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Abstract
Defects in DNA damage repair caused by mutations in BRCA1/2, ATM or other genes have been shown to play an impor-
tant role in the development and progression of prostate cancer. The influence of such mutations on anti-tumor immunity 
in prostate cancer, however, is largely unknown. To better understand the correlation between BRCA1/2 mutations and the 
immune phenotype in prostate cancer, we characterized the immune infiltrate of eight BRCA2-mutated tumors in comparison 
with eight BRCA1/2 wild-type patients by T-cell receptor sequencing and immunohistochemistry for CD45, CD4, CD8, 
FOXP3, and CD163. In addition, we analyzed seven prostate cancer biopsies that were either BRCA2 or ATM-mutated in 
comparison with wild-type tumors. Whereas in BRCA1/2 wild-type tumors, immune cells were found predominantly extra-
tumorally, most BRCA2-mutated tumors including one biopsy showed a significantly increased intratumoral immune cell 
infiltration. The ratio of intratumoral to extratumoral immune cells was considerably higher in BRCA2-mutated tumors for 
all markers and reached statistical significance for CD4 (p = 0.007), CD8 (p = 0.006), and FOXP3 (p = 0.001). However, 
the intratumoral CD8 to FOXP3 ratio showed a trend to be lower in BRCA2-mutated tumors suggesting a more suppressed 
tumor immune microenvironment. Our findings provide a rationale for the future use of immune oncological approaches in 
BRCA2-mutated prostate cancer and may encourage efforts to target immunosuppressive T-cell populations to prime tumors 
for immunotherapy.
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Introduction

Prostate cancer is the most common non-cutaneous cancer 
in men and the second leading cause of death from cancer 
in men in the USA and worldwide [1, 2]. Defects in DNA 
damage repair are increasingly recognized to define a sub-
group of prostate cancer patients with more aggressive 
tumor growth and earlier onset of disease [3]. BRCA1 and 
BRCA2 are two genes involved in homologous recombina-
tion (HR)-mediated repair of DNA double strand breaks 
and have first been described as tumor suppressor genes in 
hereditary breast cancer [4, 5]. HR deficiency caused by 
hereditary and/or somatic mutations in BRCA1/2 or other 
DNA repair genes have been found not only in breast can-
cer but also in other types of cancer including ovarian 
or prostate cancer [3]. Mutations in BRCA1/2 lead to an 
increase of the somatic mutation rate [6–8], indels, and 
chromosome copy number alterations (CNAs) [9] and, 
therefore, possibly promote the formation of neoepitopes 
[10]. BRCA1/2-deficient prostate cancers not only show 
increased sensitivity to platinum-based chemotherapies 
[11], but also to poly-(ADP-ribose) polymerase (PARP) 
inhibitors [12–14], thus giving BRCA1/2 deficiency a high 
clinical relevance in these patients [15, 16].

Immune checkpoint inhibitors targeting CTLA-4 or 
PD-1/PD-L1 are increasingly used therapeutically in 
a number of tumor entities including renal cell carci-
noma and bladder cancer [17]. Biomarkers predicting the 
response to immune checkpoint inhibitors include PD-L1 
status [18], mutational load [7], and neoepitope forma-
tion [19] among others. Prostate cancer is known to have 
a relatively low mutational load in comparison with other 
epithelial malignancies [20, 21]. In line with this find-
ing, the median progression-free survival (PFS) in a phase 
III trial using the anti-CTLA-4 antibody ipilimumab in 
asymptomatic or minimally symptomatic metastatic cas-
tration-resistant prostate cancer (mCRPC) patients was 
only 5.6 months in the treatment arm vs. 3.8 months in 
the placebo arm with no difference in the median overall 
survival (OS, 28.7 vs. 29.7 months) [22]. In another phase 
III trial, ipilimumab was compared to placebo in mCRPC 
patients who progressed after docetaxel and had received 
radiotherapy for bone metastases with no difference in the 
median OS (11.2 vs. 10.0 months) [23]. While a phase 
I study with the anti-PD-1 antibody nivolumab showed 
no response in 13 mCRPC patients [24], preliminary data 
from a phase II trial of the anti-PD-1 antibody pembroli-
zumab in 258 patients with docetaxel-refractory mCRPC 
showed a 5% objective response rate (ORR) regardless 
of PD-L1 status, but an ORR of 12% in patients with 
somatic BRCA1/2 or ATM mutations [25]. The latter find-
ing is in line with results, showing that BRCA2 mutations 

are enriched in melanoma patients responding to anti-
PD-1 therapy [26]. Since HR deficiency causes increased 
mutational load thereby potentially creating neoepitopes, 
it could be used to define a subgroup of prostate cancer 
patients who would potentially benefit from immune 
checkpoint inhibitors.

A number of studies have reported that the infiltration 
with CD4- or CD8-positive lymphocytes is increased in 
prostate cancer compared to benign prostate tissue [27]. 
However, other reports did not find such an association [28]. 
T-cell infiltration has been reported to increase with andro-
gen deprivation [29, 30], but almost nothing is known about 
the immune milieu in mCRPC [31]. In contrast to most other 
cancers, a high number of CD8-positive TILs in prostate 
cancer appear to be associated with a poor prognosis includ-
ing a shorter time to biochemical and clinical progression, 
castration resistance, and/or metastatic dissemination [32, 
33]. Similar results have been reported for a high numbers 
of CD4-positive TILs [34, 35]. The reason for this observa-
tion may be a dysfunction or a suppression of T cells, e.g., 
through PD-L1 [33] or CD73 [36]. In addition, immunosup-
pressive cells such as FOXP3-positive regulatory T cells and 
CD163-positive tumor-associated (M2) macrophages were 
also found to be enriched in prostate cancer and associated 
with a more unfavorable patient outcome [28, 37].

It has previously been shown in breast cancer that HR 
deficiency caused by BRCA1 inactivation is accompanied by 
an increase of tumor infiltration with CD4-positive T cells, 
CD8-positive cytotoxic T cells, PD-L1 expression, and pos-
sibly response to immune checkpoint inhibition [10, 38, 39]. 
Remarkably, a higher abundance of TILs was not found in 
BRCA2-mutated breast cancer, despite similar genomic alter-
ations, suggesting that additional mechanisms than the muta-
tional burden may shape cellular immune responses [39]. 
A relative deficiency in TILs was also detected in BRCA2-
mutated ovarian cancer when compared to BRCA1-mutated 
tumors [40]. However, other studies found increased num-
bers of CD3- and CD8-positive TILs in BRCA1/2-mutated 
ovarian cancer without significant difference between 
BRCA1 or BRCA2 mutations [10]. The impact of BRCA1/2 
mutations on the cellular immune phenotype of prostate can-
cer is largely unknown.

To better understand the impact of BRCA1/2 mutations 
on the immune phenotype of prostate cancer, we initiated a 
proof-of-concept study to characterize the cellular immune 
infiltrate of eight BRCA2 mutated in comparison with eight 
BRCA1/2 wild-type prostate cancer patients by T-cell recep-
tor (TCR)-sequencing and immunohistochemistry (IHC) 
for CD45, CD4, CD8, FOXP3, and CD163. In addition, we 
characterized the immune infiltrate in seven prostate cancer 
biopsies that were either BRCA2 or ATM mutated or wild 
type. Results show an increased number of tumor-infiltrat-
ing lymphocytes, including potentially immunosuppressive 
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FOXP3-positive lymphocytes, in BRCA2-mutated prostate 
cancers compared to the BRCA1/2 wild-type group, which 
harbored mostly extratumoral immune cells. Our findings 
provide a rationale for the future use of immune oncologi-
cal agents in BRCA2-mutated prostate cancer patients and 
may encourage efforts to target immunosuppressive T-cell 
populations.

Methods

Patient samples and targeted next‑generation 
sequencing (NGS)

In this retrospective proof-of-concept study, formalin-fixed, 
paraffin-embedded (FFPE) tissue sections from 16 men with 
prostate adenocarcinoma and known BRCA1 and BRCA2 
mutation status were analyzed. Eight patients were BRCA2 
mutated, and one patient had a confirmed germline mutation. 
The other eight patients were a control group matched for 
age, Gleason Score, initial PSA, and initial TNM-state, but 
were BRCA2 wild type. All 16 patients were BRCA1 wild 
type. The mutation status of BRCA1 and BRCA2 was deter-
mined by targeted next generations sequencing of tumor 
tissue as previously reported [16]. In addition, FFPE pros-
tate biopsy samples from seven patients were analyzed after 
mutation testing by targeted NGS using a panel of 37 DNA 
damage repair and checkpoint genes (ATM, ATR, BARD1, 
BRCA1, BRCA2, BRIP1, CHEK1, CHEK2, FAM175A, 
FANCA, FANCB, FANCC, FANCD2, FANCE, FANCF, 
FANCG, FANCI, FANCL, FANCM, ERCC2, ERCC4, 
ERCC5, MLH1, MSH2, MSH6, PALB2, PMS1, PMS2, 
RAD50, RAD51C, RAD51D, RECQL4, MRE11A, NBN, 
SLX4, TP53, XRCC2). Amplicon library preparation was 
performed with the Ion AmpliSeq Library Kit v2.0 (Thermo 
Fisher Scientific, Waltham, MA, USA) [41]. After the PCR 
reaction, primer end sequences were partially digested using 
FuPa reagent, followed by the ligation of barcoded sequenc-
ing adapters (Ion Xpress Barcode Adapters, Life Technolo-
gies). The final libraries were diluted to a concentration of 
50 pM and processed on Ion Chef (Thermo Fisher Scien-
tific). Sequencing was performed on an Ion S5XL/Prime 
sequenzer using 520/530 chips with a mean coverage per 
amplicon between 1000 and 3000 fold. Data analysis, vari-
ant calling, and annotation were performed as previously 
described [42–44]. All patients included in the analysis were 
of Caucasian descent.

T‑cell receptor (TCR)‑sequencing

RNA from the aforementioned FFPE tissue samples was 
extracted with the Maxwell RSC RNA FFPE Kit (Pro-
mega, Madison, WI, USA) according to the manufacturer’s 

protocol with the exception that the DNase step was omit-
ted. RNA was quantified with Qubit RNA HS Assay Kit 
(Thermo Fisher Scientific, Waltham, MA, USA) after puri-
fication. Between 786 to 1000 ng of RNA was used as input 
for library generation with the Archer Immunoverse™-HS 
TCR beta/gamma Kit, for Illumina (DB0232; ArcherDX, 
Boulder, CO, USA) following protocol revision LA092.A. 
All purifications during library preparation were performed 
with Agencourt AMPure XP (Beckman Coulter, Brea, CA, 
USA). Final libraries were quantified using the KAPA 
Library Quantification Kit (KAPA Biosystems, Wilming-
ton, MA, USA) and pooled to equimolar concentration. The 
intended concentration of pooled libraries was confirmed 
with the KAPA Library Quantification Kit.

Libraries were sequenced on an Illumina NextSeq 500 
using NextSeq 500 v2 reagents (Illumina, San Diego, CA, 
USA) for paired end, 150 base pair reads, and dual index 
reads. Libraries were multiplexed, such that an average of 
1.86 million paired reads was attributed to each library. The 
flow cell was loaded with 1.6 pM denatured library and 20% 
PhiX Control v3 (Illumina).

Data were analyzed by Archer Analysis version 5.1.3 
(ArcherDX). Briefly, adapter sequences are trimmed from 
the reads, and then, PCR duplicates are collapsed using 
molecular barcodes to identify unique molecules. Consen-
sus reads representing unique input molecules are passed to 
MiXCR for V-(D)-J segment mapping and clonotype assem-
bly. When used alone, “clones” means the number of total 
identified clones, while “clonotypes” means the number of 
identified unique sequences.

Immunohistochemistry

Consecutive FFPE tissue sections were deparaffinized in 
xylene and rehydrated in a graded ethanol series. Antigen 
retrieval was performed with a steam cooker using retrieval 
buffer (Dako, Agilent, Santa Clara, CA, USA,). Primary 
antibodies used were directed against Ki-67 (MIB-1, Dako, 
1:100), CD4 (4B12, NCL-L-CD4-368, Leica, Wetzlar, Ger-
many, 1:50), CD8 (144B, ab17147, Abcam, Cambridge, UK, 
1:25), CD45 (2B11 + PD7/26, Dako, 1:100), CD163 (10D6, 
NCL-L-CD163, Leica, 1:100), FOXP3 (236A/E7, ab20034, 
Abcam, 1:100), and PD-L1 (SP142, ab228472, Abcam, 
1:100) and were incubated overnight at 4 °C. All antibod-
ies have previously been extensively validated [45–51]. 
Immunodetection was done with a biotinylated secondary 
goat anti-mouse IgG (H + L) antibody (31800, Invitrogen, 
Thermo Fisher Scientific, 1:200), streptavidin conjugated 
to horseradish peroxidase (Thermo Fisher Scientific) and 
3,3′-diaminobenzidine chromogen (Thermo Fisher Scien-
tific). Nuclear counterstaining was done with hematoxylin 
(Thermo Fisher Scientific).
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For Ki-67, five representative 1430 × 1070 µm areas with 
more than 50% tumor cell content were photographed using 
a Leica DM5000 B microscope and the percentage of posi-
tive tumor cells was counted. For CD45, CD4, CD8, FOXP3, 
and CD163, three regions were defined: Intratumoral (IT), 
extratumoral with direct contact to the tumor (ET1, < 10 µm 
distance from tumor), and extratumoral with one high-power 
field (HPF, 40 × objective) distance (ET2, 500 µm distance 
from tumor) to control for non-tumor-associated intrapros-
tatic chronic inflammation. The microscopic fields for our 
analyses were chosen to represent TIL heterogeneity. For 
example, if 20% of the IT area showed a high density of TILs 
and the other 80% a low density, we analyzed five fields total 
of which one was representative of the high-density area and 
four of the low-density area. Positive cells in five HPFs were 
counted for each patient and each region. All cell counts 
were performed in a blinded fashion and the tumor mutation 
status was unblinded only after all counts were completed. 
One main observer performed the counts (P. Keß) and two 
independent observers (M. Jenzer and S. Duensing) per-
formed additional counts on selected cases. Areas of acute 
inflammation and necrosis were excluded from the analyses.

Statistical analysis

For statistical analyses, Student’s t test for independent sam-
ples, Mann–Whitney U test, or Fisher’s exact test was used 
wherever applicable. Differences with a p value of ≤ 0.05 
were considered statistically significant. All data are avail-
able from the corresponding author at reasonable request.

Results

Enhanced intratumoral lymphocyte infiltration 
in BRCA2‑mutated prostate cancers

Eight BRCA2-mutated prostate cancer patients and eight 
BRCA1/2 wild-type patients matched for age, Gleason 
score, initial PSA, and initial TNM state were selected for 
this retrospective analysis. All patients and mutations have 
previously been reported in an unrelated study (Supplemen-
tary Table 1) [16]. BRCA2-mutated patients showed a trend 
towards a shorter progression-free survival (PFS; 22 vs. 
34.9 months, p = 0.32) under androgen deprivation therapy 
and to shorter overall survival (OS, 43.3 vs. 58.5 months, 
p = 0.28), but differences in these and all other clinico-patho-
logical characteristics were not statistically significant (Sup-
plementary Table 2).

We first sought to explore the diversity of the T-cell infil-
trate and performed T-cell receptor sequencing of the 16 
tumors. Results showed a wide range in the number of T-cell 
clones in both BRCA1/2 wild-type (median 20, range 3–124) 

and BRCA2-mutated (median 25.5, range 6–1954) tumors 
(Fig. 1). While the two tumors with the highest number of 
both total clones and unique clonotypes, respectively, were 
BRCA2 mutated, there was overall no significant difference 
between BRCA2-mutated and BRCA1/2 wild-type tumors 
(p = 1.0). The clonality as a diversity measure normalized to 
the number of unique T-cell clones, ranging from 0 (abso-
lute polyclonal) to 1 (absolute monoclonal), was also similar 
(p = 0.26) between BRCA1/2 wild-type (0.018) and BRCA2-
mutated (0.032) tumors.

Based on these results, we decided to perform a detailed 
in situ analysis of the immune cell composition in differ-
ent compartments of the tumors. An immunostochemical 
analysis for CD45, CD4, CD8, FOXP3, and CD163 was 
performed (Figs. 2, 3). In addition, tumors were stained for 
Ki-67 as a marker for cell proliferation. Altogether, a total 
of 1280 HPFs were analyzed in the 16 patients and in three 
distinct compartments: intratumoral (IT), extratumoral 1 
(ET1), and extratumoral 2 (ET2), as illustrated in Fig. 2. 
Representative immunostainings in a BRCA2-mutated and a 
BRCA1/2 wild-type tumor, respectively, are shown in Fig. 3.

In BRCA1/2 wild-type tumors (Fig. 4a), significantly more 
CD8 positive cells (mean 23 vs. 9.7 per HPF, p = 0.001) 
were detected in the ET1 compartment when compared to 
the IT compartment. There were also more CD4 positive 
cells (mean 21 vs. 13.4 per HPF, p = 0.10), FOXP3 positive 
cells (mean 6.2 vs. 2.8 per HPF, p = 0.10), CD45 positive 
cells (mean 44.3 vs. 29.1 per HPF, p = 0.17), and CD163 
positive cells (mean 19.8 vs. 17.2 per HPF, p = 0.59) in the 

Fig. 1   Number of TCR clones per tumor by BRCA1/2 mutation sta-
tus. Box plots represent the median number of identified TCR clones 
per sample in BRCA1/2 wild-type (blue) and BRCA2-mutated (red) 
prostate cancer identified by TCR sequencing. Whiskers representing 
minimum and maximum of each group. A log10 scale is used for the 
y-axis
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ET1 compartment than in the IT compartment, but differ-
ences did not reach statistical significance (Fig. 4a).

BRCA2-mutated tumors (Fig. 4b) harbored significantly 
more FOXP3 positive cells (mean 7.4 vs. 3.0 per HPF, 
p = 0.04) intratumorally than in the ET1 compartment. A 
similar trend towards an enrichment of immune cells in the 
IT compartment was found for CD4 positive cells (mean 
32.9 vs. 14.6 per HPF, p = 0.07), CD45 positive cells (mean 
46.3 vs. 24.6 per HPF, p = 0.16), CD163 positive cells (mean 
24.6 vs. 15.1 per HPF, p = 0.2), and CD8 positive cells 
(mean 20.1 vs. 12.4 per HPF, p = 0.24) without reaching 
statistical significance (Fig. 4b).

We next compared the immune cell infiltration in the 
IT and ET1 compartments of both groups (Fig. 4c) and 
found that BRCA2-mutated tumors harbored significantly 
more CD4 positive cells (mean 32.9 vs. 13.4 per HPF, 
p = 0.02) and FOXP3 positive cells (mean 7.4 vs. 2.8 per 
HPF, p = 0.03) than BRCA1/2 wild-type tumors. BRCA2-
mutated tumors also showed a trend for more CD8 positive 
cells (mean 20.1 vs. 9.7 per HPF, p = 0.12) that did not reach 

Fig. 2   Overview of tumor and microenvironmental compartments 
analyzed. Representative H&E (top panel) and immunohistochemi-
cal (bottom panel) staining of prostate cancer for CD45 showing 
the three compartments intratumoral (IT), extratumoral 1 (ET1) and 
extratumoral 2 (ET2) used in this study. The red circle stands for a 
representative high-power field (40-fold objective, 500  µm in diam-
eter) in the ET1 compartment. The scale bar represents 500 µm Fig. 3   Overview of immunohistochemical stainings. Representative 

immunohistochemical stainings for CD45 (pan-leucocyte), CD4 (T 
helper cells), CD8 (cytotoxic T cells), FOXP3 (regulatory T cells), 
and CD163 (macrophages) on consecutive slides of a BRCA1/2 wild-
type and a BRCA2-mutated prostate cancer. The dotted line represents 
the border between tumor and stroma. Scale bar represents 200 µm
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statistical significance. The number of CD45 positive cells 
(mean 46.3 vs. 29.1 per HPF, p = 0.27) and CD163 posi-
tive cells (mean 24.6 vs. 17.2 per HPF, p = 0.36) was also 
higher but differences were, again, not statistically signifi-
cant (Fig. 4c).

In the ET1 compartment, BRCA1/2 wild-type tumors had 
significantly more CD8 positive cells (mean 23 vs. 12.4 per 
HPF, p = 0.004) and CD4 positive cells (mean 21 vs. 14.6 
per HPF, p = 0.04) than BRCA2-mutated tumors. Further-
more, BRCA1/2 wild-type tumors showed a trend towards 
more CD45 positive cells (mean 44.3 vs. 24.6 per HPF, 
p = 0.06), more CD163 positive cells (mean 19.8 vs. 15.3 
per HPF, p = 0.10) and more FOXP3 positive cells (mean 6.2 
vs. 3.0 per HPF, p = 0.11) in the ET1 compartment (Fig. 4c).

In the more distant ET2 compartment, BRCA1/2 wild-
type tumors showed a trend towards more CD45 positive 
cells (mean 25.9 vs. 14.9 per HPF, p = 0.05) and CD8 posi-
tive cells (mean 11.6 vs. 8.4 per HPF, p = 0.07) compared 
to BRCA2-mutated tumors. Differences for cells positive for 
CD163 (mean 11.9 vs. 8.9 per HPF, p = 0.38), FOXP3 (mean 
2.7 vs. 2.2 per HPF, p = 0.56) and CD4 (mean 9.5 vs. 8.7 per 
HPF, p = 0.64) were not statistically significant (not shown).

BRCA2-mutated and BRCA1/2 wild-type tumors showed 
no differences in the proliferation rate as determined by the 
percentage of Ki-67 positive tumor cells (mean 16.9 vs. 
12.7% per HPF, p = 0.88, Supplementary Figure 1).

In addition, we analyzed the presence and frequency 
of PD-L1 positive TILs in BRCA2-mutated and wild-type 

Fig. 4   BRCA2-mutated tumors harbor more intratumoral immune 
cells. a, b Bar graphs show the mean number of positive cells 
(+ standard error) per 40 × HPF in BRCA2-mutated or BRCA1/2 wild-
type prostate cancer in the intratumoral (IT), extratumoral 1 (ET1), 
and extratumoral 2 (ET2) compartments for CD45, CD4, CD8, 
FOXP3, and CD163. c Bar graphs show the mean number of positive 
cells (+ standard error) per 40 × HPF in BRCA2-mutated compared 

to BRCA1/2 wild-type prostate cancer in the intratumoral (IT) and 
extratumoral 1 (ET1) compartments for CD45, CD4, CD8, FOXP3, 
and CD163. Each bar represents the mean of five 40 × HPF from 
the eight patients of each group i.e., BRCA1/2 wild type and BRCA2 
mutated. BRCA1/2 wild-type tumors in blue, BRCA2-mutated 
tumors in red. Standard errors are shown. *p ≤ 0.05, **p ≤ 0.005
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patients. The overall frequency of these cells was low and 
slightly higher in BRCA2-mutated tumors (mean = 0.6 
PD-L1 positive TILs per 40 × HPF) in comparison with 
wild-type tumors (mean = 0.38 per HPF) albeit without 
reaching statistical significance (p = 0.2).

Taken together, these results demonstrate that BRCA2-
mutated tumors contain an increased number of intratumoral 
immune cells when compared to BRCA1/2 wild-type tumors 
in particular CD4- and FOXP3-positive cells.

Higher IT/ET1 ratio in BRCA2‑mutated prostate 
cancers

To further corroborate the notion that BRCA2-mutated 
tumors contain more intratumoral immune cells than 
BRCA1/2 wild-type tumors, we calculated the ratio of intra-
tumoral (IT) to directly extratumoral (ET1) positive cells 
for each staining and each patient (Fig. 5a–e). The mean 
IT/ET1 ratios were found to be significantly higher in 

BRCA2-mutated tumors than BRCA1/2 wild-type tumors 
for CD4 (3.21 vs. 0.70, p = 0.007), CD8 (2.98 vs. 0.42, 
p = 0.006) and FOXP3 (2.52 vs. 0.74, p = 0.001) positive 
cells (Fig. 5f). For CD45 positive cells, the IT/ET1 ratio 
showed a trend to be higher in BRCA2-mutated tumors (2.95 
vs. 0.92, p = 0.08) without reaching statistical significance, 
while for CD163 positive cells, the difference was not statis-
tically significant (1.64 vs. 1.05, p = 0.38; Fig. 5f).

These results underscore the differences in the distribu-
tion of immune cells between BRCA2-mutated and BRCA1/2 
wild-type tumors in particular for the CD4-, CD8-, and 
FOXP3-positive lymphocytes.

Lower intratumoral CD8/FOXP3 ratio 
in BRCA2‑mutated tumors

Since not only cytotoxic CD8 positive T lymphocytes but 
also potentially immunosuppressive FOXP3 positive regu-
latory T cells were found to be increased intratumorally in 

Fig. 5   Shift in immune cell 
distribution in BRCA2-mutated 
tumors as reflected by the IT/
ET ratio. Bar graphs show 
the ratio of mean positive cell 
counts from five representative 
HPF each of the intratumoral 
(IT) and extratumoral closest to 
the tumor (ET1) compartment 
of each patient sorted from 
highest to lowest for CD45 (a), 
CD4 (b), CD8 (c), FOXP3 (d), 
and CD163 (e). A log10 scale is 
used for the y-axis. f Bar graph 
showing mean IT/ET1 ratio for 
all eight patients of each group 
for CD45, CD4, CD8, FOXP3, 
and CD163. BRCA1/2 wild-
type tumors in blue, BRCA2-
mutated tumors in red. Standard 
errors are shown. *p ≤ 0.05, 
**p ≤ 0.005
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BRCA2-mutated compared to BRCA1/2 wild-type tumors, 
we calculated the CD8/FOXP3 ratio for each patient and 
each group. BRCA2-mutated tumors showed a trend towards 
lower CD8/FOXP3 ratios (Fig. 6), suggesting that they have 
more FOXP3-positive T cells in comparison with CD8 posi-
tive T cells, although the mean ratios of both groups were 
not significantly different (2.73 vs. 4.53, p = 0.12).

Taken together, these findings suggest differences not 
only in the IT and ET distribution of immune cells in 
BRCA2-mutated and wild-type prostate cancers, but also in 
the composition of TIL populations.

Immune phenotype in prostate cancer biopsies

To confirm and extend our results, we next analyzed seven 
patients from which prostate cancer biopsies had been 
obtained and sequenced using a 37 gene panel (Fig. 7). 
One patient had a deleterious mutations in BRCA2 
(p.Glu2981fs*7, allele frequency 57.9%), two patients had a 
deleterious mutation in ATM (p.Arg2993*, allele frequency 
40.2%; and p.Ser470*, allele frequency 40.4%), and four 
patients were wild-type for BRCA2 and ATM and did not 
show any deleterious point mutations in any of the other 37 
genes tested.

Because of the small size of prostate biopsies, analyses 
were limited to two areas, i.e., the intratumoral (IT) and 
extratumoral (ET) compartment after FFPE sections were 
stained for CD45, CD8, FOXP3, and CD163. The presence 
of a deleterious BRCA2 mutation was found to correlate with 
a significantly higher number of intratumoral CD8 positive 
T lymphocytes (14.6-fold, p = 0.01, Fig. 7b). Remarkably, 
tumors with a deleterious mutation in ATM did not show 
more CD8 positive lymphocytes in the IT area, but more 
CD163 positive macrophages instead without reaching 
statistical significance. One ATM-mutated prostate cancer 

had a significantly higher frequency of extratumoral CD45 
positive lymphocytes. The frequency of FOXP3-positive 
lymphocytes was overall low in tumors with a BRCA2 or 
ATM mutation.

These results underscore that mutations in BRCA2 shape 
the immune microenvironment, which can be detected even 
in prostate cancer biopsies.

Discussion

The primary goal of this proof-of-concept study was to bet-
ter understand the impact of the BRCA1/2 mutation status 
on the immune phenotype of prostate cancer.

Our results show that BRCA2-mutated tumors harbor 
an enhanced intratumoral immune infiltrate compared to 
BRCA1/2 wild-type tumors, in particular with respect to T 
lymphocytes expressing CD4, CD8, and FOXP3. Of note, 
there was a trend towards a lower intratumoral CD8+ to 
FOXP3+ ratio in BRCA2-mutated tumors that needs to be 
carefully interpreted, but suggests a more suppressed tumor 
immune microenvironment.

BRCA2 mutations have been found to be associated with 
an increased mutational load [6–8], neoepitope formation 
[10], increased tumor-infiltrating lymphocytes [10], and a 
favorable response to immune checkpoint blockade [7, 25, 
26]. However, the use of immune checkpoint inhibitors in 
advanced prostate cancer has been largely unsuccessful with 
respect to an improvement of overall patient survival thus 
far. Although a positive response to this treatment modality 
occurs frequently in patients with high intratumoral CD4- 
and CD8-positive T lymphocytes (“inflamed” tumors), their 
presence is clearly not sufficient for a response. The latter 
is also modulated by cells associated with immune suppres-
sion/immune homeostasis such as FOXP3-positive regula-
tory T cells, CD163-positive tumor-associated (M2) mac-
rophages, or myeloid-derived suppressor cells (MDSCs). 
Hence, the presence of intratumoral T lymphocytes is nec-
essary but clearly not sufficient for a response to immune 
checkpoint inhibitors [52], which makes treatment responses 
in BRCA2-mutated prostate cancer difficult to predict. More-
over, it is critical that cytotoxic T lymphocytes are capable of 
killing tumor cells, i.e., are not exhausted or dysfunctional. 
Recent approaches to target regulatory T cells may hence 
represent promising strategies to prime prostate cancer for 
immune checkpoint blockade [53, 54].

A subgroup analysis in the KEYNOTE-199 trial showed 
an increased, but still moderate ORR of 12% in BRCA1/2-
mutated mCRPC [25] in response to pembrolizumab. DNA-
damaging agents such as platinum salts or PARP inhibitors 
[55] may also increase the mutational load, the number of 
neoepitopes [56], and, therefore, possibly the response rate 
to immune checkpoint inhibitors and other immunotherapies. 

Fig. 6   Intratumoral CD8/FOXP3 ratio is reduced in BRCA2-mutated 
tumors. Waterfall plot of intratumoral CD8/FOXP3 ratios in BRCA1/2 
wild-type (blue) and BRCA2-mutated (red) prostate cancer
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Results from ongoing studies focusing on combinations of 
PD1/PD-L1 antibodies with PARP inhibitors including 
nivolumab/rucaparib (CheckMate 9KD, NCT03338790), 
pembrolizumab/olaparib (KEYNOTE-365, NCT02861573), 
and durvalumab/olaparib (NCT02484404) [57] are, there-
fore, urgently awaited.

The reason for the relatively small difference in the 
number of TCR clones between BRCA2-mutated and wild-
type tumors found in this study in comparison with the 
staining results is unclear. We attribute this result primar-
ily to methodological differences, since no microdissec-
tion of tumor and stroma was performed prior to TCR 

Fig. 7   Immune phenotype of prostate cancer biopsies from BRCA2- 
or ATM-mutated tumors. a Representative immunohistochemical 
staining of prostate cancer biopsies for CD45 showing the intratu-
moral (IT) area (left) and an IT area with adjacent extratumoral (ET) 
area (right). The scale bar represents 250 µm. b Bar graphs show the 
mean number of positive cells per 40 × HPF in BRCA2-mutated or 

ATM-mutated biopsies compared to wild-type (wt) specimens in the 
intratumoral (IT) and extratumoral (ET) compartments for CD45, 
CD8, FOXP3, and CD163. Each bar represents counts from a mean 
of six 40 × HPFs. Standard errors are shown. *p ≤ 0.05, **p ≤ 0.005, 
***p ≤ 0.0005
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sequencing. While other factors such as RNA degradation 
cannot be excluded, our finding showing the pronounced 
differences between intra- and extratumoral compart-
ments in terms of lymphocyte infiltration dependent on 
the genetic background strongly argues for a tumor cell 
enrichment in future TCR sequencing studies in prostate 
cancer.

Limitations of our study are the small sample size, the 
focus on BRCA2 and ATM mutations, the lack of tumor 
mutational burden measurements, and that no MDSCs 
were analyzed.

Collectively, our results underscore that the BRCA2 
mutation status shapes the immune phenotype of prostate 
cancer with an increase of intratumoral immune cells that 
may in part be immunosuppressive. Future strategies to 
prime prostate cancer for immune checkpoint therapy may 
hence not only focus on increasing the mutational burden, 
but also on manipulating immunosuppressive cell popula-
tions [54, 58].
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