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ABSTRACT

MicroRNAs (miRNAs) impinge on the translation and
stability of their target mRNAs, and play key roles
in development, homeostasis and disease. The gene
regulation mechanisms they instigate are largely me-
diated through the CCR4–NOT deadenylase com-
plex, but the molecular events that occur on target
mRNAs are poorly resolved. We observed a broad
convergence of interactions of germ granule and P
body mRNP components on AIN-1/GW182 and NTL-
1/CNOT1 in Caenorhabditis elegans embryos. We
show that the miRISC progressively matures on the
target mRNA from a scanning form into an effector
mRNP particle by sequentially recruiting the CCR4–
NOT complex, decapping and decay, or germ gran-
ule proteins. Finally, we implicate intrinsically disor-
dered proteins, key components in mRNP architec-
tures, in the embryonic function of lsy-6 miRNA. Our
findings define dynamic steps of effector mRNP as-
sembly in miRNA-mediated silencing, and identify a
functional continuum between germ granules and P
bodies in the C. elegans embryo.

INTRODUCTION

MicroRNAs (miRNAs) are ∼22 nucleotide (nt)-long RNAs
that impinge on gene expression to regulate a broad variety
of biological processes (1). miRNAs direct silencing from
within the miRNA-induced silencing complex (miRISC),
an assembly of an Argonaute (ALG-1 and -2 in Caenorhab-
ditis elegans) and GW182 proteins (AIN-1 and -2) (2,3).
The miRISC typically recognizes 3′ un-translated region
(3′UTR) sequences of target messenger RNAs (mRNAs)

through imperfect base-pairing with miRNAs (1). Cog-
nate interactions instigate a series of gene-silencing mech-
anisms, which include mRNA translation repression, dead-
enylation, decapping and decay (4–9). The relative contri-
bution of each of these events is still a matter of debate,
and likely depends on cellular context. The multi-subunit
CCR4–NOT deadenylase complex is a key effector in the
several mechanistic aspects of miRNA-mediated silencing
(5,10,11). The scaffolding subunit CNOT1 (NOT-like 1,
or NTL-1 in C. elegans) directly interacts with GW182 in
vitro (12–14), and either alone or in combination with other
CCR4–NOT subunits (15,16), further tethers other effector
components such as the RNA helicase DDX6 (15–17) or
the distinct PAN2/3 deadenylase complex (18).

A significant fraction of the Argonaute and GW182 pro-
teins localize to processing bodies (P bodies), which are dy-
namic assemblies of RNA and proteins observed as distinc-
tively large foci throughout the cell cytoplasm (5,19–25).
Their full composition is unknown, but numerous other fac-
tors implicated in mRNA processing, such as decapping
enzymes (Dcp1/2) and activators (Pat1 and the Lsm1–7
complex) and the 5′−→3′ exonuclease Xrn1, co-localize in
P bodies (26–29). While they do concentrate several key
miRNA co-factors, detectable P bodies as distinct cytoplas-
mic foci are not required for miRNA-mediated silencing.
Genetic depletion of components often results in their re-
duction in size or abundance without impairing miRNA-
mediated silencing (30–32).

P bodies belong to a broad and functionally diverse
group of electron-dense and membrane-less cellular foci re-
ferred to as messenger ribonucleoprotein (mRNP) granules.
mRNPs include stress granules, transport granules, chro-
matoid bodies in male germ cells and germ granules in
oocytes and embryos (33–35). mRNP functions have been
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largely inferred based on co-localization of proteins, en-
zymatic functions attributed to resident proteins and in-
teractions in vitro. Germ granules are thought to be sites
of mRNA storage for germ cell lineage functions (36–40),
whereas P bodies are instead being primarily associated
with mRNA processing and decay (26). What determines
the structural and functional frontiers or the interactions
between the distinct mRNP subtypes is not well defined.
High-resolution, live imaging studies in C. elegans embryos
revealed that germ granules exhibit liquid droplet-like be-
havior, which allows rapid phase transitions of dissolution
and condensation (41). Such a behavior is consistent with
a dynamic molecular scaffold of multivalent protein–RNA
complexes, lending grounds to a model explaining assem-
blies of large cytoplasmic mRNPs like P bodies and germ
granules (42). Recent studies uncovered a key contribution
for intrinsically disordered regions, often encoded in RNA-
binding proteins, in mRNP granule architecture and dy-
namics (43–48).

Through a combination of proteomics, genetics and novel
cell-free assays in C. elegans, we delineate the molecular
events leading to and occurring during embryonic miRNA-
mediated silencing. We identify a striking convergence of
interactions between germ granule and P body components
with AIN-1 and NTL-1. We show that scanning miRISC
and mRNP components assemble sequentially on mRNA
targets. Furthermore, we show that miRISC components
co-fractionate and associate with intrinsically disordered
germ granule proteins and implicate MEG-2 in the embry-
onic function of the lsy-6 miRNA. We thus identify new
molecular events underlying embryonic miRNA functions,
and suggest a role for mRNP granule components in spe-
cializing their silencing mechanisms.

MATERIALS AND METHODS

Caenorhabditis elegans strains and RNAi

Caenorhabditis elegans were cultured using standard tech-
niques as described (49). RNAi was performed as in
Fire et al. (50) and Timmons et al. (51) on L4 an-
imals and progeny (embryos) were harvested. Worm
strains used: N2 Bristol (wild-type: wt), MJS26 (ALG-
2::GFP, described in 52), FD21 (AIN-1-LAP, unc-119(ed3);
tagIs1271), EV465 (NTL-1::LAP, described in 53), meg-
1(vr10), meg-2(ok1937), MH2636 (otIs114(plim-6::GFP,
rol-6, lsy-6(ot150)), FD14 (meg-1(vr10); otIs114; lsy-
6(ot150), rol-6), FD15 (meg-1(vr10); otIs114, rol-6), FD16
(meg-2(ok1937); otIs114; lsy-6(ot150), rol-6), FD17 (meg-
2(ok1937); otIs114, rol-6), JH3251 (PGL-1-3xFLAG) and
JH3292 (MEG-1-1xFLAG) are C-terminal FLAG inser-
tions in the genomic pgl-1 and meg-1 loci and were gen-
erated using CRISPR/Cas9 system by the laboratory of
Geraldine Seydoux, FD22 (3xFLAG-MEG-2) is a N-
terminal 3xFLAG insertion in genomic meg-2 locus, gener-
ated using CRISPR/Cas9 system. All strains were grown at
22◦C, except strains used in assessing meg-1 and meg-2 ge-
netic interactions with lsy-6, which were maintained at 16
or 19◦C, as indicated.

Plasmids

The Renilla reniformis luciferase (RL) constructs containing
miR-35 wt or mutated sites have been described in Wu et al.
(54).

Preparation of C. elegans embryonic extract for translation
assays, deadenylation assays, deadenylated RNA immuno-
precipitation (DRIP)

Caenorhabditis elegans embryo extracts were prepared as
described in Wu and Duchaine (55), except that calf-liver
tRNA was omitted from the extract.

In vitro transcription and deadenylation assays

Assays were setup and performed as described in Wu et al.
(54). The RL constructs encoding RL 6x pA86, RL 6xmut
pA86, RL 6x pA0 and RL 6xmut pA0 RNAs were linearized
with MfeI, and in vitro transcribed using MAXIscript®

T7 Transcription Kit (Ambion). These RNAs were labeled
with [�-32P] UTP and capped with anti-reverse cap analog
(ARCA, Ambion).

Deadenylated RNA immunoprecipitation (DRIP)

Deadenylation assay was conducted as described above
with the following modification: Prior to deadenylation re-
action, C. elegans embryonic extract was pre-cleared with
pre-equilibrated Dynabeads® Protein G (Life Technolo-
gies) for 1 h at 4◦C with rotation in DRIP buffer (24 mM
HEPES-KOH pH 7.4, 25 mM KOAc, 1.28 mM Mg(OAc)2,
0.1 U/�l Ribolock RNase inhibitor (Fermentas), 1 mM
dithiothreitol (DTT)). A total of 50 �l-deadenylation reac-
tion mixture was setup per time point. Deadenylation as-
say was then conducted over a 3-h time-course. During in-
cubation, mouse anti-GFP antibody (Roche) was added to
Dynabeads® Protein G and incubated for 1 h at 4◦C with
rotation. The reaction mixture was then incubated with 50
�l of a 1:1 suspension of anti-GFP-Dynabeads® Protein
G for 30 min at 4◦C with rotation. After the immunopre-
cipitation step, beads were washed four times with DRIP
buffer. Washes were performed at 4◦C with rotation. The
beads were then transferred into two tubes, one for western
blot analysis, and the other for Proteinase K treatment and
RNA extraction. Proteinase K treatment was performed by
resuspending the beads in 90 �l Proteinase K buffer (200
mM Tris–HCl pH 8, 25 mM ethylenediaminetetraacetic
acid (EDTA) pH 8, 30 mM NaCl, 2% sodium dodecyl sul-
phate (SDS)) and 10 �l Proteinase K (10 �g/�l) for 10 min
at room temperature. The eluted RNA was purified using
phenol/chloroform and ethanol precipitation, followed by
separation on a 4% polyacrylamide/urea gel and autoradio-
graphy. The percentage of RNA brought down by IP was
calculated based on ImageJ measurements of the intensity
of the bands corresponding to full length and deadenylated
RNAs in bound and unbound fractions.

Extract preparation and multidimensional protein identifica-
tion (MuDPIT)

Embryo pellets were homogenized in lysis buffer (50 mM
Tris HCl pH 8, 150 mM NaCl, 1 mM EDTA, 1% Tri-
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ton X-100 with Complete EDTA-free protease inhibitors
(Roche)) and cleared by 16 100 × g centrifugation. FLAG-
tagged proteins were purified using ANTI-FLAG M2 Affin-
ity Gel (Sigma-Aldrich A2220) following extract prepara-
tion. With our culture methods, embryonic staging may dif-
fer within individual preparations and from batch to batch.
Prior to adding the matrices, the clarified lysate was quan-
tified and diluted to 5 mg/ml concentration in lysis buffer
(50 �l bead slurry was added for 1 ml IP volume). Im-
munoprecipitations were carried out at 4◦C for 2 h, and
beads were then washed four times in the lysis buffer. Bound
proteins were eluted using the 3xFLAG peptide (Sigma-
Aldrich F4799). A fraction of the eluate (1/10th for AIN-1-
LAP and 1/3rd for NTL-1-LAP) was monitored by sodium
dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-
PAGE), followed by western blot analysis. Non-transgenic
N2 embryos were used as controls for the purifications.
MuDPIT was performed as described in Duchaine et al.
(56).

Assessment for siRNA or miRNA pathway proteins

The studies integrated for the analysis of factors implicated
in miRNA and other RNAi-related pathways are as follows:
let-7 phenotype (WormBase (WS220), 57), let-7 sensitized
(58), Drosophila miRNA and siRNA (59), DCR-1 Co-IP
(56), ERI-1 Co-IP (60), AIN-2 Co-IP (3), suppression of
transgene silencing in eri-1 and dsGFP RNAi (61), germline
co-suppression defect (62), SynMuv suppression (63). The
generation and analysis of the 11 screens was previously de-
scribed in Tabach et al. (57). The hyper-geometric P-values
were calculated from a population of 17 000 genes.

Gene ontology (GO) term analysis

Gene ontology (GO) term over-representation test (release
20150430) for GO cellular component annotations was de-
termined using the PANTHER Classification System (http:
//www.pantherdb.org) (64,65). Identified proteins listed in
Supplementary Table S1 (AIN-1 interactors) and S2 (NTL-
1 interactors) served as the analyzed list, and the C. elegans
genes in the PANTHER database served as the reference
list.

Nuclease sensitivity assay

At the end of a 3-h deadenylation reaction, 0.005 U/�l of
micrococcal nuclease (MNase, Roche) and 1 mM CaCl2
was added to the reaction mixture. Aliquots of the MNase-
treated reaction mixture were withdrawn over a 15-min
treatment and the MNase treatment was stopped by the
addition of 20 mM glycol ether diamine tetraacetic acid
(EGTA). RNA was extracted and analyzed by autoradio-
graphy as described in Wu et al. (54).

Biotinylated isoxazole (b-isox)-mediated precipitation

Caenorhabditis elegans embryonic pellets were resuspended
in a lysis buffer (50 mM HEPES pH 7.5, 150 mM NaCl,
0.1% NP-40, 1 mM EDTA, 2.5 mM EGTA, 10% glyc-
erol, 1 �M DTT) supplemented with protease, phosphatase

and RNase inhibitors. The extracts were homogenized with
a pre-chilled Kontes dounce homogenizer and then cen-
trifuged three times at 14 000 rpm for 10 min at 4◦C. The
samples were exposed to 100 �M of the b-isox chemical
(Sigma Aldrich) and rotated at 4◦C for 90 min. The incu-
bated reaction was then centrifuged at 10 000 × g for 10 min
to pellet the precipitates. The pellet was washed twice in the
lysis buffer and resuspended in 1× SDS loading buffer for
protein analysis. Proteins in the supernatant fractions were
precipitated by addition of four volumes of cold acetone,
incubated for 1 h at −20◦C and centrifuged at 15 000 × g
for 10 min to pellet the precipitates.

Western blotting

Protein samples from DRIP were separated on a 6%
SDS-PAGE and analyzed by western blot. Protein sam-
ples for CCR-4 and CCF-1 western blot analysis were
separated on a 10% SDS-PAGE. Samples from b-isox-
mediated precipitation were resolved on NuPAGE 4–
12% Tris-Glycine gradient gels (Invitrogen). Antibodies
used were: mouse monoclonals against GFP (Roche),
alpha tubulin (Abcam), FLAG (Sigma-Aldrich); rab-
bit polyclonals against PAB-1/2 (66), DCR-1, ALG-
1/2, RDE-4 (56), CGH-1 (67), GLH-1 (68), PAN-
1 (69), IFE-1, IFE-2 (70) and AIN-1 (gift from Dr
Martin Simard); rat polyclonal against DCAP-2 (71).
HRP-conjugated goat anti-rabbit, anti-mouse and anti-rat
(Sigma-Aldrich) and mouse TrueBlot® (eBioscience) were
used as secondary antibodies. For CCF-1 and CCR-4, rab-
bit polyclonal antisera were raised against the following
peptides at Capralogics: KGGLQEVADQLDVKRQGVR
(CCF-1, 3755) and VHRVLTEDEIASGRSTRWTELE
(CCR-4, 3756). For NTL-1, the region corresponding
to amino acid position 650–950 was amplified from
cDNA using forward primer: 5′-ATAATAGGATCCAG
GTAATGAAAGAGAACTCGG-3′ (Tdo1707); and re-
verse primer: 5′-TATTATGGATCCCAAATTTTCCAC
TGACATCGC-3′ (Tdo1708) and cloned into pCAL-KC
via BamHI/BamHI. This construct was used as a template
for generating the antigen for mouse polyclonal against
NTL-1 (4162, Capralogics Inc.). Sera for CCF-1, CCR-4
and NTL-1 were used at 1:1000 dilution in 5% non-fat dry
milk in 0.1% Tween-phosphate buffered saline overnight at
4◦C.

RESULTS

Germ granule and P body proteins are enriched among
miRISC interactions

mRNA deadenylation is a prevalent outcome for miRNA
targets in diverse systems and this activity has been largely
attributed to the CCR4–NOT deadenylase complex (72).
The molecular interactions of miRISC with mRNA pro-
cessing machineries in the embryo are still unknown. To
capture the physical interactions between miRISC and its
effectors in the C. elegans embryo, we performed immuno-
precipitation (IP)-MuDPIT proteomics on the miRISC
protein AIN-1, a C. elegans ortholog to GW182 and on
the CCR4–NOT complex scaffold NTL-1, the ortholog of
CNOT1. LAP (GFP-3xFLAG)-tagged AIN-1 and NTL-1

http://www.pantherdb.org
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proteins were immuno-purified from C. elegans transgenic
embryos expressing tag fusions at endogenous levels (Fig-
ure 1A, and see ‘Materials and Methods’ section). Recov-
ered fractions were analyzed using multi-dimensional pro-
tein identification technology (MuDPIT) (73–75). Six in-
dependent biological replicates were analyzed for AIN-1,
and three were analyzed for NTL-1. Only candidate interac-
tions detected in at least two independent biological exper-
iments were retained, and proteins also found in negative
control samples (non-transgenic strains) were disqualified.
A total of 340 proteins were detected in at least two samples
for AIN-1 purifications (Supplementary Table S1), while 78
candidate interactions were identified from NTL-1 sample
analyses (Supplementary Table S2).

AIN-1 and NTL-1 interaction datasets significantly over-
lapped with previous phylogenetic profiling (co-evolution),
genome-wide RNAi screens and proteomic analyses that
identified genes of the RNAi and miRNA pathways (71/340
for AIN-1, P-value: 1.14 × 10−37; 18/78 for NTL-1, P-
value: 6.33 × 10−12; (Supplementary Tables S3–5, and see
‘Materials and Methods’ section) (57). Genes encoding 25
of the 71 proteins shared with AIN-1 proteomics were iden-
tified in an RNAi screen for enhancement of the let-7 phe-
notypes in a sensitized background (P-value: 6.6 × 10−9)
(58), and 29/71 displayed the same phenotype in other inde-
pendent RNAi experiments (P-value: 1.7 × 10−12). Exten-
sive and significant overlap is also observed between AIN-
1 datasets and results of a screen for miRNA factors in
Drosophila (17/71, P-value: 3.4 × 10−14). NTL-1 datasets
significantly overlap with let-7 phenotype screen (6/18; P-
value: 0.002). Finally, both AIN-1 and NTL-1 interac-
tions further overlap with proteomic and genetic screens for
RNAi pathway factors (Supplementary Table S3). These re-
sults indicate that both AIN-1 and NTL-1 interactions are
functionally relevant to the miRNA and RNAi pathways in
a diverse variety of cellular and species contexts.

GO classification using the PANTHER system (64,65)
revealed a strong enrichment for annotations to cytoplas-
mic RiboNucleoProtein granules (mRNP granules) (Figure
1B). A total of 23 out of 329 AIN-1 interactions (P-value:
2.1 × 10−20), among 195/329 proteins with classified terms
and 10 out of 75 NTL-1 interactions (49/75 classified; P-
value: 4.7 × 10−11) were annotated as cytoplasmic mRNP
granules. More specifically, P body components were en-
riched among AIN-1 and NTL-1 interactions. P body com-
ponents were annotated to 9 interactions with AIN-1 (P-
value: 1.1 × 10−8), and 6 NTL-1 interactions (P-value:
3.7 × 10−8). Detected P body proteins among the interac-
tions included several of the CCR4–NOT complex subunits,
the PAN2/3 deadenylase complex, the decapping enzymes
DCAP-1/2 and the decapping activator PATR-1 (Figure 1C
and D). Finally NHL-2, a member of the TRIM-NHL fam-
ily of proteins and a miRISC cofactor (76) which localizes
to P bodies and germ granules based on GO annotations
(76,77), was among the most consistently detected interac-
tions in both NTL-1 and AIN-1 purifications.

Surprisingly, germ granule (also known as P granules in
C. elegans) proteins were strongly enriched among AIN-
1 interactions (18 interactions, P-value: 5.0 × 10−15) and
in NTL-1 interaction datasets (7 interactions, P-value: 1.0
× 10−6) (Figure 1C). Interactions detected with AIN-1 in-

clude proteins known to play critical roles in germline deter-
mination and functions including PGL-1, PGL-3 (78,79),
CCCH Zinc finger proteins PIE-1 (80), MEX-5 and MEX-
6 (81), the snRNP spliceosome component SNR-7 (82),
DEAD-box RNA helicases DRH-3 (83) and GLH-1 (68),
a close C. elegans homolog to Drosophila VASA. eIF4E ho-
molog IFE-1 and 4E transporter and translation regulator
IFET-1, both known residents of germ granules in C. ele-
gans (84,85), were detected among interactions with AIN-1.

Whereas some of the detected proteins reside and/or
function within germ granules, others are known for their
structural function in mRNP assembly itself. This is the
case for MEG-2 protein, detected in 3/3 NTL-1 purifica-
tions (Figure 1C and Supplementary Table S2) and its par-
alog MEG-1, which was detected with lesser consistency
and at lower peptide coverage (not shown). MEG-2 and
MEG-1 lack any recognizable domains, are constituted of
inherently disordered regions rich in serine and localize to
germ granules (48,86). Both proteins act at least in part
redundantly in germline development and germ granule
architecture dynamics. Interestingly, MEG-1 was recently
shown to be a target of the MBK-2(DYRK) kinase and
of the PPTR-1/2(PP2A) phosphatase, with activities that
modulate germ granule assembly (48). PPTR-1 is also de-
tected among NTL-1 interactions, in 2/3 biological repli-
cates (Supplementary Table S2) and MBK-2 was detected
with poorer consistency, in one out of three NTL-1 purifi-
cation samples (not shown).

Overall, our comparative proteomic analyses reveal the
physical linkage of the miRISC core component AIN-1 and
its effector complex scaffold protein NTL-1 with mRNPs. It
further identifies previously unrecognized interactions with
key germ granule components.

Coupled expression and function of the CCR4–NOT complex
subunits in embryonic miRNA-mediated deadenylation

Intersect of the datasets revealed an extensive overlap of
the interactions with the CCR4–NOT complex and AIN-
1. About 48% of the detected NTL-1 interactions were also
detected in the AIN-1 IP (Table 1), and the enrichment of
CCR4–NOT complex components is highlighted through
GO analysis on the AIN-1 associated proteins (Figure 1B;
P-value: 7.6 × 10−3).

Among shared interactions, the CCR4–NOT catalytic
subunit CCR-4 (CCR-4a/b; orthologous to CNOT6/6L)
scored among the very highest in percentage of peptide cov-
erage and in the number of detected peptides, and was de-
tected in all samples analyzed. CCF-1 (CAF1), the other
deadenylase catalytic subunit of the complex, was detected
in 5/6 AIN-1 samples and in 3/3 NTL-1 samples. Together
with CCF-1, CCR-4 and NTL-1, a total of 7 known sub-
units of the CCR4–NOT complex were common to both
AIN-1 and NTL-1 purifications, including NTL-2, NTL-
3, NTL-9 and NTL-11 (Figure 1D). Decapping co-factors
PATR-1 and EDC-4 (named based on homology with hu-
man Edc4) and the mRNA decay enzyme 5′−→3′ exonu-
clease XRN-2 were also detected in both groups of datasets
(Figure 1D and Table 1). Finally, and in spite of exten-
sive overlap, some of the best-detected proteins in NTL-
1 purifications were absent from any AIN-1 interaction
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Figure 1. Germ granule and P body proteins are enriched among miRISC interactions. (A) Western blots of embryo lysates and FLAG immunoprecipita-
tions (IP) from wild-type (wt) non-transgenic (N2, left panels) and transgenic animals expressing LAP-tagged AIN-1 (top right panel) or NTL-1 (bottom
right panel). (B) Gene Ontology (GO) analysis of cellular component terms on AIN-1 and NTL-1 proteins detected by MuDPIT. Among the proteins
retained from at least two biological replicates, only 329/340 AIN-1 interactors and 75/78 NTL-1 interactors were classified for GO analysis. (C) Venn
diagram of proteins with GO annotations to cellular component terms related to germ granules and P bodies. (D) Venn diagram of a subset of proteins with
inferred functions in deadenylation, decapping and RNA decay. Fractions in the Venn diagrams indicate the number of times the corresponding protein
was detected in each independent IP (out of 6 for AIN-1, and out of 3 for NTL-1). (E) Network of proteins converging on the CCR4–NOT deadenylase
complex, as detected by MuDPIT analyses in Caenorhabditis elegans embryonic extracts. Target proteins (using FLAG immunoprecipitation) are shown
in bold and in colored/shaded circles. Arrowheads indicate detected interactions.

datasets. In particular, TAG-153 is an uncharacterized par-
alog of NTL-2 (Supplementary Figure S1), a member of
the NOT2/3/5 family and was among the proteins most
consistently detected in NTL-1 purifications (Supplemen-
tary Table S2). While NTL-2 is consistently detected in 3/3
NTL-1 IP, TAG-153 is absent from all six AIN-1 interac-
tion replicates. This may suggest specialization of distinct

and functionally non-redundant CCR4–NOT complexes in
miRNA-mediated silencing.

The extent of CCR4–NOT interactions with intrinsically
disordered protein MEG-2 and germ granule component
PGL-1 was further validated by reciprocal IP-MuDPIT
(Figure 1E). All 7 subunits of CCR4–NOT complex were
consistently detected in 3/3 MEG-2 samples, and CCR-4,
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Table 1. Comparative proteomics of AIN-1- and NTL-1-interacting proteins

NTL-1::LAP AIN-1::LAP

Sequence name Protein
# datasets
detected

coverage
(peptide
counts)

# datasets
detected

coverage
(peptide
counts) Homology/Domain Description

ZC518.3 CCR-4 3/3 61% (40) 6/6 20% (6) Ccr4/CNOT6,
CNOT6L

CCR4–NOT subunit

F57B9.2 LET-711 3/3 43% (121) 6/6 10% (17) CNOT1 CCR4–NOT subunit
B0513.1 LIN-66 3/3 10% (4) 6/6 17% (6) none detected translational regulation
Y44E3A.6 Y44E3A.6 3/3 12% (7) 6/6 13% (7) EDC4 decapping activator
C07G1.5 HGRS-1 3/3 6% (3) 6/6 12% (6) Vps27p,FYVE Zn

finger
ESCRT-0 component

F26F4.7 NHL-2 3/3 8% (6) 6/6 10% (6) TRIM-NHL miRISC component
F31E3.3 RFC-4 3/3 12% (3) 5/6 13% (3) RFC4 DNA replication
ZK381.4 PGL-1 3/3 4% (3) 5/6 5% (2) none detected RGG box motif, P

granules
C18H9.3 C18H9.3 3/3 4% (3) 5/6 4% (2) GIGYF1/2 GYF domain protein
Y56A3A.20 CCF-1 3/3 39% (19) 5/6 18% (4) Caf1/CNOT7 CCR4–NOT subunit
T01B7.6 TRCS-2 3/3 4% (3) 5/6 7% (3) none detected uncharacterized
H28G03.1 H28G03.1 3/3 13% (3) 4/6 12% (2) RNA-binding uncharacterized
Y56A3A.1 NTL-3 3/3 58% (44) 3/6 8% (4) CNOT3 CCR4–NOT component
F13D12.2 LDH-1 3/3 12% (3) 3/6 15% (4) LDHB lactate dehydrogenase
K10B3.8 GPD-2 3/3 14% (3) 3/6 11% (3) GAPDH glycolysis
K10B3.7 GPD-3 3/3 14% (3) 3/6 11% (3) GAPDH glycolysis
R11A8.7 R11A8.7 3/3 5% (9) 3/6 2% (3) Q/N-rich domain uncharacterized
F56A3.4 SPD-5 3/3 4% (3) 3/6 4% (3) coiled coil domain cell division
C26E6.3 NTL-9 3/3 45% (27) 3/6 10% (2) RQCD1 CCR4–NOT component
B0286.4 NTL-2 3/3 42% (14) 2/6 10% (2) CNOT2 CCR4–NOT component
C06G1.4 AIN-1 2/3 6% (3) 6/6 53% (37) GW182/TNRC6 miRISC component
F43G6.9 PATR-1 2/3 7% (4) 6/6 10% (5) PAT1 mRNA decay
Y116A8C.35 UAF-2 2/3 10% (2) 6/6 23% (5) U2AF35, RRM splicing
Y48B6A.3 XRN-2 2/3 4% (3) 6/6 13% (7) XRN2 5′-3′ exoribonuclease
F31D4.3 FKB-6 2/3 12% (4) 5/6 8% (2) TPR repeat protein folding
C34G6.7 STAM-1 2/3 12% (4) 5/6 16% (4) Q/N-rich domain, SH3 protein transport
R05D3.7 UNC-116 2/3 11% (7) 5/6 7% (4) kinesin-1 heavy chain intracellular transport
T25G12.5 ACDH-7 2/3 7% (2) 5/6 10% (3) ACADM acyl-CoA dehydrogenase
Y34D9A.10 VPS-4 2/3 7% (3) 5/6 11% (3) VPS4B, VPS4A vacuolar protein sorting
W01B11.3 NOL-5 2/3 6% (3) 5/6 15% (5) NOP58 nucleolar RNP
Y74C10AR.1 EIF-3.i 2/3 18% (5) 4/6 20% (5) EIF3I translation initiation
T12E12.4 DRP-1 2/3 11% (6) 4/6 5% (3) DRP1 dynamin-related protein
Y73F8A.25 NTL-11 2/3 5% (3) 3/6 8% (3) CNOT11 CCR4–NOT component
Y54G9A.6 BUB-3 2/3 10% (2) 3/6 12% (3) BUB3 mitotic checkpoint
F35G12.2 IDHG-1 2/3 8% (2) 3/6 10% (2) isocitrate

dehydrogenase
tricarboxylic acid cycle

Y59A8B.6 PRP-6 2/3 3% (2) 3/6 5% (3) PRPF6 pre-mRNA processing
T23B5.1 PRMT-3 2/3 3% (2) 3/6 5% (3) PRMT9 methyltransferase
ZK1053.4 ZK1053.4 2/3 4% (2) 3/6 3% (2) coiled-coil domain SEPA-1 family, autophagy

A list of 38 proteins detected in both AIN-1 and NTL-1 immunoprecipitations. Proteins that were detected only once in each immunoprecipitation and found in the negative
control (non-transgenic wt N2 background) were excluded. Homology data and description for each protein were obtained from Wormbase WS250 and UniProt database.

NTL-3, NTL-9 and NTL-11 were detected in 2/3 PGL-1
samples (Supplementary Table S6).

Collectively, these data reveal that embryonic miRISC
physically interacts with mRNA deadenylation and decay
machineries, and position i-AIN-1 as a bridge between
the miRNA-dedicated ALG-1/2 Argonaute proteins and
their gene-silencing effectors, and ii-CCR4–NOT deadeny-
lase complex as a hub in the network of mRNPs in C. ele-
gans embryos.

The CCR4–NOT complex had never been functionally
linked to miRNA-mediated silencing mechanisms in C. el-
egans embryos. To formally test the implications of CCF-
1 and CCR-4 in embryonic miRNA-mediated deadenyla-
tion, we exploited an in vitro embryonic extract previously
developed in our lab (54,55) and proficient for miRNA-
mediated silencing and deadenylation. For this, an in vitro
transcribed, radiolabeled polyadenylated RL reporter RNA
bearing six miR-35 binding sites (RL 6x pA, Figure 2B)
was incubated in wt or genetically-depleted extracts over
a time-course of 3 h. RNA was extracted, and deadenyla-
tion was monitored and quantified using denaturing elec-

trophoresis and autoradiography. Because strong genetic
depletion of ccf-1 and ccr-4 results in pleiotropic defects in-
cluding sterility and, in the case of ccf-1 mutants, embryonic
and larval lethality (53,87), null alleles or strong RNAi de-
pletions could not be used in extract preparation. Instead,
we generated cell-free embryonic extracts wherein ccf-1 and
ccr-4 expression was mildly reduced by RNAi (Figure 2A
and Supplementary Figure S2, see ‘Materials and Meth-
ods’ section). In extracts derived from wt embryos subjected
to mock (gfp) RNAi, the RL 6x pA mRNA reached half-
deadenylation time (td1/2) at 25 min (Figure 2B). In con-
trast, deadenylation of the reporter was significantly de-
layed under mild ccf-1 (RNAi) (74% knockdown, Figure
2A) and in ccr-4 (RNAi) depletions (54% knockdown, Fig-
ure 2A), delaying half-deadenylation times to 39 and 41
min, respectively (Figure 2B). A similar effect was observed
when a reporter bearing three miR-35 binding sites was ex-
amined (Supplementary Figure S2). Interestingly, while ex-
amining knockdowns of ccf-1 and ccr-4 by western blot,
we observed a decrease in CCR-4 protein expression un-
der ccf-1 (RNAi) depletion, while ccr-4 (RNAi) did not sig-
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Figure 2. Coupled expression and function of the CCR4–NOT complex subunits in embryonic miRNA-mediated deadenylation. (A) Western blot analyses
of embryonic extracts exposed to mock (gfp) RNAi, ccf-1 (RNAi) or ccr-4 (RNAi) probed with anti-CCF-1, anti-CCR-4, anti-NTL-1 and anti-tubulin
(loading control) antibodies. Percentage of knockdown was quantified using ImageJ on western blots. (B) Deadenylation time course of RL 6x pA in wt
embryonic extracts exposed to mock (gfp) RNAi, ccf-1 RNAi or ccr-4 RNAi. The relative intensity of the bands corresponding to full length and deadenylated
RNAs was measured using ImageJ. A second-order polynomial regression was used, and the time of half-deadenylation (td1/2, intersection point between
the full length and deadenylated RNA) was calculated using the quadratic formula. Schematic representation of the RL 6x reporter RNA used and the
sequences of miR-35 and miR-35 binding site are also shown. Images are representative of at least three independent experiments.

nificantly impact CCF-1 protein expression (Figure 2A).
Furthermore, NTL-1 expression was significantly decreased
(47% reduction) even under mild (57%) ccf-1(RNAi) knock-
down.

These results are reminiscent of the coupled stability
of the CCR4–NOT complex subunits in diverse species
(53,88,89). We note that such results make it difficult to
genetically disambiguate the relative or redundant contri-
butions of the catalytic subunits in miRNA-mediated si-
lencing. Nonetheless, these results show that CCR-4 and/or

CCF-1 contribute to miRNA-mediated deadenylation in C.
elegans embryos.

Step-wise assembly of miRISC effector complexes on mRNA
targets

We had previously performed MuDPIT proteomic analy-
ses on miRISC captures using miRNA target analogs (2′-
O-Me modified and biotinylated oligonucleotides) encod-
ing binding sites for the maternal miR-35-42 and the zy-
gotic miR-51-56 embryonic miRNA families (54,90,91). In-
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stead of being based upon relatively stable protein-protein
interactions like IP, this strategy of miRISC capture relies
solely on its ability to specifically find and bind miRNA tar-
get sequences in a single step purification from a complex
lysate mixture. When target analog capture and AIN-1 in-
teractions were compared, only eight proteins were detected
in both datasets (Figure 3A and Supplementary Table S7),
which primarily reflect the known central components of
miRISC. AIN-1, AIN-2, ALG-1, ALG-2 and DCR-1 were
among the best-detected proteins in overlaps between AIN-
1 IP, miR-35-42 and miR-51-56 target analog captures. The
overlap also revealed factors of unknown or poorly charac-
terized purpose in miRNA functions, which were detected
at lower peptide coverage and in fewer replicates (SUP-
26, Y23H5A.3, MEL-47). In stark contrast with AIN-1 IP
datasets, none of the detected proteins in target analog cap-
tures are known components of the CCR4–NOT complex,
any of the mRNP granules, or known mRNA decay ma-
chineries. Furthermore, while ALG-1 or ALG-2 were the
best-detected interactions in AIN-1 IP based on coverage
percentage or peptide counts (ALG-2: 68% coverage, 72
peptides; ALG-1: 63%, 76 peptides), neither was detected
among interactions with NTL-1. Such a discontinuity be-
tween miRISC in its target recognition form, as captured us-
ing analog pull-down and the deadenylation and decay ma-
chineries interaction with AIN-1, lies at odds with the rapid
and processive deadenylation of miRNA targets, which per-
vades in C. elegans embryonic cell-free systems (54). Such
disparities in capturing the miRISC–CCR4–NOT interac-
tions were noticeable in other systems where miRISC target
analog capture was used (11), but also with distinct meth-
ods of Ago-complexes purification (92,93). We note that
since target analog capture identifies endogenous miRISC
components on the basis of its scanning activity, absence
of deadenylation and decay machineries cannot be due to
protein tagging artifacts.

We reasoned that the interactions detected with AIN-1
and NTL-1 may represent biochemically distinct form(s)
of miRISC, involved in the effector step(s) of miRNA-
mediated silencing, in contrast to, and perhaps down-
stream of, target recognition or scanning miRISC. To test
this hypothesis, we developed an in vitro assay to detect
interactions of miRISC components with targeted mR-
NAs prior to and during the course of deadenylation. The
Deadenylated RNA-ImmunoPrecipitation (DRIP, Figure
3B) assay combines the C. elegans embryonic cell-free ex-
tract capable of miRNA-mediated silencing and deadeny-
lation, with RNA immunoprecipitation. Radiolabeled RL
6x pA reporter was incubated in wt extract as above, or in
extracts derived from transgenic animals expressing GFP-
tagged miRISC proteins, over a course of 3 h. The re-
porter was deadenylated with similar kinetics in extracts
derived from transgenic animals (Supplementary Figure
S3A). Time points were chosen to reflect the state of the
target mRNA prior to (Figure 3C, top panel; 0 min), dur-
ing (30, 60 min) and after deadenylation (120, 180 min). IP
was performed at each time point on core miRISC compo-
nents, the Argonaute ALG-2, the GW182 ortholog AIN-1
and on the scaffolding subunit of the CCR4–NOT dead-
enylase complex, NTL-1. RNA was then extracted and re-
solved by urea-polyacrylamide gel electrophoresis and au-

toradiography. Importantly, the same monoclonal antibody
directed against GFP was used for IP and exhibited mini-
mal background when no fusion was present in the extract
(Figure 3C, wt (N2) panel). When GFP-ALG-2 was recov-
ered by IP, both full-length RL 6x pA86 and its deadeny-
lated form were detected. Full-length RL 6x pA86 was de-
tected at 0, 30 and 60 min, while the deadenylated species
was detected at 30 min and at all later time points of the 3-
h course. A similar profile was observed with AIN-1-LAP
IP; AIN-1 associated with both the polyadenylated reporter
and the deadenylated RNA species and remained stably as-
sociated post-deadenylation. In contrast, only the deadeny-
lated species of RL 6x was detected in the NTL-1 IP during
the time course (Figure 3C, NTL-1 panel). This observation
indicates that its association with mRNA targets occurs on
the mRNA and later then the initial recognition by scan-
ning miRISC. Furthermore, it is consistent with a highly
processive activity of the CCR4–NOT complex. These in-
teractions were maintained in a poly(A) tail-independent
manner; ALG-2, AIN-1 and NTL-1 remained stably associ-
ated with the target mRNAs long after completion of dead-
enylation. In line with this conclusion, DRIP profiles of 6x
transcripts lacking a poly(A) tail (RL 6x pA0) closely mir-
rored the profiles of RL 6x pA86 (Figure 3D). Targeted RL
6x reporters were strongly enriched in ALG-2 and AIN-
1 IP in comparison with reporters bearing mutations in
seed-binding sequences, which remained fully polyadeny-
lated (RL 6xmut pA; Supplementary Figure S3B) (54). We
noticed however that although weakly, RL 6xmut pA86 re-
porter co-immunoprecipitated with ALG-2 and AIN-1 sig-
nificantly above background, but not with NTL-1. This may
be indicative of non-cognate low-affinity miRISC scanning
interactions.

Taken together, these results show that the interaction
with scanning miRISC precedes the recruitment of CCR4–
NOT complex scaffolded by NTL-1 on the target mRNA.
It further indicates that their interactions do not depend on
the presence of poly(A) tail, and persist long after dead-
enylation. We note that although stable, this complex might
reflect an intermediate in a de-capping and decay pathway
that is not observed in this extract.

miRISC interactions seclude target mRNAs in nuclease-
refractory mRNPs

Considering the breadth of interactions of miRISC with its
effector machinery on target mRNAs demonstrated by the
above proteomic analyses and DRIP profiles, we reasoned
that assembly of mRNP granules could sequester mRNA
targets. To test this idea in vitro, we subjected the assembled
complexes to a nuclease-resistance assay (Figure 4A). Ra-
diolabeled polyadenylated RL 6x pA was incubated in cell-
free extract until its complete deadenylation (180 min), and
then challenged with serial dilutions of hindrance-sensitive
micrococcal nuclease (MNase) over a 15-min time-course
(Supplementary Figure S4A). RL 6xmut pA was used as
control. Both targeted and untargeted reporters decayed as
a result of the MNase treatment, but RL 6x reporters re-
sisted significantly better than the non-targeted RL 6xmut
reporter (Figure 4A). Full-length RL 6x reporter remained
visible at the 6- and 9-min MNase treatment time points,
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when the RL 6xmut reporter was entirely degraded. We note
that the entire 6x reporter mRNA, and not only the se-
quence encoding and surrounding miRNA-binding sites are
protected in this manner, suggesting that the entire reporter
is sequestered by miRISC and co-factors in the extract.
Quantitation of independent replicates confirmed that the
targeted RL 6x pA reporter was significantly less sensi-
tive to MNase treatment than a non-targeted RL 6xmut
pA reporter (Figure 4A, graphical panel). When the nucle-
ase assay was conducted on un-adenylated transcripts (RL
6x pA0 and RL 6xmut pA0), the same outcome was ob-
served with no significant difference in progression, indi-
cating that mRNP assembly is independent of poly(A) tail
presence. In the absence of extract, full-length 6x and 6xmut
reporters were completely and rapidly degraded upon expo-
sure to MNase, even at greatest dilutions (Supplementary
Figure S4B), indicating that refraction to MNase is con-
ferred by interactions between reporter sequences and the
extract. Overall, these results imply that miRNP assembly
secludes miRNA-targeted mRNA, and raise the possibility
that mRNP assembly on target mRNA may contribute to
silencing.

Selective precipitation of miRISC by biotinylated isoxazole

We elected to further characterize the association of
miRISC with mRNPs using biotinylated isoxazole (b-isox),
a compound causing aggregation of proteins rich in in-
trinsically disordered regions that are key determinants
for mRNP assembly (44,94–96). Precipitation using this
reagent selectively enriches constituents of mRNPs, and
at least some of their associated proteins (44,95). Selec-
tive co-precipitation with b-isox from C. elegans embry-
onic lysates was assessed by western blotting for a panel
of proteins related to miRNA function, RNAi, translation,
mRNA processing, P bodies and germ granules (Figure
4B). Strikingly, miRISC components ALG-1/2 and AIN-1
were strongly enriched in the b-isox precipitate. The AIN-1-
LAP fusion fractionated in a similar manner (Supplemen-
tary Figure S5). NTL-1, the poly(A) binding proteins PAB-
1/2, the C. elegans DDX6 ortholog CGH-1 and the germ
granule constituents (PAN-1, GLH-1 and MEG-1) were all
preferentially co-precipitated with b-isox. Curiously, while
MEG-1 and MEG-2 paralogs are rich in intrinsically dis-
ordered regions, the two FLAG-tagged fusion proteins be-
have differently with regards to b-isox precipitation. MEG-
1 is strongly enriched in the precipitate, while a more lim-
ited portion of MEG-2 is selectively precipitated. Interest-
ingly, unlike the CCR4–NOT complex scaffold NTL-1, its
catalytic subunits CCR-4 and CCF-1 co-precipitate only in
limited amounts. A minor fraction of DCR-1 was also de-
tected in the precipitate fraction. Finally, b-isox precipita-
tion was highly selective; the dsRNA-binding protein RDE-
4, the cap-binding proteins IFE-1 and IFE-2, and tubulin
were not recovered in the pellet fraction.

With these results, and in line with initial work on b-isox
by Steven McKnight’s group (44,95), the selective precip-
itation of mRNP proteins with b-isox has now been well
characterized. However, we still do not rule out that part of
the selectivity of b-isox precipitation may be due to its in-
herent compatibility or incompatibility with individual pro-

teins. Notwithstanding this reservation, the strong selective
enrichment of ALG-1/2, AIN-1 and NTL-1 proteins in b-
isox precipitates lends further support to their association
with mRNPs in vivo.

Inherently disordered proteins participate in the regulation of
cog-1 mRNA by lsy-6 miRNA

The structural role of MEG proteins in germ granule
assembly and disassembly has recently been described
(48,86). Consistent and extensive detection of MEG-2 and
CCR4–NOT complex interactions (Figure 1) and archi-
tectural implications of intrinsically disordered proteins
in mRNPs suggest that MEG proteins may contribute in
miRNA-mediated silencing. To determine whether intrinsi-
cally disordered MEG proteins are implicated in embryonic
miRNA function, we first tested the effects of meg-2 loss on
the activity of the lsy-6 miRNA (Figure 5). lsy-6 functions
during embryogenesis in the developmental specification of
two bilaterally asymmetric neurons, ASEL and ASER, by
downregulating its target, cog-1 (97). Animals lacking lsy-6
expression fail to downregulate cog-1 in the ASEL, result-
ing in the ASEL neuron adopting the ASER fate. The hypo-
morphic lsy-6(ot150) allele encodes a mutation in the con-
served regulatory element in the lsy-6 promoter that leads
to the reduction of lsy-6, but does not eliminate its function,
resulting in a partially penetrant ASEL fate specification
phenotype (98). This sensitized background has been exten-
sively used to look at genetic interactions with the miRNA
pathway (66,76,99–102). ASEL fate was assayed by scoring
for the expression of the ASEL-specific plim-6::GFP, a tran-
scriptional reporter that serves as an indicator for successful
cog-1 silencing by lsy-6. Loss of meg-2 in lsy-6(ot150) sig-
nificantly enhanced the ASEL fate specification phenotype,
with the absence of reporter expression in ASEL detected
at 21.5%, compared to 8.2% in lsy-6(ot150) animals, thus
more than doubling the penetrance of the phenotype (Fig-
ure 5). This effect was modulated by temperature and the
exacerbated lsy-6 phenotype was more prominent when an-
imals were grown at 16◦C than at 19◦C (21.5% at 16◦C com-
pared to 15.2% at 19◦C). In meg-2 mutants with wt lsy-6 ex-
pression, the reporter was expressed in the ASEL of every
animal, indicating that removal of meg-2 activity on its own
did not affect ASEL fate specification. meg-1 mutants had
no effect on lsy-6 mutants at 16◦C, and a mild incidence on
ASEL specification when animals were grown at 19◦C (from
9.7 to 13.9%).

These results suggest that meg-2 directly or indirectly par-
ticipates in the function of lsy-6 miRNA in silencing cog-1
expression during embryogenesis, while its paralog meg-1
may have a more limited contribution.

DISCUSSION

Through concerted proteomics and interaction analyses,
cell-free assays and genetics, we resolved temporal events
leading to silencing by miRISC and identified a role for
mRNPs and intrinsically disordered proteins in the func-
tions of embryonic miRNAs. Our results support a model
wherein progressive mRNP assembly on target mRNA is
an integral part of the mechanism of miRNA-mediated si-
lencing in the embryo (Figure 6). This model improves the
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Figure 5. Loss of intrinsically disordered meg-2 impinges on cog-1 mRNA regulation by lsy-6 miRNA. The plim-6::GFP expression (denoted in black in
schematic diagram) indicates ASEL neuronal cell fate. plim-6::GFP mis-expression phenotypes were quantified in lsy-6, meg-2 and meg-1 single mutants
and lsy-6; meg-2 and lsy-6; meg-1 compound mutants. n = animals scored for each genotype.

previous static view on miRISC interactions, and opens up
new possibilities into how developmental contexts modu-
late silencing mechanisms dictated by miRNAs.

Scanning miRISC and effector miRISC are distinct

We provide three distinct lines of experimental evidence
supporting the view that miRISC biochemically matures
from a ‘free’ scanning miRISC, to a mRNA-bound form
which tethers effector components of miRNA-mediated si-
lencing. Firstly, interaction datasets generated with AIN-
1 IP contrast with miRISC-associated components cap-
tured through 2′-O-methyl target analog affinity. Whereas
in both cases the Argonautes ALG-1 and ALG-2 were

the best-detected interactions by far, the mRNA deadeny-
lase, the processing machineries or germ granule compo-
nents were not detected in target analog captures. Secondly,
while NTL-1 could be specifically recruited to miRISC-
bound reporters in DRIP assays and AIN-1 was consis-
tently detected among NTL-1 interactions, neither ALG-
1 nor ALG-2 Argonautes could be detected in NTL-1 IPs.
Thirdly and most decisively, scanning and effector miRISC
could be resolved in time; DRIP results indicate that ALG-
2 and AIN-1 association on the polyadenylated form of the
6xmiR-35 reporter precedes association with NTL-1 or the
consequent mRNA deadenylation.
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Figure 6. Model: assembly and specialization of mRNPs on mRNAs in embryonic miRNA-mediated silencing. The miRISC (ALG-1/2 and AIN-1/2,
and other accessory proteins) scans and recognizes mRNA targets (1). The CCR4–NOT deadenylase complex, along with tethered architectural and
intrinsically disordered granule constituents (MEG-1 and MEG-2, and PGL proteins), is sequentially recruited to target mRNAs (2) and nucleates an
mRNP particle (3). Proteomics analyses on AIN-1 and NTL-1 reveal a convolution of germ granule and P body-like mRNP complexes. Such diversity
indicates the possibility of particle specialization that depends on cellular and developmental context for modulating the miRISC output on target silencing
by storing the mRNA or subjecting it to decay (see ‘Discussion’ section).

These findings are in logical line with previous conclu-
sions drawn from Drosophila and human cells, which bio-
chemically resolved the ‘miRISC-loading complex’ or RLC
from mature miRISC. RLC complexes lack GW182, but
contain Dicer and exhibit pre-miRNA processing activity,
while ‘mature miRISC’ contains GW182 but lacks Dicer
and pre-miRNA-processing activity (103,104). Hence, a
tentative integrated view on data obtained across species
and systems is that Argonaute-containing complexes are

progressively remodeled from loading, to scanning, to the
several steps of target silencing, to recycling (105–107).

We note that significant circumstantial evidence supports
the possibility that multiple alternative miRISC maturation
pathways may co-occur. A previous report examined AIN-2
interactions and mainly revealed interactions with compo-
nents of the translation initiation machinery, but did not de-
tect deadenylase, decapping, decay or mRNP components
(3) that are pre-eminent with AIN-1. The fact that AIN-2
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was detected in our AIN-1 proteomic analyses indicates that
such pathways may not be mutually exclusive.

CCR4–NOT/AIN-1 interactions nucleate mRNPs on
miRNA targets

Our work provides a unique glimpse on the intricate in-
teractions that prevail in embryonic miRISC mRNPs and
on their biological significance. The above-described se-
quential recruitment of the CCR4–NOT scaffold NTL-1 on
miRNA targets, the breadth of the interactions of AIN-1
and NTL-1 with P body and germ granule proteins, the re-
fraction of miRNA reporters to MNase challenge and the
selective precipitation of miRISC with biotinylated isoxa-
zole support the assembly of a mRNP microenvironment
on miRNA targets. We furthermore note that some of the
detected interactions are independently corroborated in a
recent protein–protein interaction network involved in em-
bryonic polarity and germ granule assembly (108). AIN-1
was detected in PIE-1 and CAR-1 IP proteomics, and NTL-
1, CCF-1, CCR-4 and MEG-2 were detected in MBK-2 IPs.

It has long been noticed that a fraction of the miRISC
components, such as GW182 homologs, Argonautes and
small RNAs, localize to P body and/or P body like mRNPs
(5,19,21–25). A key question is how the mechanisms at
work in the assembly of organelle-scale P bodies or germ
granules relate to miRISC functions and dynamics. Im-
portant insight can be gained by considering a closely re-
lated paradigm. The Gavis group used quantitative single-
molecule imaging to examine assembly of mRNP into germ
granules in the Drosophila oocyte (109). Detailed exam-
ination of stoichiometry and mRNP dynamics revealed
that localized mRNAs are assembled and transported as
single-mRNA RNP complexes into the oocyte, and are
later merged as germ granules in the germ plasm. Build-
up into germ granules is preferential for mRNPs that
contain the same mRNA species, and mimics a positive-
feedback dynamic, which could play a role in precipitat-
ing high-scale germ granule mRNPs. Altogether, this sug-
gests that the content and assembly processes of single-
mRNA and greater-scale mRNPs can be distinctly con-
trolled, and progress along defined spatio-temporal steps
(109). If one projects this concept of mRNP reorganiza-
tion into a miRNA-mediated silencing analogy, progression
from single-mRNA-bound miRISC to greater scaffolds
may be a consequence of the recruitment of CCR4–NOT
and its associated proteins (Figure 6). Specifically, tethering
intrinsically disordered proteins to miRISC through NTL-
1 interactions, or their combination with determinants of
GW182 homologs (110), could trigger phase transition to
larger dynamic mRNP granules and thus provide an en-
hanced microenvironment for mRNA seclusion, storage or
for decapping and decay.

Context and miRNP function: to decay or not to decay?

De-repression of lsy-6 reporters in vivo under depletion of
intrinsically disordered proteins, and DRIP profiles of RL
6x reporters in vitro suggest that miRISC-instigated mRNP
assembly contributes to miRNA target silencing in the C.
elegans embryo. At first glance, this result may stand at

odds with experiments in Drosophila S2 cells, wherein im-
pairment of P body formation by knockdown of the de-
capping factors (Lsm1 and Lsm3) did not prevent miRNA
reporter silencing (31). This observation led to the inter-
pretation that P bodies arise as a consequence of miRNA-
mediated silencing rather than being a cause (31). Such re-
sults, however, could not rule out the possibility that puta-
tive P body functions are redundant with other aspects of
miRNA-mediated silencing in S2 cells or that a sufficient
function for a lesser-scale miRISC mRNP scaffold on tar-
get mRNAs. In addition, substantial evidence supports the
idea that developmental context defines the composition
and functions of P bodies and mRNPs in general. Work
by the Evans and Schisa groups in C. elegans has already
highlighted the diversity of mRNPs during oocyte matu-
ration (111,112) and in early embryo (111). mRNPs that
contain components such as CAR-1 and CGH-1 have dis-
tinct functions in maternal mRNA translation repression
and degradation (111). This work and the results from the
Seydoux group further indicate that the composition and
function of mRNPs rapidly progress during early devel-
opment (40,111). This diversity indicates that interactions
detected here with NTL-1 and AIN-1 reflects a convolu-
tion of functionally distinct germ granule and P body-like
particles that occur in the different cell lineages, merged in
our embryonic lysate preparations. The interactors PGL-
1, GLH-1 and MEG-1 are distinctly detectable in P lin-
eage blastomeres during C. elegans embryogenesis, where
they are important for germ granule architecture and sta-
bility (68,78,79,86,113,114). MEG-2, while partially func-
tionally redundant with MEG-1 in the germline, is more
broadly expressed and extends to somatic blastomeres (86).
De-capping factors DCAP-1 and DCAP-2 co-localize with
PGL-1 in P1 germline blastomeres in germ granules, but are
also closely associated with P bodies throughout C. elegans
lifespan (40,71). The PATR-1 decapping co-factor is also
detected both in germline and somatic P bodies, but pro-
gressively accumulates in somatic blastomeres (40). The C.
elegans homolog of the eIF4E-transporter, IFET-1 is parti-
tioned into germ cells after the 4-cell stage, where it func-
tions as a translational repressor of germ granule localized
RNAs (85). Finally, the Sm-like (LSM) proteins, thought to
couple deadenylation with mRNA decay (115), are enriched
in somatic P bodies from the 3/4-cell stages, a window that
coincides with maternal mRNA decay and such a localiza-
tion requires NTL-1 (40,116).

The relative contributions of the translation repression,
and deadenylation and decay components of miRNA-
mediated silencing is still a matter of debate and remain
under scrutiny in various systems and cell types. Our find-
ings support the possibility that specialization of mRNPs
can modulate miRISC output. It is thus reasonable that
the extent and nature of functions of mRNPs in miRNA-
mediated silencing mechanisms should be systematically
considered in specific developmental and cellular contexts.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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