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Abstract—Several ecological factors that could play into species extinction are expected to correlate with species age, i.e., time
elapsed since the species arose by speciation. To date, however, statistical tools to incorporate species age into likelihood-
based phylogenetic inference have been lacking. We present here a computational framework to quantify age-dependent
extinction through maximum likelihood parameter estimation based on phylogenetic trees, assuming species lifetimes are
gamma distributed. Testing on simulated trees shows that neglecting age dependence can lead to biased estimates of key
macroevolutionary parameters. We then apply this method to two real data sets, namely a complete phylogeny of birds
(class Aves) and a clade of self-compatible and -incompatible nightshades (Solanaceae), gaining initial insights into the
extent to which age-dependent extinction may help explain macroevolutionary patterns. Our methods have been added to
the R package TreePar. [Aves, coalescent point process, diversification, macroevolution, maximum likelihood estimation,

phylogenetics, Solanaceae]

The proposition that extinction of species could
depend on their age, i.e., time since arising by speciation,
has a long history of investigation and debate. In a
seminal 1973 paper, Leigh Van Valen proposed that the
rate of extinction of taxa is independent of their age,
presenting apparently log-linear survivorship curves of
taxa within defined groups as evidence of this effect
(Van Valen 1973). The methodology behind this result
was subsequently criticized on several grounds (Raup
1975; McCune 1982; Pearson 1995) and application of
more sophisticated statistical methods later suggested
that species extinction is indeed age dependent in some
groups (Pearson 1995; Doran et al. 2006). Nonetheless,
the sum of evidence remains ambiguous (Liow et al.
2011), and various patterns seem plausible. For instance,
an increased risk of extinction with age has specifically
been hypothesized for asexual or selfing plant species,
due to the accumulation of deleterious mutations not
broken up by recombination, ie., Muller’s ratchet
(Muller 1964; Johnson et al. 2011). More generally,
an age-dependent signal could arise through various
processes, not necessarily requiring “genetically inbuilt
‘senescence’ ” (Pearson 1995, p. 134). Biotic interactions,
i.e., competition and co-evolution among species, have
been invoked to explain age-independent extinction
(Van Valen 1973; Liow et al. 2011), or alternatively to
argue that older species are more prone to extinction. For
instance, Pearson (1995) speculated that in evolutionarily
static taxa, old species may be less fit than new species,
while in gradually evolving taxa, old species may
become too specialized and susceptible to environmental
changes. On the other hand, we speculate that new
species also face distinct challenges that could result
in higher extinction risk, particularly when speciation
is triggered by a founder event (initiated by a small
population prone to demographic stochasticity) or by
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environmental stress (cf. Doran et al. 2006). Species
lifetime has also been associated with ecological
variables, such as range and dispersal characteristics
(reviewed by McCune 1982); age dependence then arises
insofar as age correlates with these ecological variables.

Quantitative tests of hypotheses regarding age-
dependent extinction have so far been based on
paleontological data, thus on a limited set of species, and
have suffered from problems associated with defining
durations of species existence from the fossil record
(Pearson 1995; Liow et al. 2011). On the other hand,
phylogenetic trees based on genetic data of extant species
have become increasingly available in recent years, with
a corresponding development of statistical inference
methods to quantify macroevolutionary processes from
these trees. Birth-death models have been extensively
used to model the distribution of phylogenetic trees.
In reverse, given a reconstructed tree, its structure
(topology and branch lengths) can be used to infer rates
of birth and death (Thompson 1975; Nee et al. 1994b). In
the context of species trees, these rates are interpreted
as speciation and extinction rates. Recent advances have
allowed the incorporation of greater biological realism
by modeling dependence of these rates on factors such
as time, number of species in a clade, or a species
trait (recently reviewed by Pyron and Burbrink 2013;
Stadler 2013b; Morlon 2014). Very few phylogenetic
models have considered age dependence (reviewed
in Morlon 2014), and to the best of our knowledge,
no likelihood-based method is yet available to infer
age-dependent rates. Likelihood-based approaches have
the advantages of maximal statistical power, because
they use all information about the tree, and readily
comparable output across different models (Morlon
2014). In this article, we will present an inference method
under a model that incorporates age-dependent death



36 SYSTEMATIC BIOLOGY

VOL. 65

and a constant birth rate (age-dependent birth cannot yet
be treated; see “Discussion” section), where all sampling
occurs at the present. This model applies to trees of
extant species, which we consider here, but could also
be applied to data on the individual organism or cell
level. The necessary mathematical results have recently
been developed (Lambert 2010; Lambert and Stadler
2013), and our aim here is to implement and test a
computational framework for application to data.

The manuscript is organized as follows. We first
describe the model, present the mathematical likelihood
expressions, and explain our computational approach.
Though already-existing mathematical results are
more general (Lambert 2010), we confine ourselves
here to lifetimes described by gamma distributions,
a family of unimodal distributions where both mean
and variance can be controlled independently. This
family contains as a special case the exponential
distribution, corresponding to a constant (age-
independent) death/extinction rate, to which we
compare our results. We apply the inference method
to simulated trees to rigorously confirm the method’s
accuracy, investigate power, and identify biases to be
expected when age dependency in the death rate is
neglected. Finally, we apply our method to two real
data sets: (1) a complete phylogeny of birds (class Aves)
(Jetz et al. 2012), where we investigate robustness of
our model fit to phylogenetic uncertainty and compare
it to the fits of previously investigated models; and (2)
a phylogeny of self-incompatible (SI) and -compatible
(SC) nightshade species (Solanaceae), where we shed
new light on the question of whether breeding system
affects species survival (Goldberg et al. 2010; Goldberg
and Igi¢ 2012).

METHODS

Model

The derivation of the likelihood is based on the
assumption that a sampled phylogenetic tree, 7T, is
generated by the following model (Lambert 2010;
Lambert and Stadler 2013):

¢ The process is initiated by one individual at time 0
and observed after a fixed time Ts.

¢ Each individual gives birth at constant rate \. The
old individual keeps its current age, while the
newly born individual is assigned age zero.

e The lifetime of each individual is random, with an
arbitrary distribution characterized by probability
density g, and realized lifetimes are independent
of one another.

* T is the tree spanned by all individuals sampled
at time T, where each extant individual at time
Ts is independently sampled with probability p
(i.e., Bernoulli sampling). The expected sampling
fraction is thus equal to p.

TaBLE 1.  Definitions of model parameters and functions

Symbol Definition

IS per-lineage speciation rate
g(a) probability density of the species lifetime distribution
as a function of age, a

w(a) extinction rate as a function of age, 4,
related to g(a) by Equation (2)
k shape parameter of gamma lifetime distribution
0 scale parameter of gamma lifetime distribution
14 mean lifetime, equal to k6 under the gamma distribution
n net diversification rate, i.e., asymptotic exponential growth
rate of number of extant lineages, given by Equation (3)
€ turnover, i.e., relative extinction fraction, given by e=1—n/x
n number of sampled tips (extant species)
P expected sampling fraction
T stem age of tree, i.e., time since progenitor arose
T crown age of tree, i.e., time since

first speciation event giving rise to sampled tips

We consider the context where each “individual” is
a species, with “birth” corresponding to a speciation
event and “death” to extinction of a species, and will
thus refer to speciation and extinction rates, rather than
birth and death rates, throughout the article. In this
macroevolutionary context, Ts is called the stem age
of the tree. All definitions of model parameters and
functions are collected in Table 1.

Note that speciation is asymmetric, i.e., there is a
“mother” species whose age is not reset upon speciation.
This asymmetry could be captured in the tree-generating
process, for instance by orienting trees such that the
new species is always placed branching off to the right.
However, it turns out (Lambert and Stadler 2013; see
also the section “Mathematical Likelihood Formulae”
below) that all tree orientations are equally likely under
this model. That is, distinguishing the mother and
daughter species is irrelevant to the likelihood of the
tree and thereby the parameter estimates obtained.
(Note however that orientation does matter for an age-
dependent extinction model in which sampling can
occur continually through time; Lambert et al. 2014.)

For computational implementation, we suppose here
that lifetimes are gamma distributed. The properties of
this distribution and justification for its selection are
clarified in the following sub-section. Furthermore, for
the purposes of inference, we will assume throughout
that p is a fixed, known quantity, while X and the
parameters of the lifetime distribution g are to be
estimated. Often in data sets there is indeed a good
independent estimate of the proportion of species
sampled in a clade.

Lifetime Distribution and Extinction Rate

The gamma lifetime distribution with shape
parameter k and scale parameter 6 is characterized
by the following density:

ak_lexp(—a/e)

gla)= ok

)
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The gamma density is unimodal, and its mean (k6) and

variance (k6?) can be varied independently. It contains as
a special case (wWhen k=1) the exponential distribution.

Macroevolutionary models of the “birth-death” type
have generally been formulated in terms of an extinction
rate, u, which may depend on various factors (Stadler
2013b). In our model, w is a function of age, a. The
relationship between lifetime distribution and extinction
rate is given by (Lambert and Stadler 2013):

g(a)
[7°8(s)ds

Taking ¢ to be the gamma density, we have a constant
extinction rate w(a)=1/6 if and only if k=1, ie, in
the special case of an exponentially distributed lifetime.
When k #1, there is no explicit formula for w.(a), but it can
be shown (see Supplementary Text available on Dryad
athttp://dx.doi.org/10.5061 /dryad.7894h) that for k <1
the extinction rate decreases with age, while for k > 1 the
extinction rate increases with age. In the limiting case
where k — oo and 6 — 0 simultaneously, with k6 — ¢, the
distribution approaches a Dirac delta, i.e., lifetimes have
a fixed duration of £. The choice of a gamma lifetime
distribution therefore captures qualitatively different
extinction patterns, while containing the previously
studied case of constant extinction rate (exponentially
distributed lifetime), over which it introduces just one
additional parameter.

w(a)= )

Composite Parameters

While we have described the model in terms of
the parameters \, k, and 6, composite parameters can
provide further insight into the diversification process.
Furthermore, as we will see later, composite parameters
are sometimes more precisely estimated than individual
model parameters.

First, we will often refer to the mean lifetime, £, equal
to k6 for a gamma-distributed lifetime. This composite
parameter allows direct comparison of estimates under
the gamma and the exponential models.

Second, in diversity-independent diversification
processes such as those considered here, the number of
lineages grows asymptotically exponentially at a rate 1
called the net diversification rate, a widely used measure
in macroevolutionary analyses (Pyron and Burbrink
2013; Moen and Morlon 2014). More generally, this
exponential growth rate of a population is classically
known as the Malthusian parameter (Rice 2004, p. 16). For
a given lifetime density ¢ and speciation rate X, n is a
solution (Lambert 2010) to

n:)\/[; g()(1—e™™)dx. 3)

If A > 1, is the unique positive solution to Equation (3).
If M€ <1, n is negative, and when g is the gamma density,
n is the unique negative solution to Equation (3). In the
critical case where M =1, n=0.

When g is the gamma density, n(\,k,0) must be
found numerically, except when lifetimes are distributed
exponentially, where n(\,1,6) =X —1/6. However, it can
be proven (see Supplementary Text) that: (i) for given
k and 6, n(\,k,0) increases (asymptotically linearly) with
speciation rate ), and (ii) for given A and mean lifetime ¢,
n(\,k,£/k) increases with k, approaching an asymptotic
value corresponding to the case when all lifetimes are
fixed equal to ¢. This last observation shows that the
net diversification rate n(\, k,0), and correspondingly the
expected number of lineages after a given time, varies
with k even when \ and ¢ are fixed. That is, n(\,k, £/k)
depends not only on speciation rate » and mean lifetime
£, but also on the particular distribution of lifetimes, as
characterized by k.

The final composite parameter used here is turnover,
or relative extinction fraction, which we denote ¢. In a
constant-rate model, this parameter has been defined as
w/h where p is the extinction rate and \ is the speciation
rate (Pyron and Burbrink 2013). Similarly to the net
diversification rate, this definition should be adjusted
when extinction is age dependent. We propose to define
e:=(h—mn)/%\, which is the asymptotic population-level
extinction rate divided by the (still constant) speciation
rate.

Mathematical Likelihood Formulae

According to the coalescent point process (CPP)
representation (Popovic 2004; Lambert 2010; Lambert
and Stadler 2013), a tree 7 generated by our model, with
stem age Ts and n sampled tips, can be fully characterized

by the list of its node depths, {xi}?:_ll. The node depths
are the times since present of speciation events in the
tree (cf. Figure 1 in Lambert and Stadler 2013), not to be
confused with the times between speciation events. Under
our model, for a given lifetime density g, speciation rate
), and sampling fraction p, there is a random variable
H with density f, such that the node depths form a
sequence of independent copies of H, stopped at its first
value larger than Ts (Lambert and Stadler 2013).

If f is known, then the tree likelihood is given by the
formulae in Section 3.2 of Lambert and Stadler (2013),
along with their Proposition 2 to account for sampling.
We use the likelihood conditioned on sampling at least
one tip (event S) and on either the stem age Ts or the
crown age T¢, the latter being the time since the first
speciation event giving rise to sampled descendants in
T. Conditioning on stem age we have:

n—1
£TIT.8)= s T @
57 =1

while conditioning on crown age (assuming Tc=x,_1)
we have:

n—2
L(TITe8)= o [ [ o). 6)
¢ =1
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where F(t):=1/Pr(H > t)=1/ft°°f(s)ds. In general, T
refers to the entire tree as characterized by its topology
and branch lengths. However, in accordance with the
CPP representation, these likelihood expressions make
it clear that any ordering of node depths is equally
likely under this model (see Section 4 in Lambert and
Stadler 2013). Thus, the likelihood Ls (resp. L) is simply
proportional to the probability density of observing the
node depths {xi}?:_ll (resp. {xi}?:_lz), which implicitly
also specify the number of tips, conditioned on stem
(resp. crown) age and on having sampled descendants.
We will typically consider the likelihood conditioned
on the crown age, since this quantity tends to be better
known from data than the stem age. We will, however,
use conditioning on stem age applied to individual
subclades of SC nightshades (see section “Nightshades
Data Analysis” below). Computationally there is no
difference in the ease of use of either formula.

It remains to characterize f from the model
ingredients. For a given lifetime density g, speciation rate
%, and sampling probability p, Proposition 6 in Lambert
and Stadler (2013) yields

F()=1/Pr(H> ) =1—p+pW(t)

and
pW'(H)
2
(I-p+pW(®)
where W is the so-called scale function associated with

g and \. W is a differentiable function defined by its
Laplace transform:

fi=—S/F0) =

LV)@):= [ expl-yWEds=1/4)  fory>n
where
V(y) :=y—>\/o g(x)(1 —exp(—yx))dx fory>0

is called the Laplace exponent. Incidentally, the net
diversification rate n is a root of { (see Equation (3)) and
W(t) is the expected number of species extant at time ¢
conditional on there being at least one (Lambert 2010).
Taking g to be the gamma density given by Equation (1),
we can write { in closed form as:

b=y (1-(1+6y) ")

Numerical Evaluation of the Likelihood

Analytical expressions for the scale function W,
and in turn the likelihood, are available in the
special case k=1 (exponentially distributed lifetimes;
Lambert and Stadler 2013), but not for general k. We
thus implement a numerical computational method in
Matlab. A numerical inverse Laplace transform method
has previously been developed for stability in calculating
scale functions of spectrally negative Lévy processes

(Surya 2008), which includes the scale function W
required here (Lambert 2010). As a basis we use the
Matlab code provided in Surya (2008), with parameters
of the inverse Laplace transform itself (controlling
numerical error in W) set as chosen there. The derivative
of W is then approximated with a central difference,
where numerical error is controlled through the spacing
between points at which W is evaluated. We take 500
grid points evenly spaced on the interval [0,T] (see
Supplementary Text), where T is either the stem age,
Ts, or the crown age, T;, according to the choice of
conditioning in the likelihood formula. Node depths
in a tree (simulated or constructed from real data) are
rounded to the nearest grid point value, thus rounding
errors in W are also controlled by grid spacing.

Notice that the gamma distribution has the advantage
of presenting a simple, closed-form expression for its
Laplace transform. Lifetime distributions for which
such a closed-form expression is not available would
require a significantly more computationally intensive
implementation, either calculating { numerically or
evaluating the likelihood instead via Equation 15 in
Lambert and Stadler (2013).

Maximum Likelihood Inference and Model Selection

Likelihood optimization is performed using the built-
in Matlab function ‘fmincon’. The likelihood is optimized
over the parameters (\,k,0) under the gamma model,
or over (,0) with k fixed to one under the exponential
model. In both cases, we specify a fixed value of p. In
the case of exponentially distributed lifetimes, we know
from analytical expressions that the likelihood is fully
characterized by two composite parameters (A —1/6 and
\p), and thus p cannot be estimated together with
and 6 (Stadler 2009). However, in the case of gamma-
distributed lifetimes, all four parameters \, 6, k, and p are
identifiable and thus could be estimated given a large
enough tree, as we show in the Supplementary Text.
Nonetheless, fixing p is expected to make the inference
faster and more precise for the remaining parameters.

Optimization is run from multiple initial points,
accepting the result that yields the highest maximized
likelihood, to increase confidence that a global peak is
located (see Supplementary Text). Maximum likelihood
estimates (MLEs) of parameters for a given phylogeny
are denoted with a hat (e.g. %). We compare the gamma
and exponential lifetime distribution models using the
likelihood ratio test with one degree of freedom at a 5%
significance level.

Awailability of Code in Matlab and R

Our numerical method of likelihood evaluation
and optimization is implemented in Matlab. We
additionally compile the necessary functions (using
‘mecc’ in Matlab) into stand-alone applications, which
can be used on compatible systems without requiring a
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Matlab license, thanks to the Matlab Compiler Runtime
(MCR) freely available from Mathworks at http://
www.mathworks.com/products/compiler/mcr/. Our
Matlab source code and compiled application files
are available to download from https://github.com/
cevo-public. We further provide an interface to call these
functions in R, included in the package TreePar v3.2
(Stadler 2011) available on CRAN. The steps to set up
MCR and apply our method in R are described in the
R help pages of the relevant functions (‘create.mat’,
‘LikAge’, and ‘bd.age.optim.matlab’).

Simulated Trees

To analyze performance of the inference method,
we simulate trees under constant speciation rate
and gamma-distributed species lifetimes, the key
assumptions of the model described above. We could
study performance as a function of either tree size
(number of tips, i.e., sampled extant species) or tree
age. We argue that the former is a more informative
analysis for empirical systematists, because the number
of sampled species is unequivocally known in real data.

Sets of simulated trees with a given number of tips
are generated using the R package TreeSimGM (Hagen
and Stadler 2013). The package allows two options for
obtaining trees with a fixed number of tips; we typically
use the more computationally efficient option (denoted
‘gsa=FALSE’), which is expected to introduce a slight
bias in parameter estimates that decreases with tree
size. This expectation was confirmed by a limited set of
simulations repeated with the computationally intensive
‘gsa=TRUE’ option (see Supplementary Text for details).

The TreeSimGM package currently only allows
complete sampling (p=1). To generate an incompletely
sampled tree with n sampled tips and given sampling
fraction p<1, we first simulate a tree with n/p tips,
then select n tips uniformly at random. This sampling
procedure is much more computationally efficient
than Bernoulli sampling (where each tip is sampled
independently with probability p) when a particular
number of sampled tips is desired, and is not expected
to yield substantially different patterns in the tree
structure.

For each final sampled tree, the stem age and list of
node depths (including the crown age) are recorded and
used for maximum likelihood inference as described
above. That is, we maximize the probability of the
observed tree (out of all trees with the same age) given
the parameters, as given by the likelihood in Equations
(4) and (5). Thus, the conditions applied in the likelihood
formula (fixed tree age, random number of tips,
Bernoulli sampling) are not identical to the conditions
under which the tree was generated (fixed number of
tips, random tree age, fixed sampling fraction). We take
this approach because, mathematically, only likelihood
formulae that condition on tree age are available for our
model (see Supplementary Text for further discussion).
Nonetheless, we expect that conditioning on different

features (age versus number of tips) of a given tree will
resultin similar parameter estimates for sufficiently large
trees, in accordance with an investigation of this issue
for the constant-rate birth-death model (Stadler 2013a).
As we will see, it turns out that the discrepancy in
conditioning between the simulations and the likelihood
formula also does not appear to be problematic for
the estimates we achieve under the present model. In
conclusion, we emphasize that the aim of the simulation
study is to assess the performance of the inference
method on a tree of a given size, providing empirical
biologists with relevant information when dealing with
data sets consisting of a known number of samples.

Confidence Intervals

We use two types of confidence intervals here. First,
from a set of simulated trees, the “95% (bootstrap)
confidence interval” for a parameter estimate refers to
the smallest interval containing the MLEs of 95/100
simulated trees. Second, for any individual tree (applied
here only to single trees reconstructed from real data), we
can find the profile likelihood (95%) confidence interval
for a parameter estimate. The boundaries of this interval
are the minimum and maximum values of the focal
parameter for which the likelihood, optimized over the
remaining parameters with the focal parameter value
fixed, would not be rejected by a likelihood ratio test
(at 5% significance level) in comparison to the likelihood
optimized over all parameters.

Simulation Study

To test the performance of the inference method, we
estimate parameters from simulated trees. Parameter
values used for simulation are set as follows. We select
a range of values of the lifetime distribution shape
parameter: k=1 (exponential distribution), k=0.5 (more
variable than exponential, with mode at zero), k=5 and
k=100 (bell shaped and progressively less variable).
The scale parameter, 6, is set to 1/k such that the
mean lifetime ¢ is always equal to one; that is, time
is scaled in units of average lifespan. Supplementary
Fig. S1 illustrates the chosen lifetime distributions. We
also select a range of values for the net diversification
rate n (0.25, 0.5, 1, 1.5), and tune speciation rate X\ to
yield the chosen v. Our main findings (using all n
values) are derived from simulated trees with n=1000
tips and complete sampling (p=1). We further consider
the influence of tree size by comparing the performance
on fully sampled, 100-tip trees (only for n=0.5), and
the influence of incomplete sampling by comparing the
performance on trees containing #=1000 sampled tips
representing sampling fraction p=0.5 (only for n=0.25).

Aves Data Analysis

Phylogenetic trees of all 9993 extant species in class
Aves have been previously constructed in a Bayesian
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framework (Jetz et al. 2012), yielding a posterior
distribution of trees available at http://birdtree.org.
The construction was undertaken with four approaches:
based on either of two backbones (Hackett or Ericson)
and either the full set of 9993 species or only those 6670
species for which genetic sequence data are available (see
Jetz et al. 2012 for details).

To test robustness of our results to phylogenetic
uncertainty, we analyze a set of 100 trees randomly
drawn from the posterior distribution in each of the four
approaches. That is, we apply our inference approach
separately to each tree to obtain a maximum likelihood
point estimate, and then look at the range of point
estimates across sets of 100 trees. We assume sampling is
complete (p=1) for the set of all known bird species, and
account for incomplete sampling (p=6670/9993~0.67)
in the set of species with available genetic data. The
likelihood is conditioned on the crown age of each tree,
which ranges from 89.0 to 149 million years (myr).

In addition, to obtain confidence intervals on
parameter estimates (reflecting uncertainty in the model
fit to a fixed tree), we conduct a more detailed analysis
on one tree from the set constructed under the Hackett
backbone including all species (H-full). This tree has
a crown age (1079 myr) and MLE point estimates (see
Supplementary Table S11) close to the median values
in the set of 100 trees. The magnitudes of confidence
intervals on parameter estimates in this tree are thus
expected to be reasonably representative of the majority
of trees.

The size of this data set makes it a promising test
case for picking up signals left in the tree structure by
particular patterns of diversification. Jetz et al. (2012)
compared the fit of nine models of diversification (see
their Supplementary Discussion Table 1), including
constant-rate models with or without extinction, several
models with time-varying parameters, and a “clade
shift” model incorporating heterogeneity in rates across
lineages. To additionally compare the fit of our model,
we use the Akaike Information Criterion (Akaike 1974),
AIC=2(—log(L)+m), where m is the number of model
parameters and £ is the likelihood under the given
model. Since the previous model comparison was
based on a set of trees containing all 9993 species
constructed with the Hackett backbone, we also take
trees constructed with this approach, but the particular
trees drawn from the posterior distribution are not the
same.

Nightshades Data Analysis

We analyze a previously constructed phylogeny of 356
extant nightshade species, including 135 SI species and
221 SC species (Goldberg et al. 2010). This phylogeny
represents sampling fractions of p=0.162 among SI
species and 0.150 among SC species (see Supplementary
Material of Goldberg et al. 2010; we follow these authors
in assuming independent sampling). The previous study
used a model that assumes speciation and extinction

rates depend only on the character state (SI/SC) and
incorporates transitions between states. Since our model
does not incorporate transitions, we separate SI and
SC species in the maximum likelihood tree for our
analysis. While transitions from self-incompatibility to
self-compatibility are common, there is strong evidence
that reverse transitions have not occurred within the
family (Goldberg and Igi¢ 2012 and references therein).
We therefore consider the subtree of SI species obtained
simply by pruning all SC clades. The end of a species
lifetime on this subtree should thus be interpreted as
either extinction or a transition to self-compatibility.
We treat each clade consisting of only SC species as
an independent realization of a fixed model (i.e., with
the same parameter values for all SC clades) arising
from one event of losing self-incompatibility. The overall
likelihood of the parameters given all SC data is thus
taken as the product of the likelihood of the 73 individual
clades. SC clade size ranges from 1 to 21 species,
and since many (35) clades are singletons, we conduct
two analyses: one including all clades with likelihood
conditioned on stem age, and one including only non-
singleton clades with likelihood conditioned on crown
age as usual.

We apply maximum likelihood inference as described
above to both the SI subtree and the SC clades. Clear
peaks in the likelihood surface were located under
both the gamma and the exponential models for the SI
subtree, and the exponential model for the SC clades.
However, under the gamma model in the SC case,
likelihood increased very gradually and indefinitely
with dramatic increases in A and concurrent decreases
in k and £=k6 (with 6 itself remaining at a similar
value). We stopped the optimization at the parameter
values reported in Supplementary Table S13, which
should thus be interpreted as conservative estimates
for those parameters that continued to change in the
direction of increasing likelihood (X, k, and ¢) or
approximate estimates for those that remained roughly
constant (6, n, and €). Similarly, the confidence interval
lower bound on )\ and upper bounds on k and ¢
are conservative estimates determined at the cut-off
point. If the likelihood under the gamma model indeed
continues to increase with more extreme parameter
values, the reported confidence interval bounds would
become more stringent and any improvement over the
exponential model would only be strengthened.

Profile likelihood confidence intervals were
constructed as described above for parameters of
particular interest (\, k, £) for both SI and SC data.
For the SI species, we additionally conducted a
bootstrap analysis by using the MLE parameter values
of the gamma model to simulate 100 trees with
n/p=135/0.162=833 tips, followed by sampling n=135
tips, as described under “Simulated Trees.” Twenty-six
simulations failed because they exceeded computational
capacity; this appears to be due to the accumulation
of too many extinct lineages, attributable to the high
turnover in this parameter set. Our analysis is based
on the remaining 74 successfully simulated trees. The
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FiGure 1. LTT plots for trees simulated under gamma-distributed lifetimes. Each curve plots the number of lineages (on a base-10 log scale),

averaged over 100 simulated trees per parameter set, versus time since present. All trees are completely sampled and have #=1000 species at
present. Net diversification rate n used in simulations is fixed to 0.25 in panel (a) or 1.5 in panel (b), and lifetime shape parameter k varies
(black dashed: k=0.5; black solid: k=1; gray solid: k=5; black dotted: k=100). k=1 corresponds to exponentially distributed species lifetimes
(constant extinction rate), k <1 corresponds to more variable lifetimes (extinction rate decreases with age), and k > 1 corresponds to less variable,

bell-shaped lifetime distributions (extinction rate increases with age).

median MLEs from these trees (not shown) are close
to the true parameter values used for simulation,
indicating that discarding the failed simulations did
not introduce any obvious bias. For the SC species, we
did not conduct a bootstrap analysis, since it is not clear
what would be an appropriate set of clades to simulate.

To test whether SI and SC species exhibit differences
in lifetime distribution, we compare a model where all
parameters are allowed to differ between SI and SC
species (thus characterized by the six parameters \gj,
ksi, 8s1, Nsc, ksc, 0sc) with two restricted models: (1)
where the shape parameter of the lifetime distribution
does not differ (ks; =kg), or (2) where the mean lifetime
does not differ (¢sj=¥€gc), but individual values of
both k and 6 may differ. The total log likelihood of
the full (six-parameter) model is obtained, under the
assumption of independence, simply by summing the
log likelihoods of the SI and SC data as previously
determined individually. For each restricted model, we
optimize the likelihood jointly over both the SC and
SI data sets with the focal parameter restricted to be
the same in both. We again obtain results conditioning
likelihood on either stem age or crown age of SC
clades. We compare each restricted model to the full
model using the likelihood ratio test with one degree
of freedom.

RESULTS: SIMULATION STUDY

We test the computational method on simulated
trees under chosen parameter sets, as described in
the “Methods” section. Below we outline general

observations on the performance of the inference
method. The median and 95% confidence intervals
of the MLEs for all parameter sets are reported in
Supplementary Tables S1-S9. Lineages-through-time
(LTT) plots (Fig. 1) provide an additional way to visualize
the influence of the parameters on the trees (Harvey
et al. 1994). Note that since all topologies are equally
likely under our model (Lambert and Stadler 2013),
all information relevant to the likelihood of the tree is
contained in the set of branching times, or equivalently
the accumulation of LTT.

Inference under the Gamma Lifetime Distribution

Accuracy of inference.—First, and most importantly,
inference assuming the gamma model is essentially
effective in recovering parameter values accurately. For
all 16 sets of parameter values tested for completely
sampled 1000-tip trees, the median MLE (across 100
simulated trees per parameter set) is close to the true
value used for simulations, and the true value is well
within the 95% confidence interval (Supplementary
Tables S1-52). Similar quantitative results are obtained
if we consider 1000-tip trees obtained by 50% sampling
from 2000-tip trees (Supplementary Tables S4-S5).
Thus, incomplete sampling in itself does not appear
to compromise inference performance, if we compare
trees with the same number of sampled tips, provided
the sampling fraction (p) is known. When sampling is
complete but tree size is reduced to 100 tips, median
MLEs generally remain close to the true values, but
unsurprisingly, confidence intervals are much larger
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model are compared for completely sampled trees with =100 versus #n=1000 extant species, simulated under true values of n=0.5 and k=5.
Illustrated is the distribution of MLEs for each parameter (defined in Table 1) across 100 simulated trees per parameter set. Note that k and 6 are
plotted on base-10 log scales. The box contains the interquartile range with the median marked as a line. The solid black line indicates the true
parameter value. Where MLE ranges are large, the dashed black line indicates an arbitrary upper data limit, beyond which outliers are drawn
between the gray lines. For the 100-tip trees, 10 estimates of '\ fall above a value of 5 (actual values ranging from 719 to 99.3) and three estimates

of ¢ fall above a value of 3 (actual values ranging from 61.7 to 561).

(Fig. 2 and Supplementary Tables S7-S8). A slight bias
in parameter estimates, which decreases with tree size,
can be attributed to a slight bias in the simulated trees
themselves, due to the use of a faster but less accurate
option for simulating trees of a desired size. Using
the more accurate tree simulation option reduces the
bias; see “Methods” section and Supplementary Text for
details. Thatis, this bias does not appear to be introduced
by the inference method.

Limited precision in estimating individual lifetime
parameters.—The variability in the MLEs of the lifetime
distribution parameters, k and 6, is much greater
than that of the speciation rate, . However, the mean
lifetime, ¢=k0, is much more tightly estimated than
k and 6 individually, reflected by a strong negative
correlation between these estimates (detailed in the
Supplementary Text). A large k value is particularly
difficult to infer precisely; this is unsurprising, since the
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FIGURE 3. Dependence of inference quality under the gamma model on net diversification rate, 1. Parameters inferred under the gamma
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gamma distribution converges to a limiting distribution
as k— oo, such that large k values result in very similar
distributions. For fixed n, the normalized sizes of the
confidence intervals of k and 6 indeed tend to increase
with true k (those of %, however, decrease).

Decreasing precision in lifetime parameter estimates with
increasing net diversification rate—The variability across
trees in estimated k and 6 tends to increase with
the true value of the net diversification rate 1 (see
Fig. 3 and the normalized size of the confidence
intervals reported in Supplementary Tables S1-52).
There is an intuitive reason for this trend. For fixed
k and 6, larger net diversification rate n corresponds

to lower turnover, i.e., fewer species have arisen and
gone extinct by the time the phylogeny reaches a
given size and is observed. In turn, the tree contains
less information about the lifetime distribution. The
difficulty in inferring parameters at large 7 is visually
indicated in the LTT plots: for smaller n (Fig. 1a), there is
a clear separation between curves for different k values,
while this separation virtually disappears for larger 7
(Fig. 1b).

Inference under the Exponential Lifetime Distribution

We now turn to the results when the exponential
model (ie., constant, age-independent extinction
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rate) is assumed for parameter inference. When
simulations are indeed conducted under an exponential
lifetime distribution (i.e., true k=1), inference either
under the general gamma distribution or constrained
to the exponential return similar median MLEs
for corresponding parameters. However, biases in
parameter estimates using the exponential model arise
when true k deviates from one. When simulations
use a lifetime distribution that is more variable than

exponential (k=0.5), speciation rate (A) and net
diversification rate (n) tend to be underestimated;
conversely, when simulations use a less variable
lifetime distribution (k=5 or 100), A and 1 tend to be
overestimated (Fig. 4). This result can be explained by
recalling that less variable lifetimes (larger k) result in
larger n for given \ and £ (see “Composite Parameters”
section). When k is actually larger than one, using an
exponential distribution supposes that lifetimes are
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more variable than they actually are. Speciation rate (\)
and net diversification rate (1) are then over-estimated
to compensate in explaining the observed growth of the
tree, and vice versa when k is actually less than one.
A bias in estimated mean lifetime (¢) is also apparent,
but shows a more complex pattern. Mean lifetime is
overestimated at small n and underestimated at large
n when k <1, with the reverse for k> 1. The effect on
turnover (¢) is less clear. For k=0.5, € is consistently
but only slightly underestimated by the median MLE,
while for k> 1, the results are inconsistent. In all cases,
the true value of e still falls within the 95% confidence
interval of the estimates. It is possible that the slight
bias in the simulated trees themselves (see “Methods”
section), which turns out to inflate the estimates of ¢
(Supplementary Text), masks any bias introduced in
inference by assuming the exponential model.

These qualitative patterns remain consistent when
sampling is incomplete (p=0.5, tested only for n=0.25;
see Supplementary Table S6). Interestingly, however, the
magnitude of bias appears to be exacerbated for \, £, and
¢, but reduced for .

Further insight into these biases can be gained from
LTT plots for the completely sampled trees (Fig. 1). A
“pull of the present” effect has been described by Nee
et al. (1994a) for the exponential model when turnover is
large: in the very recent past, the LIT plot has a steeper
slope, indicating faster lineage accumulation, because
species that arose recently have not yet gone extinct.
Specifically, the slope is initially n and increases to A
near the present. For the gamma model, we find that
this pull of the present effect is intensified when k is
large. This can be understood by considering the extreme
case as k— oo, such that all lifetimes last exactly £ time
units: then no lineages arising within the past ¢ time
units have yet gone extinct. In contrast, a smaller k value
(more variable lifetime distribution) tempers the pull
of the present by the early extinction of some lineages.
This effect is not explained by different speciation rates:
for fixed m, larger k actually corresponds to smaller
%, which would be expected to produce a shallower
recent slope under the exponential model. Indeed, this
effect clarifies the observed biases in inference under the
exponential model. If k is large, the LTT curve bends
upward earlier than expected, and fitting a line through
the initial portion of the curve yields an overestimate
of n. Furthermore, the curve for large k is steeper than
expected in the recent past, resulting in overestimation
of \.

Power to Distinguish between Gamma and Exponential
Lifetime Distributions

Table 2 reports the proportion of simulated trees in
each parameter set for which the likelihood ratio test
rejects the exponential model. When simulations
actually are conducted under an exponential
distribution (k=1), this proportion is close to the
expected Type I error of 5% (the significance level used
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TABLE2.  Power to reject exponential model®
True k
Sampled Sampling e

Truen  treesize (n) fraction(p) k=05 k=1 k=5 k=100
n=0.25 1000 1 041 010 089 100
0.5 024 003 091 0.97
n=0.5 1000 1 031 005 081 095
100 012 003 013 021
n=1 1000 1 028 003 042 0.7
n=15 1000 1 022 007 028 038

2Proportion of simulated trees (out of 100) rejecting the exponential
model (k=1) using the likelihood ratio test at a significance level of 5%,
depending on true values of the model parameters 1 and k; number of
sampled tips, 1; and sampling fraction, p.

for the test), ranging from 3 to 10/100 simulations.
When true k#1, the proportion rejected represents the
power of the statistical test, and as expected, the power
increases as k deviates further from one. The power is
lower for larger v; this reflects the greater difficulty in
precise lifetime parameter identification noted above for
larger n. Incomplete sampling (tested only with n=0.25)
appears to result in lower power for k <1, but similar
power for k> 1. Smaller trees (tested only with n=0.5)
yield substantially lower power to reject the exponential
distribution.

RESULTS: APPLICATION TO DATA

Birds (Class Aves)

We apply our inference method to a published
phylogeny of 9993 bird species (Jetz et al. 2012). First, we
analyze robustness of our model parameter estimates to
phylogenetic uncertainty by conducting estimation on
sets of 100 trees drawn from the posterior distribution
under each of four tree construction approaches. The
range of MLEs obtained for each set (Fig. 5) shows
patterns comparable to those seen in the simulation
study: speciation rate (\) and composite parameter (¢,
n and €) estimates vary across much less than an order
of magnitude among trees, while estimated individual
parameters of the lifetime distribution (k and 6) each
vary across a few orders of magnitude but are highly
negatively correlated (not shown). Thus, phylogenetic
uncertainty appears to induce similar patterns of
variability in parameter estimates as stochasticity in
realizations of trees generated under fixed parameter
values. Furthermore, the range of parameter estimates
is similar, regardless of the tree construction method.
Important qualitative results are extremely consistent
across trees. All 100 trees from each of the four
sets yield an estimated lifetime shape parameter (k)
significantly larger than one (corresponding to a
more bell-shaped distribution); that is, the exponential
distribution is rejected by the likelihood ratio test, indeed
with extremely high significance (p-value <107'° in
every case). Furthermore, consistent tendencies appear
when the exponential model is used for parameter
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estimation: every single tree yields a point estimate of
higher speciation rate (\) and net diversification rate (1),
larger mean lifetime (¢), and lower turnover (¢) under the
exponential model as compared to the gamma model.
Quantitative results, specifically the median MLE for
each parameter in each set of 100 trees, estimated under
both the gamma and exponential models, are reported in
Supplementary Table S10. Note that the time scale here
is millions of years; when rescaled to average lifetime,
parameter estimates are comparable to those used in the
simulation study.

Further analysis of one “typical” tree (see “Methods”
section) suggests that uncertainty in our model fit
to a particular tree is comparable in magnitude to
the phylogenetic uncertainty under any particular
reconstruction method, and smaller than the
phylogenetic  uncertainty  across reconstruction
methods (Fig. 5 and Supplementary Table S11).
The estimated lifetime distribution shape parameter,
k, has a large confidence interval, but due to the
asymptotic convergence of the gamma distribution
for large k, the extremes of the confidence interval
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still correspond to reasonably similar, bell-shaped
distributions (Supplementary Fig. S2). All 100 trees
simulated under the MLEs of the gamma model reject
the exponential model with very high significance using
the likelihood ratio test (p-value < 10~? in all cases), and
the exponential model yields higher N, 1M, and ? and
lower € than the gamma model.

Despite its significant improvement of fit over the
age-independent model, there are clear indications that
age-dependent extinction fails to capture all features of
the data. LTT plots of reconstructed Aves trees show a
qualitatively distinct pattern from bootstrap simulated
trees under the best-fitting gamma lifetime distribution
model (Supplementary Fig. S3; see also Figure 1c in Jetz
etal. 2012). In such a large and heterogeneous taxon, one
would indeed expect multiple biological factors to play
a role in diversification. An analysis based on clade size
of passerine birds suggested that net diversification rate
tends to be higher in clades with broader geographic
distribution and in tropical as opposed to temperate
regions, and that net diversification rate decreases over
time, possibly due to saturation of ecological niches
(Ricklefs 2006). A previous analysis of the complete
Aves phylogenies compared the fit of nine birth—death
models, each incorporating at most one dependency in
the rates (Jetz et al. 2012). To additionally compare the
fit of our age-dependent extinction model, we apply
the AIC. Taking the median across our 100 trees we
obtain AICgam — AlCexp = —136.0 for the gamma model
relative to the exponential model. That is, consistent
with the likelihood ratio test results, we conclude that
the gamma model fits better. For comparison, Jetz et al.
(2012) found that various models of temporal variation
yielded median difference in AIC (AAIC) ranging from
+2.1 to —178.2 relative to the constant-rate birth-death
model (equivalent to our exponential model). Our results
thus suggest that allowing extinction rate to depend
on age, assuming a gamma-distributed lifetime, yields
an improvement in model fit comparable to the best
previously tested models allowing speciation and/or
extinction rate to depend on absolute time. On the other
hand, with AAIC of —1893.4 relative to the constant-rate
model, the clade-shift model tested by Jetz et al. (2012)
still provides by far the best fit.

Nightshades (Solanaceae)

A previous phylogenetic analysis of 356 nightshade
(Solanaceae) species found that self-compatible (SC)
species have significantly higher rates of extinction
than self-incompatible (SI) species, which outweigh a
higher speciation rate to produce significantly lower
(even negative) net diversification (Goldberg et al. 2010;
Goldberg and Igi¢ 2012). In light of the hypothesis
that extinction rates of selfing plants may increase
with species age (Johnson et al. 2011), we revisit the
species-level differences between SI and SC with our
age-dependent extinction model. For this purpose we
separate the SI subtree from multiple SC clades thought

to represent independent losses of self-incompatibility
(see “Methods” section). We first confirmed that for both
SI and SC species, our parameter estimates under the
exponential model (Supplementary Tables S12 and S13)
are in close agreement with previous work (Goldberg
et al. 2010). Small deviations in the SC case may be
explained by clades where the transition from SI to SC
occurred later in the clade’s history, rather than at the
earliest split from the SI tree as our analysis assumes.

For the SI species subtree, under the gamma model
we estimate a lifetime shape parameter of k=4.53, while
applying the exponential model shows a tendency
toward differences in \, £, and 1 that are consistent
with those seen in the simulation study when k>1
(Supplementary Table S12). However, confidence
intervals are wide and the exponential model is not
rejected by the likelihood ratio test (p-value: 0.24). Only
14% (10/74) of trees simulated under the gamma model
MLEs reject the exponential distribution, indicating that
power is indeed low for this tree size and parameter set.

For the set of SC species clades, the exponential
model is rejected by the likelihood ratio test (p-value
of 0.020 or 0.025 for likelihood conditioning on stem
or crown age, respectively) in favor of the gamma
model with lifetime shape parameter k <1, i.e., an over-
dispersed lifetime with highest extinction rate when
young. Overall, the gamma model gives a clear signal
for fast speciation during a lifetime that is on average
short but relatively variable (Supplementary Table S13).
A slightly negative estimated net diversification rate of
SC clades is consistent with previous results (Goldberg
etal. 2010) and with the observation that these clades are
typically small. In line with our simulation study when
k <1 and n is small, the exponential model yields a lower
estimate for A and a higher estimate for £ compared to
the age-dependent model.

Finally, we test whether SC and SI nightshade species
show significantly different lifetime distributions. We
find (Supplementary Table S14) that the full model,
allowing all parameters to differ between SI and SC, fits
significantly better than either a model fixing k (shape
parameter) to be the same (likelihood ration test p-values:
0.023 or 0.021 for conditioning on stem or crown age
of SC clades, respectively) or a model fixing £ (mean
lifetime) to be the same (p-values: 0.020 or 0.019 for stem
or crown age conditioning, respectively). We can thus
support the previous conclusion (Goldberg et al. 2010)
that SC species face a shorter mean time to extinction
than SI species. (Note that by including transitions
to self-compatibility in “extinction” of SI species, as
described in the “Methods” section, if anything we
over-estimate true extinction of SI species.) We uncover
the additional factor that SC species appear to have
especially high extinction rate at young age (ksc <1) and
higher lifetime variance-to-mean ratio than SI species
(6sc > Os1), which could make an additional contribution
to the demise of SC clades. Interestingly, in concordance
with previous results (Goldberg et al. 2010), we also
estimate a higher speciation rate for SC than for SI
lineages.
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DIsCUSSION

Here we have presented a significant methodological
advance in inference from phylogenetic data, extending
the arsenal of available birth-death-type models to allow
the death/extinction rate to depend on the age of a
lineage. In a macroevolutionary context, species age has
been hypothesized to reflect extinction risk due to its
correlation with characteristics such as population size,
ecological traits, and nature of biotic interactions. While
the role of species age in extinction has previously been
investigated using the fossil record (Van Valen 1973;
Pearson 1995; Doran et al. 2006), the development of
statistical inference methods applicable to phylogenetic
trees of extant species (possibly incompletely sampled)
opens new avenues for exploring these hypotheses.
Our results suggest that including age dependency in
extinction rates may significantly improve model fits to
real data sets, and that ignoring age dependency can bias
parameter estimates.

To fit our age-dependent extinction model to a real
data set of interest, the “user” needs a reconstructed
phylogenetic tree along with an estimate of the fraction
of extant species in the clade that have been sampled.
The tree can be derived from any application (though we
have focused here on trees of extant species), as long as it
is ultrametric, i.e., all sampling occurs effectively at one
time point. More precisely, the information about the tree
required by our inference method is the stem or crown
age, together with a list (in any order) of speciation times
leading to the sampled extant species in the tree. Given
this tree information, our freely available Matlab code
or corresponding functions in the R package TreePar
v3.2 (see “Methods” section) can be used to obtain
MLEs of model parameters (speciation rate and lifetime
distribution parameters) and the maximum likelihood
value for use in model comparison.

In this first computational implementation, we
have chosen the gamma distribution family to
describe species lifetime. This family includes the
exponential distribution, facilitating comparison to
standard age-independent (constant-rate) models,
but allows both mean and variance to be controlled
independently. If the lifetime distribution is not exactly
gamma, but qualitatively similar, we expect minimal
effects on parameter estimates. For instance, we find
(Supplementary Fig. S4) that lifetime mean and variance
can be recovered with good accuracy assuming a gamma
distribution, even when trees are simulated under a
Weibull distribution (another two-parameter, unimodal
family). Nonetheless, the gamma family may poorly
capture other patterns, such as a bimodal lifetime
distribution, where extinction risk is elevated for both
very young and very old species. While likelihood
formulae allow an arbitrary distribution of species
lifetime (Lambert 2010), implementation of the current
framework under other distribution families is expected
to be more computationally intensive than the gamma,
and, if described by more parameters, to require larger
data sets for precise inference.

Our inference method applies to a given tree with
known branching times. However, trees reconstructed
from genetic sequence data obviously contain
phylogenetic uncertainty, which should be taken
into account in parameter estimates. We can get an idea
of this impact by running maximum likelihood inference
separately on multiple individual trees supported by the
data, for instance drawn from the posterior distribution
in a Bayesian approach to tree reconstruction (as applied
here to Aves data). In the future, the age-dependent
extinction model could be incorporated into a Bayesian
framework (e.g.,, BEAST; Drummond and Rambaut
2007) for simultaneous inference of trees themselves
and their macroevolutionary parameters.

A simulation study confirmed that our inference
method is effective (on sufficiently large trees) in
recovering true parameter values when trees are
actually generated by a diversification process with
constant speciation rate and gamma-distributed
time until extinction. For fixed number of sampled
species and fixed mean species lifetime, inference is
more effective on slower-growing (older) trees. The
individual parameters of the lifetime distribution
(shape, k, and scale, 6) are the most difficult to infer
precisely; however, their estimated values are highly
correlated, such that mean lifetime is estimated much
more precisely. Furthermore, uncertainty in k is
moderated by the approach to a limiting distribution
for large k. In practice, this means that large confidence
intervals on k and 6 estimated from a given tree are to be
expected, but this does not preclude a precise estimate
of mean lifetime, nor does it necessarily imply low
power to detect deviations from a constant-rates model.
We expect that estimation of age-dependent extinction/
death rate will be more precise on trees that are sampled
through time (Lambert et al. 2014), such as species trees
supplemented with fossils or phylogenies of quickly
evolving viral populations during an epidemic.

We also found that neglecting age dependence
biases parameter estimates. Specifically, when younger
species are more prone to extinction (k <1), applying
an age-independent (exponential, k=1) model
results in underestimation of speciation rate and
net diversification rate, and vice versa when older
species are more prone to extinction (k> 1). Estimated
mean lifetime is also biased according to a more complex
pattern. Effects on estimated turnover were ambiguous
from the simulation study, but interestingly, the
exponential model consistently returned lower turnover
than the gamma model in the Aves data. The possible
biases in estimated mean species lifetime and turnover
are particularly noteworthy, as it has been observed that
trees derived from sequence data often result in inference
of a lower extinction rate or turnover than that estimated
from the fossil record (discussed by Morlon et al. 2011
and references therein). Depending on the typical
parameter regime applicable to real species clades,
neglect of age-dependent extinction in previous analyses
could be one factor helping to resolve this discrepancy.
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We illustrated the application of our method to real
data with two test cases. We emphasize that we do not
wish to put forward definitive biological explanations,
but simply to test the performance of our method while
raising interesting new hypotheses. First, in the Aves
phylogeny, we found that a model where extinction rate
increases with age provided a significantly better fit than
age-independence. Parameter estimates under an age-
independent model showed deviations from the best fit
consistent with the biases seen in the simulation study.
These signals were extremely robust to phylogenetic
uncertainty, holding across all 100 reconstructed trees
drawn from the posterior distribution under each of four
reconstruction methods (Jetz et al. 2012). Phylogenetic
uncertainty furthermore appears to be a larger source
of uncertainty in parameter estimates than the fit of our
model to a typical individual tree in this data set. Despite
the significant improvement in fit gained by adding age-
dependent extinction, there were signs that this model
still did not provide a satisfactory description of the data
(Supplementary Fig. S3). This result is not surprising,
given the multitude of biological factors likely to play
into the diversification of such alarge and heterogeneous
taxon and supported by previous studies (Ricklefs 2006;
Jetz et al. 2012). A comparison of models modifying
single factors was nonetheless enlightening: while a
clade-shift model provides the best fit (Jetz et al. 2012),
we found that age-dependent extinction yielded similar
improvements over a constant-rates model as gained
by time-dependent rates (Jetz et al. 2012). This suggests
that age dependence should not be overlooked in future
considerations of multi-factorial models.

Interestingly, it has been more generally observed that
trees derived from real species data tend to be less
balanced than those generated under a broad class of
models, including constant speciation and extinction
rates, diversity- or time-dependent speciation and/or
extinction, or age-dependent extinction, that give rise to
a uniform distribution on ranked oriented trees (Blum
and Francois 2006; Lambert and Stadler 2013; Stadler
2013b). The Aves data considered here are no exception;
comparing Colless statistics (Colless 1982) indicates
that reconstructed Aves trees are less balanced than
trees simulated under a constant-rates model (results
not shown), which cannot be explained by any of the
aforementioned models. Intriguingly, simulations have
indicated that an age-dependent speciation rate can
produce realistic levels of imbalance (Hagen et al. 2015).
However, a statistical inference method accounting
for age-dependent speciation is currently lacking, as
trees generated under such a model can no longer
be represented by a coalescent point process, and
thus the likelihood cannot be derived with previously
used mathematical approaches (Lambert and Stadler
2013).

Our second data analysis, involving a phylogeny
of self-incompatible (SI) and self-compatible (SC)
nightshades, extended previous results concerning the
species-level disadvantage of self-compatibility. Our
results suggested that the lifetime of SC species not only

has a significantly lower mean than that of SI species,
in agreement with previous results (Goldberg et al.
2010; Goldberg and Igi¢ 2012), but also that it has a
higher variance-to-mean ratio. Among SC species, the
exponential lifetime distribution (constant rates) model
was rejected in favor of a gamma lifetime distribution
model where extinction rate decreases with age. This
result is surprising in light of the hypothesis that selfing
or asexual species face increasing extinction risk with
age due to the accumulation of deleterious mutations
(Johnson et al. 2011). One possible explanation is that
the accumulation of mutations in a parent species,
though not hindering speciation, continues to have
deleterious effects on daughter species; that is, age of
the entire clade and not only of the individual species
is relevant. Our analysis may also be limited by the
small size of the data set and our method of considering
each SC clade independently; thus, these initial results
should be interpreted with caution. We are not aware of
any existing larger reconstructed trees containing both
asexual/selfing and sexual/nonselfing species that are
suitable for our analysis. Nonetheless, our framework is
ready to be used as larger data sets become available.
Our focus here was on developing methodology
to infer macroevolutionary rates under an age-
dependent extinction model, and testing its accuracy
when phylogenies are actually generated under this
model. Future work should test the effects of model
mis-specification, i.e., whether spurious signals of
age dependence arise, or conversely true signals
are obscured, when macroevolutionary rates depend
on other factors. For instance, the importance of
disentangling dependence of extinction rate on real time
from dependence on species age has been emphasized
in the paleontological literature (Pearson 1995; Doran
et al. 2006). An extension of our model to allow rates
of speciation and extinction additionally to vary with
time would be mathematically fairly straightforward
(Lambert and Stadler 2013). While elucidating the effects
of model mis-specification is beyond the scope of the
present study, we emphasize that our work represents
an important addition to the set of models available
for inference. Other factors potentially influencing
speciation and extinction rates have also individually
been incorporated into models generating phylogenetic
trees (reviewed in Pyron and Burbrink 2013; Stadler
2013b; Morlon 2014). An important advantage of using
a likelihood-based inference method is that alternative
models can be compared side-by-side based on their
likelihood given the data, as done for example with
the Aves data. Assessing the best explanation for the
data would, however, ideally involve integration of all
these proposed factors in one model. We thus echo
previous calls for the development of an integrated
inference framework (Pyron and Burbrink 2013; Stadler
2013b; Morlon 2014), adding that age dependence now
can and should be included in such a synthesis.
With increasing model complexity, larger data sets
will be required for inference. The growing availability
of large reconstructed phylogenies thus provides an
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unparalleled opportunity to gain insight into the
biological factors shaping macroevolutionary dynamics.
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