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ABSTRACT
Glutathione S-transferases (GSTs) are major defence enzymes of the antioxidant enzymatic system. Cytosolic GSTs are more involved 
in the detoxification than mitochondrial and microsomal GSTs. GSTs are localized in the cerebellum and hippocampus of the rat brain. 
Acrylamide (AC) is a well assessed neurotoxin of both animals and humans and it produces skeletal muscle weakness and ataxia. AC is 
extensively used in several industries such as cosmetic, paper, textile, in ore processing, as soil conditioners, flocculants for waste water 
treatment and it is present in daily consumed food products, like potato chips, French fries, bread, breakfast cereals and beverages like 
coffee; it is detected on tobacco smoking. GST acts as a biomarker in response to acrylamide. AC can interact with DNA and therefore 
generate mutations. In rats, low level expression of glutathione S-trasferase (GST) decreases both memory and life span. The major 
aim of this review is to provide better information on the antioxidant role of GST against AC induced neurotoxicity and genotoxicity. 
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(Lo et al., 2007). The tri-peptide glutathione (GSH) is an 
efficient scavenger of reactive oxygen species (ROS). GSTs 
are responsible for detoxification of oxidative stress by 
products of metabolism (Hayes et al., 2005). Toxic chemi-
cals, oxidation and variation in temperature can regulate 
the expression of GSTs (Frova, 2006). The conjugation of 
electrophilic compounds by GST with glutathione detoxi-
fies harmful drugs and environmental chemicals and thus 
GSTs are toxicologically important enzymes (Arakawa 
et al., 2013). Figure 1, shows general reaction catalysed 
by GST. GSTs are playing a key role in cellular detoxi-
fication system to protect the cell from reactive oxygen 
metabolites and they contribute to biotransformation of 
xenobiotics and carcinogens (Hayes et al., 2005). GST 
based drugs would be the next generation therapeutics to 
deal with drug resistance, cancer as well as neurological 
and neurodegenerative diseases (Kumar et al., 2017). 

GST enzymes have developed many functions 
throughout evolution (da Fonesca et al., 2010). The cellu-
lar protective role of GST superfamily was taken towards 
positive selection on GST duplicates and they acquired 
other functions including sex hormone metabolism and 
apoptosis regulation which are vital for the retention of 
duplicates. Metabolism of xenobiotics was the main cause 
for the expansion of the GST family (da Fonesca et al., 
2010). 

Introduction

Glutathione S-transferases (GSTs) (EC 2.5.1.18) are mul-
tifunctional phase II versatile detoxification and xeno-
biotic metabolizing enzymes (Hayes et al., 2005; Frova, 
2006). There are seven classes of cytosolic glutathione 
S-transferases identified in mammals, which are classified 
on the basis of amino acid sequence similarities, named as 
alpha (α), mu (µ), pi (π), sigma (σ), theta (θ), omega (ω) and 
zeta (ξ) (Hayes & McLellan, 1999; Sheehan et al., 2001). 

Detoxification role of GST

The cytosolic GST isoenzymes belong to the same class 
sharing greater than 40% identity. Between different 
classes the identity is less than 25% (Hayes et al., 2005). 
GSTs are ubiquitous and inactivation of cancerous agents 
through metabolism makes them important in cancer 
therapy (certainly alpha, mu, pi and theta class GSTs) 
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GSTs exhibit an adaptive response to cellular stress 
(Hayes et al., 2005). In addition, cytosolic GST promoter 
possesses the antioxidant response element (Frova, 2006). 
Glutathione (GSH) acts as scavenger of reactive oxygen 
species (ROS) and GSTs are responsible for metabolism 
of oxidative stress by-products (Hayes et al., 2005). It was 
identified that soluble GSTs in mitochondria may work 
against reactive oxygen species (ROS) generated by the 
respiratory chain (Haider et al., 2002). GST binding to 
reactive electrophiles may be important for preventing 
DNA damage. Ffor other molecules GSTs act as intracellu-
lar carriers (Hayes et al., 2005). GSTs are multifunctional 
antioxidant enzymes that exhibit selenium independent 
glutathione peroxidase (GPx) activity in addition to glu-
tathione transferase (GST) activity. With these activities 
GST can detoxify a variety of toxic chemicals (Dasari et 
al., 2017a) 

Structural characterization of GST

Ther are two binding sites in the cytosolic glutathione 
S-transferases (GSTs), i.e. glutathione (GSH) binding site 
(G site) and substrate (xenobiotic) binding site (H site). 
Two distinct xenobiotic binding sites are there in rat alpha 
class GST, including certain GST isoenzymes (Ding et al., 
2003).

It is suggested that domain I (G site) is composed of 
smaller N-terminal α/β helices, which include 1–78 amino 
acid residues of α and θ class, 1–82 of class μ, 1–74 of class 
π and σ and domain II (H site) is composed of larger α 
helix, which includes 86–222 amino acid residues of class 
α, 90–217 of class μ, 81–207 of class π, 81–202 of class 
σ and 85–208 of class θ (Armstrong, 1994; Wilce et al., 
1995). GST specific activity is decided by amino acid 
residues in the H-site (Armstrong, 1994). 

Brain GSTs

Table 1 shows localization and importance of GST. 
Several studies reported that alpha (α), mu (µ) and pi (π) 
class GSTs were purified from rat brain; Yc of α class, 
Yb and Yβ of µ class, Yδ of π class GSTs with relevant 
molecular weight 27.5 KD, 26.3 KD and 26 KD, and 24.8 
KD respectively, are expressed in response to toxic chemi-
cals. Increased levels of total GST activity and relative 
density of that enzyme was studied in two regions of the 
brain, i.e. cerebellum and hippocampus (Struzynska et al., 
2002). The π class GST has been associated with myelin 
forming cell, probably to protect the myelin structure 
(Tansey & Cammer, 1991). Several studies reported that 
Yb and Yβ subunits of π class GST are more expressed in 
the rat brain, which may play a key role in detoxification. 
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Figure 1. General reaction catalyzed by glutathione S-transferases. 
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According to brain immunohistochemical studies, 
GSTA4 is predominantly distributed in ependymal cells 
of the chorioid plexus, endothelial cells and perivascular 
endfeet of astrocytes (Johnson et al., 1993). The GSTA4 
isoenzyme in the blood-brain barrier was strategically 
positioned to defend the microenvironment of brain 
cells (Abbott et al., 2006). The GSTA4 expression levels 
were increased and nearly doubled in the cerebral cortex 
of old rats compared to young adult rats (Martinez-Lara 
et al., 2003). The absence of GSTM1 increases the risk 
of schizophrenia and tardive dyskinesia (De Leon et al., 
2005). The mood stabilizers, like lithium or valproate, 
induce expression of both GSTM1 and GSTA4 and they 
inhibit oxidative damage to lipids and proteins and thus 
protect the brain from exotoxicity (Shao et al., 2005). A 
low level of GST expression is associated with a decrease 
of life span memory performances in rats and it may 
model assessment of brain aging and neurodegeneration 
(Bjork et al., 2006).

Immunohistochemical studies reported µ class GST 
to be localized in astrocytes, subventricular zone cells 
and ependymal cells (Cammer et al., 1989), π class GST 
is localized in oligodendrocytes and also in association 
with myelin (Cammer et al., 1989) of the rat brain central 
nervous system. Localization of GST Ya subunit was 
identified in nuclei and Yc subunit in nucleoli of the rat 
brain neuron (Johnson et al., 1993). There are at least 
two GST isoenzymes localized in glial cells of the rat 
brain (Cammer et al., 1989). Yb3 subunit of µ class GST 
was found to be specifically expressed in the rat brain 
(Abramovitz & Listowsky, 1987).

Cytosolic GST activity and total concentration of GST 
protein as well as the concentration of µ class GST are 
almost equal in the cerebellar cortex of the rat (Johnson 
et al., 1993). In rats, the cytoplasmic localization of micro-
somal GST and the nuclear localization of α class GSTs 
in neurons, the relationship between the concentration of 
Yb2 subunit of µ class GST and also the resistance of neu-
rons to toxic compounds in the cerebellar cortex indicate 
that the GSTs may protect against exogenous as well as 
endogenous neurotoxic metabolites (Johnson et al., 1993).

Role of biomarkers 

The environment is continuously loaded by foreign chem-
icals as well as metals due to urbanization and industri-
alization. From the beginning of the 20th century several 
thousands of organic pollutants have been by several 
ways released into the environment (Helm et al., 2011). 
Most of these chemicals are undegradable, extremely 
toxic and accumulated both in territorial and aquatic 
ecosystems, transported to different environments by air, 
water and migratory species from their production place 
(Choi & Wania, 2011). Biochemical markers are useful in 
examining the effects of toxicants in various tissues (Van 
der Oost et al., 2003). Figure 2, shows the expression of 
GST in response to AC. Biochemical markers can provide 
basic warning signals of particular stress and also give 
information on the health status of the organism (Korte 
et al., 2000). 

By ecotoxicological studies the interaction between 
chemicals and the organism can be assessed at different 
levels by using various biomarkers such as biotransfor-
mation enzymes, antioxidative compounds, oxidative 

Table 1. Rat brain glutathione S-transferases localization and their role. 

Yb3 subunit of µ class GST is specifically expressed in rat brain Abramovitz & Listowsky, 1987

GST isoenzymes are localized in glial cells of rat brain Cammer et al., 1989

π class GST may protect myelin structure Tansey & Cammer, 1991

GSTA4 of alpha (α) class is localized in ependymal cells of the chorioid plexus, endothelial cells and perivascular end-
feet of astrocytes

Johnson et al., 1993Ya subunit in nuclei and Yc subunit in nucleoli of α class GST is localized  in rat brain neuron

Both α and µ class GSTs protect neurons from toxic compounds

GST activity is identified in detectable level in both cerebellum and hippocampus Struzynska et al., 2002

GSTA4 and GSTM1 of α and µ class GSTs inhibit oxidative damage to lipids and proteins in rat brain Shao et al., 2005

GSTA4 isoenzyme may protect microenvironment of brain cell Abbott et al., 2006

Absence of GSTM1 of π class GST is increase the risk of schizophrenia and tardive dyskinesia De Leon et al., 2005

Low level expression of GST decrease life span and memory Bjork et al., 2006
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Figure 2. Xenobiotic versus GST in cell.
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stress parameters, biotransformation products, stress 
proteins, both hematological and histological parameters, 
immunological, reproductive and endocrine parameters, 
genotoxic, neuromuscular, physiological and morphologi-
cal and many other parameters (Van der Oost et al., 2003). 
Most of the xenobiotics are metabolized by conjugation 
with glutathione (GSH) catalyzed by glutathione-S-
transferase (GST) (Zimniak, 2008). A variety of organic 
xenibiotics, drugs and toxic compounds are matabolized 
by glutathione S-transferases (Halliwell & Gutterdige, 
2015). In response to xenobiotics, the expression of GST as 
biomarker can be measured with the substrate 1-chloro-2, 
4-dinitrobenzene by a using spectrophotometer (Habig et 
al., 1974). 

Acrylamide (AC)

Acrylamide (AC) is a very reactive and easily soluble 
substance in water and it is commonly used in industries 
as well as laboratories (Nordin et al., 2003). As shown 
in Figure 3, AC is used in cosmetic, paper and textile 
industries as well as in ore processing, as soil condition-
ers and flocculants for waste water treatment (Friedman, 
2003). AC is carcinogenic to experimental animals; it was 
discovered in various food products which are routinely 
consumed by humans, a situation raised public health 
concerns (Weiss, 2002). Generally, individuals can be 
victimized to AC at the work place (Dearfield et al., 
1995). AC enters the human diet through carbohydrate 
and amino acid rich food products prepared at high tem-
perature (during food processing) (Stadler et al., 2002; 
Mottram et al., 2002); heat treated food products contain 
AC (Konings et al., 2003). Lower level of AC is formed 
when cooking at lower temperature (Rydberg et al., 2003). 
As shown in Figure 3, commonly consumed foods such as 
breakfast cereals, French fries and potato chips, as well 
as beverages (e.g., coffee) contain a significant quantity of 
AC (Tareke et al., 2002). 

It is well established that AC once entered into the bio-
logical system is quickly passed via cell membranes and 
widely distributed to all tissues (LoPachin & DeCaprio, 

2005). AC shows neurotoxic, mutagenic and carcinogenic 
effects (Zhang et al, 2011; Maier et al., 2012). AC forms 
glutathione S-conjugate by interacting with vital cellular 
nucleophiles having -SH, -NH2 and -OH groups, which 
is an initial step of biotransformation of electrophiles to 
mercapturic acid (Awad et al., 1998). AC interacts with 
glutathione S-trsansferases (GSTs) (Das et al., 1982). AC 
induced oxidative stress is more effective at high doses 
(Yousef & El-Demerdash, 2006). 

Influence of AC on GST

A significant decrease in glutathione (GSH) content and 
GST activity was observed in AC administered rat brain 
(Shukla et al., 2002). Depletion of GSH content as well as 
inhibition of GST activity was found both in vitro and in 
vivo (Srivastava et al., 1986). A high level of GST and GST 
associated peroxidase (GPx) can protect the brain from 
AC toxicity up to certain level (Dasari et al., 2017b). 

Neurotoxicity of AC

The occurrence of adverse changes at the structural and 
functional level in the nervous system induced by a toxic 
compound is considered neurotoxicity and the substance 
responsible for the pathological condition of the nervous 
system is a neurotoxin (Bull, 2007). AC induced neurotoxic 
symptoms are characterized as ataxia, skeletal muscle 
weakness, and cognitive impairment including numbness 
of the extremities (Deng et al., 1993). AC neurotoxicity 
in both human and experimental models was associated 
with cerebellar Purkinje cell death, degeneration of distal 
axons and nerve terminals in both the peripheral and 
central nervous systems (PNS and CNS) (LoPachin et al., 
2003). 

Several rat studies suggest that axon degeneration 
might not be a primary neurotoxic effect of AC (Lehning 
et al., 2003). Long-term treatment and low-dose admin-
istration of AC lead to degeneration of peripheral nerve 
tissue such as sciatic, tibial and sural nerves. Silver stain 
study of rat cerebellum revealed that AC can induce 
progressive degeneration of Purkinje cell axons (Lehning 
et al., 2003). Central-peripheral neuropathy was observed 
in rats, monkeys and humans exposed to AC (Seale et al., 
2012). Allam et al. (2013) identified AC toxicity in the 
cerebral cortex as pyknosis and neurocyte chromatolysis 
in all stages of their investigation. 

When the adduct formation exceeds and intoxication 
continues up to a disproportional increase of dysfunc-
tional proteins, the related presynaptic processes are 
progressively disabled, which leads to the characteristic 
cumulative neurotoxicity of AC (LoPachin et al., 2006). 
AC was found to suppress both metabolism and axonal 
transport in neurons, which leads to deficiency of nutri-
tional factors (Honing & Rosenberg, 2000). Both prenatal 
and perinatal exposure of rodent pups to AC causes 
developmental neurotoxicity (Garey & Paule, 2010). The 
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accumulation of weak type-2 alkene electrophiles such 
as AC, methyl acrylate, ethyl methacrylate accelerate 
the progressive nerve terminal demise associated with 
Alzheimer’s disease (LoPachin & Gavin, 2012). Both 
cerebellar dysfunctions and proprioceptive sensations are 
causes for abnormal performances after AC administra-
tion (Allam et al., 2011).

Genotoxicity of AC

Toxicogenomic studies are based on gene expression 
evaluation to detect toxicity signals and identify new sen-
sitive markers (Ellinger-Ziegelbauer et al., 2008). Yet the 
specificity of thousands of genomic biomarkers are some-
times confuse and thereby not significant enough (Zhang 
et al., 2011). When gametes are subjected to artificial 
reactive oxygen species (ROS) DNA damage may occur, 
such as modification of all bases, generation of base-free 
sites, deletions, frameshifts, DNA cross links, including 
chromosomal rearrangements (Duru et al., 2000). Figure 
2 shows the expression GST in response to AC. 

DNA adduct formation is completely non-dose 
dependent and mutations can form at lower concentra-
tions of AC, indicating the generation of promutagenic 
DNA adducts (Besaratinia & Pfeifer, 2003). Both AC and 
glycidamide (GC) (epoxide metabolite of AC) can dam-
age DNA and glycidamide is mainly responsible for the 
mutagenicity of AC (Besaratinia & Pfeifer, 2004). Even 
micromolar doses of AC can effectively induce promuta-
genic DNA adducts and this calls for a reconsideration of 
AC presence in human diet as well as in the environment 
(Besaratinia & Pfeifer, 2004).

Adler et al. (1993) suggested that AC can generate 
chromosomal aberrations, sister chromatid exchanges, 
and mitotic disturbances. Both chromosomal aberration 
and micronucleus assays proved that AC might have geno-
toxic potency (Yang et al., 2005). In AC treated rats, feul-
gen stain (specific for DNA) color intensity is decreased in 
the medulla neurons when compared to control, due to a 
marked loss of DNA in the medulla neurons (Allam et al., 
2013). During the process of apoptosis, serious and irre-
versible DNA damage occurs. Glutathione S-transferases 
and its peroxidase activities are destabilized by the excess 
accumulation of AC, leading to interaction with DNA 
(Sreenivasulu & Balaji, 2016).

Conclusion

This review summarizes the neuro and geno-toxicity 
of AC and the important role of GSTs in detoxification 
of toxic chemical agents like AC, and their localization 
in the brain, i.e. the cerebellum, hippocampus, neurons 
and glial cells. AC is a neurotoxin with symptoms like 
ataxia, skeletal muscle weakness, cognitive impairment 
and numbness. AC is a potent genotoxic agent forming 
chromosomal aberrations and micronuclei. Glutathione 
conjugation with toxic agents, catalyzed by GSTs, is the 

most important phase of detoxification. High expression 
of GST in cytotoxic conditions reveals that it is an efficient 
biomarker and enhances more tolerance of biological 
systems to toxic chemicals.
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