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by Starr, J., Brown, M. F., Aschenbrenner,
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Microbial drug resistance is partly due to
hindered diffusion through the membrane
of microbial cells and active transport
mechanisms. An approach to counter such
resistance uses the bacterial iron transport
system. Extracellular free iron is scarce
in vertebrates, yet essential for microbial
growth (Anderson et al., 2012). A mech-
anism displayed by microbial pathogens
to cope with iron scarcity involves the
production of siderophores (Skaar, 2010).
These low molecular weight molecules
bear an affinity to iron that exceeds
by several orders of magnitude that of
transferrin, the main protein in blood
for iron transport (Clifton et al., 2009).
Under iron starvation, siderophores are
excreted, scavenge ferric ions and the
complex is shuttled inside the cell. The
pathway differs for gram-negative and
gram-positive strains, in a mechanism
better known for the former (Fukushima
et al., 2013). The Trojan horse approach
(THA) relies on the iron-siderophore
uptake system to deliver an antibiotic pay-
load (Figure 1), a mechanism displayed
by several bacteria, through the produc-
tion of e.g., albomycins, ferrymicins, and
salmycins. These sideromycins consist

of naturally occurring hydroxamate
type of siderophores, covalently linked
to an antibiotic moiety (Möllmann
et al., 2009). Aiming to improve antibi-
otic uptake by pathogenic bacteria,
efforts have been made in the design of
siderophore-antibiotic conjugates (Page,
2013). Typically this involves a cate-
chol/hydroxamate siderophore analog
and a β-lactam drug. Care is required
so that: the mechanism of siderophore
recognition and uptake is not hampered;
a suitable linker is used, thus the conju-
gate is stable in extracellular environment
but the drug is released intracellularly by
enzyme action, in either the cytoplasm or
the periplasm, the latter often required
to maximize the activity of the conjugate
(Braun et al., 1983). Interesting devel-
opments have occurred in the design of
siderophore-drug (SD) conjugates (Page,
2013; Mislin and Schalk, 2014), up to the
point where a siderophore monosulfac-
tam, BAL30072, gave promising results
enough for clinical trials to be performed,
being currently at phase 1 (Butler et al.,
2013). This type of compounds conjugates
a lactam, or similar, with a siderophore-
mimicking small molecule. BAL30072
combines a dihydroxypyridone moiety,
the oxyiminoacyl side chain enabling easy
access to the bacterial cell through the
iron uptake system, and a monocyclic
β-lactam antibiotic moiety. The latter has
reduced susceptibility to inactivation pro-
moted by different β-lactamases (Hofer
et al., 2013). BAL30072 retained activity in
the presence of strains producing class C
carbepenemases, unlike third-generation

cephalosporins and aztreonam and dis-
played antimicrobial activity against
a significant array of Gram negative
strains, among them (multi)drug resistant
Burkholderia pseudomallei, P. aeruginosa,
and Acinetobacter baumannii (Mushtaq
et al., 2010; Page et al., 2010; Mima et al.,
2011; Higgins et al., 2012). The conjugate
proved effective toward 80% of the A. bau-
manii strains tested using an in-vivo rat
soft-tissue infection model (Russo et al.,
2011). In-vitro combinations of BAL30072
and carbapenems proved more effective
than individual agents against mul-
tidrug resistant (MDR) Gram-negative
strains. Additive and synergistic effects
on anti-microbial activity were observed,
particularly in Enterobacteriaceae and
P. aeruginosa. The latter was ascribed to
the affinity of BAL30072 and carbapen-
ems for the target of β-lactam drugs: the
membrane-bound penicillin-binding pro-
teins (PBPs) in the strains tested. The
synergistic effect observed in-vitro was
translated with efficacy in-vivo using ani-
mal models of septicaemia, where the
challenging strains included A. bauman-
nii, P. aeruginosa, and S. marcescens (Hofer
et al., 2013). In-vitro anti-bacterial activ-
ity against the pathogen A. baumannii
ATCC 17961 was also reported recently
for a biscatecholate-monohydroxamate
sideromycin linked by a succinyl residue
to a carbacephalosporin antibiotic. The
conjugate allowed for a MIC of 0.125 μM,
compared to 0.25 μM and over 128 μM
for ciprofloxacin and Loracarbef, respec-
tively (Wencewicz and Miller, 2013). The
parent siderophores were antagonists for
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FIGURE 1 | Schematic of the “Trojan horse” strategy in

Gram-negative bacteria. Antibiotic bound-siderophores bind to
outer-memberane receptors which help their transport to the periplasmic
space upon interaction with the Ton complex. In the periplasm,

siderophores are sequestered by periplasmic-binding proteins which
deliver them to ATP-dependent transporters which help their entrance
into the cell. Antibiotics which would not pass cellular membranes
otherwise, can therefore be released.

the conjugate and its antibacterial activity
inversely related to the concentration of
Fe(III) in the media.

Most of the research within the THA
for drug delivery has relied on β-lactams.
Yet, the use of lactivicin and derivatives
coupled to a phthalimide group, recogniz-
able by a bacterial siderophore receptor,
and hence transported into the cell,
was recently established as a promising
inhibitor of PBPs. The phthalimide-
lactivicin-based conjugate may use a wider
set of Ton-B receptors than those related to
hydroxypyridone-β-lactams (Starr et al.,
2014).

Application of SD conjugates for tack-
ling MDR Gram-positive strains has also
been considered. In a recent work, a
synthetic trihydroxamate-ciprofloxacin
(a fluoroquinolone) conjugate dis-
played antibacterial activity against
Staphylococcus aureus SG511 (MIC of
1 μM, twice that of the parent antibi-
otic and similar to Loracarbef). The
authors established that hydroxamate-
fluoroquinolone conjugates used active
transport to deliver the payload to their
cytoplasmic DNA gyrase target, and that
the full trihydroxamate backbone was

required for such active transport, which
oppositely denied β-lactam syderomycin
access to PBPs (Wencewicz et al., 2013).

Mycobacterium tuberculosis (Mtb)
presents another challenge for the THA.
Three synthesized acetylated mycobactin
T molecules displayed selective inhibi-
tion ability against Mtb H37Rv (MIC90

within 0.02–0.88 μM in 7H12 medium),
but showed no inhibitory action over
a wide range of Gram-positive and
Gram-negative strains. This behavior
was ascribed to the selective nature of
iron transport, and the analogs were
considered promising platforms for fur-
ther developments in conjugate assembly
(Juárez-Hernández et al., 2012). Within
this methodology, a mycobactin T ana-
log was synthesized to enable linking to
an artemisinin payload, which has anti-
malarial activity, but no anti-tuberculosis
activity. The conjugate displayed high anti-
tuberculosis activity against MDR Mtb but
no activity against several fast-growing
mycobacteria. The toxicity of the conju-
gate was ascribed to its ability to fuel the
formation of hydroxyl radicals in Mtb,
in a mechanism that differs from other
THA SD (Miller et al., 2011). The THA

based SD conjugate against pathogenic
bacteria is evolving but is far from its full
potential. Increasing know-how at molec-
ular level of the mechanisms of transport
through the cell wall, the structure of
siderophore receptors and of the targets
for the payload, the design of synthetic
siderophore analogs and particularly of
the linker, which involves also detailed
insight into enzyme/substrate interaction,
is critical. Finally, in-vivo tests are required
to validate the most promising results
in-vitro.
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