

right of the midline; 8.5mm from the surface of the skull) to

establish status epilepticus (SE) insult. Only rats that reached

the fifth seizure stage (21) and were maintained for 1 h were

allowed in this study to ensure consistency of brain injury and

minimize suffering. Diazepam (8 mg/kg; Sigma-Aldrich) was

used to terminate the seizures.

Rats were randomly divided into five groups. The sham

group was injected with 1 µl PBS in the right amygdala and

was fed orally with 1mL PBS per day. The KA group was

injected with 1 µl KA solution into the right amygdala and

orally fed with 1ml PBS daily. The KA+prebiotic group was

injected with 1 µl KA solution into the right amygdala and

orally fed with 1ml PBS containing calculated prebiotics per day.

The KA+probiotics group was injected with 1 µl KA solution

into the right amygdala and orally fed with 1ml PBS containing

calculated probiotics per day. At last, the KA+synbiotic group

was injected with 1 µl KA solution into the right amygdala

and orally fed with 1mL PBS containing calculated synbiotics

per day.

All the experimental rats were monitored via video for

spontaneous seizures from days 1 to 28. Latency (the time

from SE induction to the first seizure episode), frequency

of spontaneous seizures, the duration of the seizures,

and scores of the seizures were recorded and evaluated

for analysis.

Morris water maze (MWM) test

The experimental rats were tested for spatial learning and

memory ability using an MWM 14 days following seizure

induction. This experimental device included a circular tank

(divided into four quadrants), a platform (placed 1 cm below the

water surface in one quadrant), and visual cues (placed inside

the pool). Data were tracked and monitored using the Viewer 2

tracking software (China).

The rats were trained for five consecutive days (four 90-

s trials per day) in the water maze. They were required to

find the hidden platform within 90 s and were placed on

different starting points for each trial. If the rats could not

complete the goal within 90 s, they were directed and positioned

on the platform for 10 s. The time each rat spent reaching

the platform was recorded as the escape latency, with 90 s

being the maximum time. On the sixth day, the learning

ability and memory of the rats were assessed with a 90-s

trial. In this trial, the platform was removed, and all rats

were positioned in the quadrant opposite to the previous

target quadrant. The escape latency, number of platform

crossings, and time each rat spent in the target quadrant

were recorded.

Brain sample collection

In total, 3 days following SE induction, all experimental rats

were sacrificed, their hippocampal tissues were extracted, and

placed in ice-cold saline. The hippocampal samples were blotted

and weighed, and 100mg of wet tissue was homogenized in

1ml phosphate buffer (0.1M, pH 7.4). The homogenate was

centrifuged (3,000 rpm, 4◦C, 15min), and the supernatant was

collected and stored at−80◦C for biochemical assays.

Detection of biochemical parameters

The presence of the nucleotide 8-hydroxy-2-

deoxyguanosine (8-OhdG) is an indicator of DNA damage.

The concentrations of 8-OHdG were detected using an 8-

OHdG assay kit (Nanjing Jiancheng Biotechnology Co., Ltd.,

China). Glutamate is an important excitatory neurotransmitter

in the central nervous system, which was measured by

using a Glutamate measurement kit (Nanjing Jiancheng

Biotechnology Co., Ltd.). Malondialdehyde (MDA), a marker

of lipid peroxidation, was detected using a thiobarbituric acid

(TBA)-based spectrophotometric assay kit (Nanjing Jiancheng

Biotechnology Co., Ltd.). The level of intracellular reduced

glutathione (GSH) was measured using a GSH assay kit

according to the manufacturer’s protocol (Nanjing Jiancheng

Biotechnology Co., Ltd.).

Concentrations of interleukin (IL)-1β , IL-6, interferon

(IFN)-γ , and tumor necrosis factor (TNF)-α in the

hippocampus were detected using ELISA kits according to

the manufacturer’s protocols (Nanjing Jiancheng Biotechnology

Co., Ltd.). Ionized calcium-binding adapter protein-1 (Iba-1)

and glial fibrillary acidic protein (GFAP) represent the activation

of microglia and astrocytes, respectively. The levels of Iba-1

(Shanghai Runyu Biotechnology Co., Ltd., China) and GFAP

(provided by Shanghai Zeye Technology Co., Ltd., China)

were measured using ELISA kits according to the respective

manufacturer’s instructions.

Statistical analysis

All the experimental data were analyzed using SPSS

statistical software (version 21.0) and GraphPad Prism

software (version 7.0). The data are expressed as the mean

± standard deviation (SD). Differences between groups

were compared using Student’s t-test or repeated-measures
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FIGURE 1

E�ect of prebiotics, probiotics, and synbiotics on spontaneous seizures in rats following status epilepticus induction. (A) Latency. (B) Scores of

seizures. (C) Frequency of seizures. (D) Duration of seizures. •• P < 0.01 vs. the Sham group, *P < 0.05 vs. the KA group, **P < 0.01 vs. the KA

group, # P < 0.05 vs. the KA+synbiotic group. KA, kainic acid.

ANOVA. Tukey’s test was used as a post-hoc analysis for

multiple comparisons. Statistical significance was set as follows:
∗ P < 0.05, ∗∗P < 0.01.

Results

Modulating the gut microbiota
ameliorates spontaneous seizures in
epileptic rats

The effects of modulating gut microbiota on the

characteristics of spontaneous seizures in rats following

SE were investigated in this study (Figure 1). After SE induction,

treatment with prebiotics, probiotics, and synbiotics extended

the latency period (prebiotics, P < 0.05; probiotics, P < 0.01;

synbiotics, P < 0.01), decreased the frequency of seizures

(prebiotics, P < 0.05; probiotics, P < 0.01; synbiotics, P <

0.01), and decreased the duration of seizures (prebiotics, P <

0.05; probiotics, P < 0.01; synbiotics, P < 0.01). In particular,

the effect of synbiotics on the latency period and frequency of

seizures was more obvious. Regarding the severity of seizures,

treatment with synbiotics significantly decreased the scores for

spontaneous seizures (P < 0.05).

Modulating the gut microbiota improves
cognitive deficit in epileptic rats

The MWM test was used to evaluate the learning and

memory abilities of the experimental rats. As shown in Figure 2,
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FIGURE 2

E�ect of prebiotics, probiotics, and synbiotics on cognitive function in rats following status epilepticus induction. (A) Escape latency. (B) Time

spent in the target quadrant. (C) Number of platform crossings. •• P < 0.01 vs. the Sham group, *P < 0.05 vs. the KA group, **P < 0.01 vs. the KA

group, ## P < 0.01 vs. the KA+synbiotic group. KA, kainic acid.

the escape latency of rats from the five groups gradually reduced

during the five-day trial. On the fifth day, the escape latency

of rats in the KA group was much longer than that in the

sham group (P < 0.01); treatment with prebiotics (P < 0.01),

probiotics (P < 0.01), or synbiotics (P < 0.01) significantly

reduced escape latency (Figure 2A).

On the sixth day of the spatial probe test, rats in the KA

group spent less time in the target quadrant (P< 0.01, Figure 2B)

and crossed fewer platforms (P < 0.01, Figure 2C) compared

with the sham group. Administration of prebiotics (P < 0.05),

probiotics (P < 0.01), or synbiotics (P < 0.01) significantly

increased the time spent in the target quadrant (Figure 2B).

The number of platform crossings (Figure 2C) was significantly

increased by treatment with probiotics (P < 0.05) or synbiotics

(P < 0.01).

Modulating the gut microbiota mitigates
oxidative stress, DNA damage, and
glutamate release following SE

The role of modulating the gut microbiota in oxidative

stress, DNA damage, and glutamate in rats following SE was

evaluated. As shown in Figure 3, the rats in the KA group

exhibited significantly higher levels of MDA (P < 0.01), 8-

OHdG (P < 0.01), and glutamate (P < 0.01) and lower levels of

GSH (P < 0.01) than those in the sham group. Administration

of prebiotics, probiotics, and synbiotics significantly decreased

the levels of MDA (prebiotics, P < 0.05; probiotics, P <

0.05; synbiotics, P < 0.01), 8-OHdG (prebiotics, P < 0.01;

probiotics, P < 0.01; synbiotics, P < 0.01), and glutamate

(prebiotics, P < 0.05; probiotics, P < 0.05; synbiotics, P
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FIGURE 3

Treatment with prebiotics, probiotics, and synbiotics reduced the levels of MDA, 8-OHdG, and glutamate and increased the level of GSH in the

hippocampus of rats after status epilepticus induction. (A) MDA. (B) GSH. (C) 8-OHdG. (D) Glutamate. •• P < 0.01 vs. the Sham group, *P < 0.05

vs. the KA group, **P < 0.01 vs. the KA group, ## P < 0.01 vs. the KA+synbiotic group. KA, kainic acid.

< 0.01), and increased the levels of GSH (prebiotics, P <

0.05; probiotics, P < 0.01; synbiotics, P < 0.01) in KA-

induced rats.

Modulating the gut microbiota inhibits
the activation of astrocytes and microglia
and reduces inflammation following SE

The role of modulating the gut microbiota on glial cells

and inflammatory cytokines in rats following SE was also

investigated, the results of which are shown in Figure 4. Rats in

the KA group presented the activation of microglia (P < 0.01)

and astrocytes (P < 0.01) and higher levels of IL-1β (P < 0.01),

IL-6 (P < 0.01), and TNF-α (P < 0.01) compared with those in

sham group. Treatment with prebiotics, probiotics, or synbiotics

significantly inhibited the activation of microglia (prebiotics, P

< 0.05; probiotics, P < 0.01; synbiotics, P < 0.01) and astrocytes

(prebiotics, P < 0.05; probiotics, P < 0.05; synbiotics, P <

0.01) and reduced the levels of IL-1β (prebiotics, P < 0.05;

probiotics, P < 0.01; synbiotics, P < 0.01), IL-6 (prebiotics, P

< 0.01; probiotics, P < 0.01; synbiotics, P < 0.01), and TNF-α

(prebiotics, P < 0.01; probiotics, P < 0.01; synbiotics, P < 0.01).

No statistically significant difference was observed in IFN-γ

levels between these groups.
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FIGURE 4

Treatment with prebiotics, probiotics, and synbiotics decreased the levels of Iba-1 and GFAP and inhibited the release of inflammatory cytokines

such as IL-1 β, IL-6, and TNF- α. (A) Iba-1. (B) GFAP. (C) IL-1β. (D) IL-6. (E) TNF- α. (F) IFN- γ. •• P < 0.01 vs. the Sham group, *P < 0.05 vs. the KA

group, **P < 0.01 vs. the KA group, ## P < 0.01 vs. the KA+synbiotic group. KA, kainic acid.

Discussion

This study found that modulating the gut microbiota had

a positive impact on seizure control and cognitive deficits

in KA-induced SE rats. Moreover, changes in oxidative stress

parameters, DNA damage, glutamate release, activation of

microglia and astrocytes, and levels of inflammatory cytokines

in the hippocampal tissues were measured to study the role of

modulating gut microbiota in their anti-seizure and cognition-

enhancing effects.

Gut dysbiosis has gradually been recognized to be associated

with epilepsy (22). Peng et al. studied alterations in gut

microbiome composition between patients with drug-resistant

epilepsy (DRE) and healthy individuals using 16S rDNA

sequencing and found an increased abundance of rare flora

in patients with DRE (8). In addition, those with four or

more seizures per year showed lower levels of Bifidobacteria

and Lactobacillus than those with fewer than four seizures per

year (8). This study provides evidence that restoring the gut

microbiota may be a novel therapeutic strategy for treating

DRE. We used two bacterial strains, Bifidobacterium and

Lactobacillus, as probiotics and inulin as a prebiotic, which were

beneficial to the growth and activity of these probiotic strains.

Our results showed that treatment with prebiotics, probiotics,

and synbiotics ameliorated spontaneous seizures and cognitive

deficits in KA-induced SE rats. As a matter of interest, synbiotics

seemed to have a better curative effect than either prebiotics or

probiotics alone.

Glial cell-mediated inflammation plays an important

role in the development of epilepsy (23). A dysfunction

in glial cells leads to the abnormal regulation of water,

ions, and neurotransmitters, promoting hyperexcitability and

hypersynchrony in the brain and increasing susceptibility to

epilepsy (24). Uncontrolled glial-mediated immune reactions

could cause a sustained inflammatory response and facilitate the

development of epilepsy (24). Gut dysbiosis might be involved in

the inflammatory mechanisms underlying epilepsy. Gut bacteria

can affect neural networks by releasing neurotransmitters

or their precursors, such as γ -aminobutyric acid (GABA)

and glutamate (25, 26). The imbalance between excitatory
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and inhibitory neurotransmitters caused by gut dysbiosis

contributes to the development of epilepsy. In addition, under

normal conditions, gut bacteria can induce anti-inflammatory

activity in the brain by stimulating the afferent neurons of

the ENS via the vagus nerve. Disturbing normal bacterial

abundance or function could disrupt the microbiota balance

and lead to excess inflammation (27). Moreover, there may

be a “leakage” in the integrity of the barrier system that

participates in epileptogenesis, namely, the blood-brain barrier

and intestinal mucosal barrier, which could also be affected by

the gut microbiota. Gut dysbiosis may also induce excessive

LPS production, which increases the permeability of the

intestinal immune barrier, leading to epilepsy (27, 28). In

the present study, we observed that modulating the gut

microbiota via treatment with prebiotics, probiotics, and

synbiotics effectively inhibited the inflammatory response and

release of glutamate in the hippocampal tissues of rats following

SE induction.

Oxidative stress is an important factor in the pathogenesis

of epilepsy (29). Seizure activity can increase lipid peroxidation

and decrease total antioxidant ability (30). The excessive

generation of reactive oxygen species (ROS) can cause neuronal

cell damage, which is associated with spontaneous seizures

and cognitive deficits (29, 31). The gut microbiota may also

influence the oxidative state in the central nervous system by

interfering with the levels of ROS and the antioxidant system

(32, 33). Abnormal changes in various metabolites, such as

short-chain fatty acids, vitamins, and absorbable vitamins, can

also regulate the oxidative state of the brain. These mechanisms

have mostly been inferred from previous studies but still lack

direct evidence. The present study confirmed that modulating

the gut microbiota decreased lipid peroxidation, inhibited DNA

damage, and enhanced total antioxidant ability, providing direct

evidence that the gut microbiota affects the oxidative state

during epilepsy.

Conclusion

The present study demonstrated that modulating the

gut microbiota by treatment with prebiotics, probiotics,

and synbiotics exerts an anti-seizure effect and ameliorates

cognitive impairment in KA-induced epileptic rats. Moreover,

the results highlighted that modulating the gut microbiota

inhibited oxidative stress and the inflammatory response in the

hippocampus of epileptic rats, suggesting that modulating the

gut microbiota could be a new therapeutic strategy to inhibit the

development of epilepsy.
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