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Abstract

Colorectal cancer (CRC) is a major cause of morbidity and mortality in the United States. 

Tumor-stromal metabolic crosstalk in the tumor microenvironment promotes CRC development 

and progression, but exactly how stromal cells, in particular cancer-associated fibroblasts (CAFs), 

affect the metabolism of tumor cells remains unknown. Here we take a data-driven approach 

to investigate the metabolic interactions between CRC cells and CAFs, integrating constraint-

based modeling and metabolomic profiling. Using metabolomics data, we perform unsteady-state 

parsimonious flux balance analysis to infer flux distributions for central carbon metabolism in 

CRC cells treated with or without CAF-conditioned media. We find that CAFs reprogram CRC 
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metabolism through stimulation of glycolysis, the oxidative arm of the pentose phosphate pathway 

(PPP), and glutaminolysis, as well as inhibition of the tricarboxylic acid cycle. To identify 

potential therapeutic targets, we simulate enzyme knockouts and find that CAF-treated CRC cells 

are especially sensitive to inhibitions of hexokinase and glucose-6-phosphate, the rate limiting 

steps of glycolysis and oxidative PPP. Our work gives mechanistic insights into the metabolic 

interactions between CRC cells and CAFs and provides a framework for testing hypotheses 

towards CRC-targeted therapies.

Keywords

Tumor microenvironment; Metabolomics; Mathematical biosciences; Systems biology; Flux 
balance analysis

1. Introduction

Colorectal cancer (CRC) remains one of the deadliest cancers in the United States, with a 5-

year survival rate of less than 15% for patients with stage IV CRC (Zacharakis et al., 2010). 

Over 140,000 people are diagnosed with CRC each year, leading to approximately 50,000 

deaths (Siegel et al., 2020). Interactions between tumor and stromal cells have long been 

speculated to promote tumor development and progression. Cancer-associated fibroblasts 

(CAFs), a dominant cellular component of the tumor stroma, play a significant role in cancer 

pathogenesis by contributing to the cancer cells’ altered metabolism, a hallmark of CRC 

(Liotta and Kohn, 2001; Littlepage et al., 2005). Various factors secreted by CAFs, including 

hepatocyte growth factor (HGF) and neuregulin-1, are known to inhibit therapeutic response 

in cancer (Räsänen and Vaheri, 2010; Straussman et al., 2012). In addition, increased 

deposition of matrix proteins (e.g., hyaluronan and collagen) by CAFs has been found to 

affect drug penetration (Flach et al., 2011; Misra et al., 2003; Loeffler et al., 2006).

Increasing evidence supports the idea of reciprocal metabolic reprogramming among 

CRC cells and CAFs, but questions remain regarding the mechanism of the metabolic 

dependencies. For example, it is not clear if the influence of CAFs causes CRC cells to 

redistribute their carbon fluxes through central carbon metabolism, and whether oncogenes 

such as KRAS contribute to the metabolic reprogramming. Understanding the characteristics 

of tumor cells and CAFs in their metabolic ecosystem may provide insight needed to 

develop optimal cancer therapies.

Here, we applied a systems biology approach that combines metabolomics with constraint-

based models to understand how CAFs influence CRC cell metabolism. We profiled 

metabolic alterations in KRASWT and KRASMUT DLD-1 cells (a CRC cell line) either 

cultured solely in CRC media or cultured initially in CRC media and then switched to 

CAF- conditioned media (Fig. 1). Metabolite pool size profiling alone, however, does not 

explain how cells modulate their reaction fluxes to achieve the balance between anabolism 

and catabolism. To infer flux distributions, we developed unsteady-state parsimonious 

flux balance analysis (upFBA), a data-driven modeling approach that integrates constraint-

based methods and liquid chromatography-mass spectrometry (LC-MS) metabolomics data 

(Bordbar et al., 2017; Lewis et al., 2010). We constructed a network of central carbon 
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metabolism similar to a previous study (Shan et al., 2018) and performed upFBA to estimate 

the intracellular reaction fluxes of KRASWT and KRASMUT CRC cells grown in CRC media 

and CAF-conditioned media.

Our analysis indicates that CAFs play a pivotal role in regulating CRC metabolism through 

stimulation of glycolysis, the oxidative arm of the pentose phosphate pathway (PPP), and 

glutaminolysis, as well as inhibition of the tricarboxylic acid (TCA) cycle. Concomitantly, 

CAFs induce a higher flux through substrate-level phosphorylation and NADH pro- duction. 

To identify potential therapeutic targets, we subsequently performed unsteady-state flux 

balance analysis (uFBA) in search of gene deletions that could lead to reduced cancer 

growth. We found that fewer enzyme knockouts were effective in blocking cancer growth 

in CAF- conditioned media than in CRC media, which suggests that CAFs generally make 

CRC cells more resilient to metabolic stress. Yet, inhibition of the hexokinase (HK) or 

glucose-6-phosphate dehydrogenase (G6PD) reactions, is predicted to lead to reduced cancer 

cell growth in CAF-conditioned media compared to CRC media as it exploits the metabolic 

crosstalk mediated by CAFs.

2. Materials and methods

2.1. Cell culture

2.1.1. Culture media—Colorectal cancer media (CRC media) are composed of 

Advanced DMEM/F12 with 10% FBS, 1% penicillin/streptomycin, 1% Glutamax, and 1% 
HEPES, 100 ng/ml Noggin (Tonbo, 21–7075-U500), 50 ng/ml EGF (Life Technologies, 

PGH 0313), 10 μM SB202190 (Sigma, 47 067), 500 nM A-83–01 (Millipore, 616 454–

2 MG), 10 mM nicotinamide (Sigma, N0636), 1X B-27 (Sigma Aldrich,17 504 044), 1 

mM N-Acetylcysteine (Sigma Aldrich, A7250), and 1X N2 (Sigma Aldrich, 17 502 048). 

CRC media conditioned by patient-derived cancer associated fibroblasts (CAF-conditioned 

media) were made by growing CAFs in 10 cm plates up to 70–80% confluency at standard 

culture conditions (5% CO2, 37 °C). Once the desired confluency was reached, the media 

were refreshed and allowed to be conditioned by the CAFs for 72 hours. The media were 

then collected and filtered through a 0.2 μM filter. Conditioned media were aliquoted and 

stored at −80 °C until used for experiments. CAFs were then collected from the plates 

and counted with a Bio-Rad T-20 cell counter and trypan blue for normalization purposes. 

Patient-derived CAFs were isolated from tumor tissue resections of colorectal cancer 

patients from the USC Norris Comprehensive Cancer Center following Institutional Review 

Board (IRB) approval and patient consent. The tumor tissue was plated on plastic tissue 

culture plates to isolate the CAFs and letting the cells grow out over 1–2 passages. These 

cells were confirmed as CAFs with qPCR and immunofluorescence staining as described 

previously (Garvey et al., 2020).

2.1.2. Preparation of cells for LC-MS metabolomics—DLD-1 KRASWT and 

DLD-1 KRASMUT cells were obtained from the Yun lab (Yun et al., 2009) and maintained 

in McCoy’s 5A media supplemented with 1% penicillin/streptomycin and 10% fetal bovine 

serum. For LC-MS metabolomics studies, 200,000 cells were seeded in each well of a 6 

well plate (3 wells with DLD-1 KRASWT cells and 3 wells with DLD-1 KRASMUT cells) 
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in CRC media. Replicates of this plate were prepared for cell counting purposes and for 

switching the media after 24 hours. After the DLD-1 KRASWT and KRASMUT cells were 

grown for 24 hours in CRC media, intracellular and extracellular metabolite extractions 

were done as described in Section 2.2 below, switched to CAF-conditioned media, or left 

in CRC media for an additional 24 hours before metabolite extractions (Fig. 1). At each 

of these time points, plates which were reserved for counting were treated the same way 

before treated with 0.5% trypsin/EDTA and counted with a TC-20 cell counter. Cell growth 

rates were calculated using CellPD (Version 1.0) (Juarez et al., 2016), which uses the 

Levenberg-Marquardt algorithm to perform a least-squares fitting.

2.2. Mass spectrometry-based metabolomics analysis

DLD-1 KRASWT or DLD-1 KRASMUT cells were seeded in 6-well plates at density of 

200,000 cells/well. For extraction of intracellular metabolites, cells were washed on ice with 

1 ml ice-cold 150 mM ammonium acetate (NH4AcO, pH 7.3). 1 ml of −80 °C cold 80% 
MeOH was added to the wells, and samples were incubated at −80 °C for 20 minutes. Then 

cells were scraped off, and supernatants were transferred into microfuge tubes. Samples 

were pelleted at 4 °C for 5 minutes at 13k rpm. The supernatants were transferred into 

LoBind Eppendorf microfuge tube; the cell pellets were re-extracted with 200 μl ice-cold 

80% MeOH, spun down and the supernatants were combined. Metabolites were dried at 

room temperature under vacuum and re-suspended in water for LC-MS run. For extraction 

of extracellular metabolites, 20 μl of cell-free blank and conditioned media samples were 

collected from wells. Metabolites were extracted by adding 500 μl −80 °C cold 80% MeOH, 

dried at room temperature under vacuum and re-suspended in water for LC-MS analysis.

For each experiment, biological triplicate samples were randomized and analyzed on a Q 

Exactive Plus hybrid quadrupole-Orbitrap mass spectrometer coupled to an UltiMate 3000 

UHPLC system (Thermo Scientific). The mass spectrometer was run in polarity switching 

mode (+3.00 kV/−2.25 kV) with an m/z window ranging from 65 to 975. Mobile phase A 

was 5 mM 2.0 mm NH4AcO, pH 9.9, and mobile phase B was acetonitrile. Metabolites were 

separated on a Luna 3 μm NH2 100 Å (150 × 2.0 mm) column (Phenomenex). The flowrate 

was 300 μl/min, and the gradient was from 15% A to 95% A in 18 minutes, followed by an 

isocratic step for 9 minutes and re-equilibration for 7 minutes.

Metabolites were detected and quantified as area under the curve based on retention time 

and accurate mass ( ≤ 5 ppm) using the TraceFinder 3.3 (Thermo Scientific) software. 

Extracellular data were normalized to integrated cell number, which was calculated based 

on cell counts at the start and end of the time course and an exponential growth equation. 

Intracellular data were normalized to the cell numbers at the time of extraction. Additionally, 

both intracellular and extracellular metabolomics data were median-normalized. We 

calculated the fold changes of metabolite levels by dividing the final abundance of the 

metabolite (denoted as the T = 24hrs timepoint) by its baseline condition in the CRC media 

(denoted as the T = 0hrs timepoint). Differential abundance analysis was implemented using 

the LIMMA Bioconductor package (R version 3.6.2) (Ritchie et al., 2015).
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2.3. Constraint-based modeling

To infer flux distributions, we performed upFBA (Bordbar et al., 2017; Lewis et al., 

2010). Compared to existing flux-inference methods, upFBA is more suitable for our 

study for several reasons. First, upFBA does not require detailed knowledge of enzymatic 

kinetics. In a typical LC-MS metabolomics experiment, only a subset of metabolites can 

be experimentally identified and quantified. However, the number of parameters to fit in 

ODE-based kinetic models are likely to far exceed the number of metabolites for which 

data are available (Strang, 2016; Roy and Finley, 2017; Wang et al., 2019, 2020b). Second, 

upFBA can be used to examine media-induced metabolic alterations. As the primary goal 

of our study is to understand the effects of CAF-conditioned media on CRC metabolism, 

manipulating the media would defeat the purpose of our study. Hence, 13C metabolic flux 

analysis (13C-MFA) is not particularly useful here because a 13C-labeled substrate needs 

to be introduced to the culture medium in a tracing experiment (Long and Antoniewicz, 

2019; Antoniewicz, 2018; Ahn and Antoniewicz, 2011). Third, upFBA does not require the 

steady-state assumption. Both steady-state FBA and 13C-MFA assume that metabolites in 

the system are at steady state, so these analyses are difficult to interpret when cells undergo 

a response to perturbations such as a media switch (Dai and Locasale, 2017). Fourth, unlike 

uFBA (Bordbar et al., 2017), upFBA does not require absolute quantification of metabolites. 

Instead, it combines knowledge of initial metabolite concentrations and measurements of 

fold changes to estimate mass balance constraints. Finally, upFBA increases the reliability of 

the estimated flux distributions by repeatedly sampling the initial metabolite concentrations 

and generating mass balance constraints from the sampled concentrations and measured fold 

changes of metabolites.

Our upFBA approach stems from uFBA (Bordbar et al., 2017) but differs in the specification 

of mass balance constraints as well as objective functions. We specified mass balance 

constraints by integrating the estimates of initial metabolite concentrations from literature 

and measurements of relative metabolite changes from our experimental data. Our approach 

operates in following steps (Fig. 2). First, we sampled initial metabolite concentrations 

(T = 0hrs) 100 times from the range estimates reported in the literature. Within these 

14 metabolites, we chose to constrain seven, namely, glucose 6-phosphate (G6P), fructose 

1,6-bisphosphate (FBP), glyceraldehyde 3-phosphate (G3P), phosphoenolpyruvate (PEP), 

lactate, glutamine, and glutamate (Marín-Hernández et al., 2014; Le Guennec et al., 2012). 

(See Table S1 for range estimates). Let li and ui denote the lower and upper bounds of the 

initial concentration of the i-th metabolite for which estimates are available (i = 1, 2, …, 7). 

The initial concentration of the i-th metabolite in the j-th sampling (j = 1, 2, …, 100), ci
j, needs 

to stay between the lower and upper bounds, i.e., li < ci
j < ui. Thus, the initial concentrations 

of all metabolites for which range estimates are available in the j-th sampling, c j, satisfy
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Let Si, T = 0 and Si, T = 24 denote the normalized abundances of the i-th metabolite at T 

= 0hrs and T = 24hrs. The fold change of the i-th metabolite is defined as the ratio of 

Si, T = 24 to Si, T = 0. The mass balance constraint on the i-th metabolite in the j-th sampling, 

which represents the absolute change in abundance between T = 0hrs and T = 24hrs, can be 

expressed as

Bi
j = ci

j ⋅ Si, T = 24
Si, T = 0

− 1 . (2)

Thus, the mass balance constraints on all metabolites for which range estimates are available 

in the j-th sampling, B j
, are specified as

B
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=
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⋮
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⋮
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S1, T = 24
S1, T = 0

− 1
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− 1

⋮
S7, T = 24
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− 1

. (3)

Next, we used linear programming to calculate a solution that satisfies the mass balance 

constraints and flux constraints. To avoid increasing the degrees of freedom of the model, 

we began by relaxing steady-state conditions for the seven metabolites for which range 

estimates are available and assuming steady-state conditions for the rest (Bordbar et al., 

2017) (Fig. 2). In other words, the mass balance constraints on all metabolites in our model 

in the j-th sampling, b
j
 (Fig. 2), can be expressed as

b
j

= B
jT0…0

T = B1
jB2

j…B7
j0…0 T . (4)

We also applied flux constraints. The uptake/secretion rates of glucose, lactate, and 

glutamine were experimentally measured, so the fluxes through GLUT, MCT, and ASCT2-

mediated transport were all set to fixed values. (See Table S2 for data). The units of uptake/

secretion rates were converted from mmol/(cell⋅hr) to mM/hr under the assumption that each 

DLD-1 cell has an approximate volume of 1000 μM3 (Tzur et al., 2009). Biomass growth 

rates were calculated based on integrated cell counts measured over three days and also set 
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to fixed values in our models. The upper bounds on all remaining fluxes were set to 500 

mM/h. The lower bounds on the fluxes through the remaining reversible and irreversible 

reactions were set to −500 mM/h and 0 mM/h, respectively. A flux of 500 mM/h was chosen 

to represent an infinite flux, as such a value is too high to achieve in a real biological system. 

Lastly, a flux split between glycolysis and the PPP was constrained to be 90/10 based on a 

previous 13C tracing study performed in cancer cell lines (Zielinski et al., 2017).

Unlike uFBA, which maximizes the biomass objective function, upFBA minimizes the total 

sum of fluxes through the metabolic network in the j-th sampling, v ori
j

1 (Fig. 2) (Lewis 

et al., 2010). Based on the optimality principle, it is reasonable to assume that cells seek 

to maintain a pre-specified growth rate at the lowest metabolic cost possible (Lewis et al., 

2010). In cases where models failed to yield feasible solutions, we performed relaxed FBA 

(rFBA) which minimizes the number of unmeasured metabolites for which mass balance 

constraints need to be relaxed (Heirendt et al., 2019) (Fig. 2). As previously suggested 

(Bordbar et al., 2017), implementing this objective to minimize the sum of the fluxes 

through the metabolic network produces more accurate results than other common objective 

functions used in this context. The mass balance constraints for just three metabolites 

needed to be relaxed in the various upFBA runs (glucose [Glc], fructose 6-phosphate [F6P], 

and sedoheptulose-7-phosphate [S7P]), and the resulting number of times mass balance 

constraints were relaxed on these metabolites is shown in Fig. S1 (Supplementary File 

1). Following rFBA, we performed another round of upFBA with the relaxed constraints 

to estimate the reaction fluxes (Fig. 2). Scripts relevant to upFBA, including the reaction 

network we built for central carbon metabolism, can be found on Github: https://github.com/

FinleyLabUSC/CRC-Cell-Constraint-Based-Metabolic-Model.

The single gene deletion analysis operates similarly. We simulated gene deletion by 

constraining the deleted reaction to zero between T = 0hrs and T = 24hrs. Mathematically, 

this means that the upper bound and lower bound for the deleted reaction in the j-th 

sampling were set to 0 mM/h. In contrast, mass balance constraints, b
j
 and the remaining 

flux constraints remained the same, except the constraint on the biomass growth rate (Fig. 

2). uFBA was then performed to predict the maximal biomass growth rate that could 

be achieved under the new flux constraints (Fig. 2). Similar to the steps outlined above, 

we utilized rFBA in cases where models did not produce feasible solutions (Heirendt 

et al., 2019), following which we performed another round of uFBA to predict the 

maximal biomass growth rate possible (Fig. 2). Scripts relevant to single gene deletion 

analysis can be found on GitHub: https://github.com/FinleyLabUSC/CRC-Cell-Constraint-

Based-Metabolic-Model.

Both upFBA and uFBA were implemented in MATLAB R2019b using the COBRA Toolbox 

v3.0 (Heirendt et al., 2019; Vlassis et al., 2014). Linear programming was solved using the 

GLPK solver (Makhorin, 2000). The resulting fluxes from upFBA and biomass growth rates 

from uFBA were compared between cells cultured in CRC media and CAF-conditioned 

media via the Wilcoxon rank sum test (Pearce and Derrick, 2019), which either accepts 

or rejects the null hypothesis that a reaction has an equal median flux under two media 
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conditions. The adjusted p-values were subsequently computed from the p-values using the 

Bonferroni correction.

3. Results

3.1. LC-MS profiling reveals media-induced metabolic alterations

To directly assess changes in the levels of CRC cells’ intracellular metabolites, we 

performed a semi-targeted LC-MS metabolomics analysis of central carbon metabolism 

in KRASWT and KRASMUT CRC cells cultured in CRC media or CAF-conditioned media. 

Altogether, 81 metabolites were consistently identified and quantified across all samples. 

The raw measurements of intracellular metabolites are provided in Supplementary File 2.

We calculated the fold changes of the metabolite levels and applied moderated t-tests to 

validate the differential abundance of metabolites (Ritchie et al., 2015). A metabolite was 

considered significantly different between two groups if its fold change was larger than 

1.2 and false discovery rate (FDR) was less than 0.05. A total of 18 metabolites were 

considered to be significantly different between CRC media and CAF-conditioned media for 

KRASWT CRC cells; a total of 20 metabolites differed significantly for KRASMUT CRC 

cells (Fig. 3(a), (b)). In contrast, only 5 metabolites were significantly different between 

KRASWT and KRASMUT cells in CRC media; only 2 metabolites differed significantly in 

CAF-conditioned media (Fig. 3(c), (d)). This suggests that CAFs induce more pronounced 

alterations in CRC metabolism than oncogenic KRAS, as cells of different genotype 

identities show fewer differences in their metabolic profiles compared to cells grown in 

different media (Fig. 3(a)–(d)).

Grouping metabolites by pathways (i.e., glycolysis, PPP, and the TCA cycle), we found that 

no sets of metabolites unique to a particular pathway were consistently regulated in one 

direction, either up or down (Fig. 3(e)). This, however, does not necessarily indicate that 

CAFs do not influence CRC metabolism. Metabolic networks are highly intertwined, and 

for most metabolites, synthesis and breakdown take place simultaneously. The accumulation 

of a pathway intermediate can be caused by upregulated anabolism and/or downregulated 

catabolism. Thus, we sought to look at pathway fluxes, rather than individual metabolite 

levels.

3.2. A data-driven model predicts metabolic fluxes in CRC

To infer intracellular flux distributions, we used a constraint-based model of central carbon 

metabolism in CRC cells. Our model was adapted from a previously developed constraint-

based model (Shan et al., 2018) and included the same 89 metabolites and 73 reactions as 

described, including the biomass template reaction and the glutaminase (GLNS) reaction, 

which converts glutamine to glutamate. In addition, we included a reaction to account for 

the conversion of glutamate to glutamine mediated by glutamine synthetase (GS) (Still and 

Yuneva, 2017). High GS activity has been observed in glioblastoma, non-small cell lung 

cancer, luminal breast cancer, as well as pancreatic ductal adenocarcinoma in a glutamine-

deprived environment (Cluntun et al.,2017; Tsai et al., 2021). We include the GS reaction 

since it remains unclear whether CRC cells, irrespective of the genetic identity or tumor 
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microenvironment (TME), acquire glutamine from the environment and/or via GS-mediated 

de novo synthesis.

We performed random sampling of mass balance constraints based on knowledge of initial 

metabolite concentrations from literature and measurements of fold changes of metabolite 

concentrations between T = 0hrs and T = 24hrs from experimental data. (See Table S1 

for initial metabolite concentrations). Biomass growth rates, which we calculated by fitting 

an exponential growth curve to cell count measurements taken over 3 days using CellPD 

(Juarez et al., 2016), were used to constrain our models (Fig. 4 and S2; Table S2). As 

Fig. 4 shows, the growth rate of CRC cells is minimally changed across media and genetic 

makeups.

To compute the exchange fluxes, we also measured the extracellular levels of glucose, 

lactate, and glutamine. The raw measurements of extracellular metabolites are provided in 

Supplementary File 3. We observed that the concentration of glucose and glutamine in both 

CRC media and CAF-conditioned media at T = 24hrs is significantly lower than their blank 

media counterparts at T = 24hrs, whereas the concentration of lactate is significantly higher. 

This suggests that CRC cells uptake glucose and glutamine, while they secrete lactate under 

both media conditions. The experimentally measured extracellular uptake/ secretion rates of 

glucose, lactate, and glutamine were used to constrain our models. (See Table S2 for data).

For each set of mass balance constraints, we performed upFBA in search of a flux 

distribution that minimizes the total sum of fluxes through the network (Bordbar et al., 

2017; Lewis et al., 2010). Based on the calculated fluxes, we separated reactions into 

essential reactions and non-essential reactions. Essential reactions are defined as reactions 

that maintain a non-zero flux under at least one set of mass balance constraints, and non-

essential reactions are those that do not. The resulting minimized total sums of fluxes, 

numbers of essential reactions, and numbers of non-essential reactions are given in Fig. 

4 and S3. We did not find significant differences in the total flux through the metabolic 

reactions or the number of essential reactions across the four conditions (Fig. 4 and S3). 

Differential flux was validated on all essential reactions using the nonparametric Wilcoxon 

rank sum test (Pearce and Derrick, 2019). We visualized the distributions of the median 

fluxes via Voronoi treemaps in Fig. S4. It can be seen that under all conditions, glycolysis 

accounts for the largest proportion of the total sum of fluxes among the pathways (Fig. S4). 

Median fluxes, median absolute deviations (MADs), and adjusted p-values are provided in 

Supplementary File 4. Figs. 5–7 summarize the predicted flux distributions of CRC cells 

grown in CRC media and CAF-conditioned media. We next discuss in detail these predicted 

fluxes for glycolysis, PPP, TCA cycle, and glutaminolysis reactions and compare the flux 

values between the four experimental conditions.

3.3. CAFs enhance glycolytic fluxes of CRC cells

Our extracellular metabolomics data indicate that KRASWT and KRASMUT CRC cells 

cultured in CRC media have comparable glucose uptake and lactate secretion rates, which 

are mediated by GLUT and MCT, respectively in our model (Fig. 5). (See Table S2 for 

data). When switched to CAF-conditioned media, KRASWT and KRASMUT cells increase 

glucose uptake rates by 2.57- and 4.41-fold, respectively, and lactate secretion rates increase 
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by 2.77- and 4.77-fold. This indicates that CAFs play a stimulatory role in glucose uptake 

and lactate secretion. Similar to CAFs, oncogenic KRAS is reported to upregulate glucose 

uptake and lactate secretion (Yun et al., 2009; Ying et al., 2012). This effect, however, is 

only pronounced in CAF-conditioned media, as the glucose uptake and lactate secretion 

rates differ to a much lesser extent between KRASWT and KRASMUT cultured in the CRC 

media (Fig. 5).

Regarding intracellular fluxes, upFBA predicts that switching to CAF- conditioned media 

significantly increases the fluxes through all the glycolytic reactions in both KRASWT 

and KRASMUT CRC cells (Fig. 5). This suggests that CAFs can upregulate the glycolytic 

fluxes of CRC cells, and that this interaction occurs by secreted factors and not by contact. 

Although glucose uptake rates are comparable in KRASWT and KRASMUT cells cultured 

in CRC media, the flux through the lactate dehydrogenase (LDH) reaction, which dictates 

lactate production, increases by 1.45-, 2.60-, and 3.50-fold, respectively in KRASMUT cells 

cultured in CRC media, KRASWT cells grown in CAF-conditioned media, and KRASMUT 

cells cultured in CAF-conditioned media compared to KRASWT cells grown in CRC 

media (Fig. 5). This suggests that both oncogenic KRAS and CAFs can upregulate lactate 

fermentation, although CAFs show a stronger effect.

3.4. CAFs promote NADPH production in CRC cells through oxidative PPP

The PPP maintains carbon homeostasis by synthesizing the ribose ring of nucleotides and 

providing reducing equivalents in the form of NADPH (Frederiks et al., 2008; Stincone 

et al., 2015). upFBA predicts that KRASWT and KRASMUT CRC cells cultured in CAF-

conditioned media have higher fluxes through reactions unique to the oxidative arm of the 

PPP, i.e., G6PD, lactonase (PGL), as well as 6-phosphogluconate dehydrogenase (6PGDH), 

than their counterparts cultured in CRC media (Fig. 6). In contrast, the non-oxidative 

arm of the PPP, comprised of ribose phosphate epimerase (RPE), transaldolase (TA), and 

trans-ketolases (TK1 and TK2), is barely affected by the growth media in KRASWT cells 

(Fig. 6). Note that, TK1 proceeds in the direction of S7P → R5P (Fig. 6), which indicates 

that non-oxidative is also directed to support R5P production in CRC cells. Reduced flux 

through the TA, TK1, and TK2 reactions in KRASMUT cells in CAF-conditioned media 

suggests that CRC cells can decouple the oxidative and non-oxidative arms of the PPP to 

maintain precise control of NAPDH and R5P levels. Interestingly, a similar phenomenon has 

been observed previously in pancreatic cancer cells (Ying et al., 2012).

3.5. CAFs inhibit the TCA cycle and glutamine anabolism of CRC cells

In eukaryotic cells, pyruvate produced at the end of glycolysis can be transported into the 

mitochondria to fuel the TCA cycle. We found that switching to CAF-conditioned media 

inhibits the TCA cycle in CRC cells, as the fluxes through the TCA cycle are in general 

predicted to be lower for cells in CAF-conditioned media, compared to CRC media (Fig. 7).

In addition to being an important biosynthetic pathway, the TCA cycle also serves to connect 

glucose and amino acid metabolism. Glutamate, which can be synthesized from glutamine, 

enters the TCA cycle through its conversion to α-ketoglutarate via glutamate dehydrogenase 

(GDH) (Nissen et al., 2015). We observed a distinct difference in how CRC cells utilize 
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glutamine in CRC media and CAF-conditioned media, as the measured glutamine uptake 

rates of KRASWT and KRASMUT CRC cells cultured in CAF-conditioned media are 16 

and 39 times higher, respectively, than the glutamine uptake rates of their counter- parts 

cultured in CRC media (Fig. 7). (See Table S2 for data. Glutamine uptake is mediated by 

ASCT2 in our model). Furthermore, upFBA predicts that the increased glutamine uptake 

rates induced by CAFs lead to reprogrammed intracellular glutamine metabolism. CRC 

cells cultured in CAF-conditioned media divert excessive glutamine via amidohydrolysis 

mediated by glutaminase (GLNS), whereas CRC cells cultured in CRC media compensate 

for the reduced glutamine uptake by elevating the flux through the reaction converting 

glutamate to glutamine, which is mediated by the GS enzyme (Fig. 7).

3.6. CAFs induce reprogramming of NADH, ATP, and pyruvate metabolism in CRC cells

To understand how CAF-induced metabolic alterations affect energy production, we 

quantified how individual reactions contribute to the production of NADH and ATP as 

well as the consumption of pyruvate under different conditions. Upon hydrogen transfer 

to oxygen in oxidative phosphorylation, each NADH maximally produces three ATP 

molecules, so electron transport from NADH produced in the TCA cycle is widely 

considered a major source of cellular ATP (Nelson and Lee, 2005). upFBA predicts a 

stimulatory role of CAFs in NADH production, as the total flux of NADH production is 

higher in CRC cells cultured in CAF-conditioned media than those cultured in CRC media 

(Fig. 8(a)). Among the contributing enzymes, glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) is predicted to be the most active, and flux through this reaction further increases 

in the presence of CAFs (Fig. 8(a)). As is shown in Fig. 8(a), GAPDH not only has 

a higher absolute flux, but also accounts for a larger fraction of NADH production in 

CAF-conditioned media.

Besides oxidative phosphorylation, another source of cellular ATP is substrate-level 

phosphorylation. Although the relative contributions of the succinyl-CoA synthetase 

(SCOAS), pyruvate kinase (PYK), and phosphoglycerate kinase (PGK) reactions to overall 

substrate-level phosphorylation are very similar across all four conditions, the absolute 

fluxes through these reactions are higher in KRASMUT CRC cells and CAF-conditioned 

media than in KRASWT CRC cells and CRC media (Fig. 8(b)). Assuming that oxidation of 

one molecule of NADH or succinate through the electron transport chain (ETC) produces 

three or two molecules of ATP, respectively (Nelson and Lee, 2005), we then calculated the 

theoretical total maximum yield of ATP from the given fluxes of reactions that produce ATP 

and ATP precursors in central carbon metabolism. As is shown in Fig. 8(c), the theoretical 

total maximum flux of ATP production is higher in CAF-conditioned media than in CRC 

media. The enhanced theoretical total maximum production of ATP in CAF-conditioned 

media suggests that CAFs may induce CRC cells to raise the level of ATP production 

through both substrate-level phosphorylation and oxidative phosphorylation. Note that a 

higher theoretical total maximum flux of ATP production does not necessarily indicate a 

higher ATP level, as ATP level is determined by both ATP production and consumption.

Though not a direct energy-carrying molecule, pyruvate serves as a key branching point 

of central metabolism: it can either be converted to lactate via LDH or transported into 
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the mitochondria via mitochondrial pyruvate carriers (MCPs). upFBA predicts that both 

oncogenic KRAS and CAFs can enhance lactate fermentation, as the flux through LDH-

mediated conversion, both in terms of absolute values and relative fractions, is higher in 

KRASMUT cells and CAF-conditioned media than in KRASWT cells and CRC media (Fig. 

8(d)).

3.7. Gene deletion analysis predicts knockout metabolic phenotypes

Next, we applied flux models to examine how the cancer cells’ growth rate changes in 

response to enzyme knockouts. To simulate a single-enzyme knockout, we constrained 

the flux of one reaction in the original metabolic phenotype to zero. Subsequently, we 

performed uFBA in search of flux distributions that maximize the biomass growth rates 

under the new constraints. Given that there are 100 sets of mass balance constraints, 74 

reactions, 2 genotype identities (KRASWT and KRASMUT), and 2 media conditions (CRC 

media and CAF-conditioned media), we simulated a total of 100 × 74 × 2 × 2 × 29 600 

single-enzyme knockouts.

We compared the predictions of the median maximal biomass growth rates upon gene 

deletion between CRC media and CAF-conditioned media. Similar to the comparison of 

original metabolic phenotypes, we validated the differences in biomass growth rates via 

the Wilcoxon rank sum test (Pearce and Derrick, 2019). Median maximal biomass growth 

rates of single-enzyme-knockout phenotypes, MADs, and adjusted p-values are provided in 

Supplementary File 5. Among a total of 25 enzyme knockouts leading to different biomass 

growth rates in KRASWT CRC cells, 16 belong to central carbon metabolism: 9, 5, and 2 

are unique to glycolysis, PPP, and the TCA cycle, respectively (Fig. 9). Similarly, out of 19 

enzyme knockouts that lead to different biomass growth rates in KRASMUT CRC cells, 15 

belong to central carbon metabolism, with 9, 4, and 2 enzyme knockouts from glycolysis, 

PPP, and the TCA cycle, respectively. In both KRASWT and KRASMUT CRC cells, 11 

single-enzyme-knockouts belonging to central carbon metabolism result in reduced biomass 

growth rates in CRC media. In contrast, only 5 single-enzyme-knockouts result in reduced 

biomass growth rates in CAF-conditioned media for KRASWT CRC cells, and only 4 single-

enzyme-knockouts, for KRASMUT CRC cells (Fig. 9). As CAFs are generally believed 

to make cancer cells more resilient to enzyme knockouts, it is unsurprising that fewer 

enzyme knockouts are available for blocking cancer growth in CAF-conditioned media. 

Nevertheless, it is noteworthy that for both KRASWT and KRASMUT cells, knockouts of HK 

and G6PD, traditionally considered the rate-limiting steps of glycolysis and PPP, result in 

lower biomass growth rates in CAF-conditioned media compared to CRC media (Fig. 9). 

This is likely because CAFs make CRC cells more dependent on glycolysis and PPP, as we 

have shown in Sections 3.3 and 3.4. Thus, interference with glycolysis and PPP could take a 

heavier toll on CRC metabolism in presence of CAFs.

In contrast to the effects of the medium, few single-enzyme knockouts lead to different 

biomass growth rates between KRASWT and KRASMUT cells (Fig. S5). In CRC media, the 

inhibition of RPE is the only enzyme knockout that results in differential cancer growth 

rates be- tween KRASWT and KRASMUT CRC cells (reduced growth in KRASMUT cells; 

Fig. S5). In CAF-conditioned media, only three enzyme knockouts, including the knockouts 
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of GAPDH and pyruvate dehydrogenase (PDH), lead to differential cancer growth rates 

between the two cell lines (Fig. S5). (All lead to reduced growth in KRASWT cells). This 

is consistent with our findings in Sections 3.1-3.5 and further shows that CAF-conditioned 

media cause stronger metabolic alterations to CRC cells than oncogenic KRAS.

4. Discussion

4.1. CAFs induce widespread changes in CRC metabolism

In this work, we have studied how CAFs affect CRC metabolism via an integration of 

LC-MS metabolomics and constraint-based modeling. Our findings of the effects of CAFs 

on central carbon metabolic pathways can be summarized as follows (Table 1). First, CAFs 

induce a glycolytic switch in CRC cells. Compared to normal cells, cancer cells have 

higher rates of glucose uptake and lactate production even in the presence of oxygen and 

functional mitochondria, a phenomenon known as the Warburg Effect (Liberti and Locasale, 

2016; Warburg, 1956). Comparing CRC cells cultured in CRC media and CAF-conditioned 

media, we have found that CAFs exacerbate the Warburg Effect by enabling cancer cells to 

uptake glucose and produce lactate at even higher rates. Second, CAFs increase the fluxes 

through the oxidative arm of the PPP but do not affect the non-oxidative arm of the PPP 

in CRC cells. The purpose of CAF-induced upregulation of oxidative PPP is perhaps to 

maintain the redox balance and support the increased demand for nucleotide synthesis in 

tumor proliferation. Like previous studies, our analysis demonstrates that cells can decouple 

oxidative and non-oxidative PPP (Ying et al., 2012; Boros et al., 1998). Third, CAFs inhibit 

the TCA cycle, increase glutamine uptake, and stimulate glutaminolysis in CRC cells. Note 

that CAF-conditioned media induce widespread metabolic changes in CRC cells despite 

no appreciable change in CRC cell growth (Fig. 4). Although there are no significant 

differences in the growth rates between DLD-1 KRASWT and KRASMUT cell lines, there are 

morphology changes. When the two cell lines are switched to CAF-conditioned media, they 

appear to have more filopodia-like structures which is indicative of a migratory or invasive 

state (Mattila and Lappalainen, 2008; Ridley, 2011), compared to the more compact and 

rounded shape in CRC media (Fig. S6).

At the metabolite level, we have found that CAFs concomitantly switch CRC cells to a 

phenotype characterized by elevated energy production and lactate fermentation. Lactate 

was traditionally considered a waste product of glycolysis, but an increasing number 

of studies found that it can play important roles in promoting metastasis, stimulating 

angiogenesis, inducing immunosuppression, and maintaining the NAD+/NADH ratio (de 

la Cruz-López et al., 2019; Dhup et al., 2012; Brand et al., 2016; Luengo et al., 2020). 

The upregulated conversion of pyruvate to lactate may be driven by the diverse functions of 

lactate as an oncometabolite (de la Cruz-López et al., 2019; San-Millán and Brooks, 2017). 

Moreover, we have observed that under both media conditions, CRC cells secrete lactate, 

despite the high lactate concentration in CAF-conditioned media. The Reverse Warburg 

Effect, where CAFs secrete lactate to support adjacent cancer cells, has been observed in 

some cervical and breast cancer cell lines (Fu et al., 2017). Head and neck squamous cell 

carcinoma (HNSCC), for example, has been found to be inefficient in using lactate as a 

carbon source (Kumar et al., 2018). Our observations indicate that similar to HNSCC, CRC 
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cells prefer adopting a Warburg Effect over a Reverse Warburg Effect phenotype. While 

cancer metabolism is typically associated with high energy demand, our analysis overall 

suggests that cancer cells can modulate their biosynthetic pathways in a more complicated 

manner in order to adapt to their environments. It remains unclear whether all cancer cell 

lines adopt a similar metabolic strategy.

Our findings are supported by previous studies on tumor-stromal metabolic crosstalk in 

other cancer types (Kumar et al., 2018; Knowles et al., 2009). In agreement with our results, 

CAFs were found to enhance extracellular lactate levels in HNSCC cells via upregulation 

of glycolysis (Kumar et al., 2018; Knowles et al., 2009). It was further demonstrated that 

CAF-secreted HGF activates the glycolytic switch in HNSCC cells via paracrine signaling, 

whereas HNSCC-cell-secreted basic fibroblast growth factor (bFGF) upregulates oxidative 

phosphorylation and downregulates glycolysis in CAFs (Kumar et al., 2018; Knowles et 

al., 2009). The metabolic crosstalk between CRC cells and CAFs may have adopted a 

similar mechanism. In a separate study (Fiaschi and Chiarugi, 2012), it was found that 

tumor-derived TGFβ1 could increase the level of intracellular reactive oxygen species in 

CAFs. In return, CAFs secrete HGF, reprogramming the metabolism of cancer cells towards 

a glycolytic phenotype. It will be interesting to validate the roles of HGF, bFGF, and 

TGFβ1 in CRC-CAF metabolic interactions and identify additional signaling molecules that 

contribute to CRC metabolic reprogramming via biochemical assays.

Another noteworthy finding of our study is that CRC cells in CAF-conditioned media 

consume exogenous glutamine, whereas CRC cells in CRC media synthesize glutamine 

from glutamate (Fig. 7). It was demonstrated in vivo that CRC cells are addicted to 

glutamine (Zhao et al., 2019). In agreement with their findings, we find that CRC cells 

cultured in CAF-conditioned media, which simulate a TME more closely than CRC cells 

cultured in CRC media, depend more heavily on exogenous glutamine. On the other hand, it 

was shown in vitro that SW480 and SW620 CRC cells cultured in RPMI-1640 (Invitrogen, 

11 875–093) or DMEM (Invitrogen, 11 965–092) media are also dependent on exogenous 

glutamine (Li et al., 2017). The CRC media used in our study have a higher glucose to 

glutamine ratio (Glc/Gln = 8.75) compared to the two media mentioned above (RPMI: 

Glc/Gln = 5.41; DMEM: Glc/Gln = 6.25) (Li et al., 2017), which may have partially 

contributed to the differences in our observations.

Another reason why our findings differ is that we conducted our study in DLD-1 cells, 

which were derived from a different patient compared to SW480 and SW620 cells (Ahmed 

et al., 2013). Cell-line and TME specificity has long been regarded as a cause of metabolic 

diversity in cancer. SW480 and SW620 cells were found to be more sensitive to glutamine 

deprivation than HT29 and HCT116 cells (Li et al., 2017). One study showed that glutamine 

uptake is essential for HNSCC in SCC15 cell lines (Zhang et al., 2020), whereas another 

demonstrated that glucose, not glutamine, is the dominant energy source of HNSCC in 

other cell lines (Sandulache et al., 2011). Furthermore, it has been shown pancreatic 

ductal adenocarcinoma cells, traditionally known for glutamine addiction, could regulate the 

activity of GS, switching between metabolic states optimal for growth under nutrient-replete 

and nutrient-deplete conditions (Tsai et al., 2021). Similarly, it remains unclear whether all 

CRC cells, irrespective of the genetic identity or TME, 1) are addicted to glutamine and 2) 
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can rewire metabolism to adapt to nutrient depletion. Further studies are needed to determine 

whether our findings can be generalized to other CRC cell lines.

4.2. Gene deletion analysis identifies CAF-dependent targets

In addition to characterizing the metabolic phenotypes of CRC cells grown under different 

media conditions, we have also made predictions of knockout metabolic phenotypes by 

performing single gene deletion analysis. Our analysis predicts not only enzyme knockouts 

that inhibit cancer cells’ growth but also those that affect cancer cells’ growth differently 

in CAF-conditioned media than in CRC media. We have found that a large number of 

in silico single-enzyme knockouts result in stronger inhibition of cancer growth in CRC 

media than in CAF-conditioned media. This suggests that CAFs generally make CRC cells 

more resilient to metabolic stress. Combining CAF-targeted therapies with these enzyme 

knockouts may be necessary to achieve optimal therapeutic efficacy.

Meanwhile, we have also found that deletions of HK and G6PD, in particular, result 

in slower cancer growth in CAF-conditioned media. In the context of metabolic control 

analysis, this means that HK and G6PD would have higher control coefficients (Moreno-

Sánchez et al., 2008). Biologically, this implies that targeting HK and G6PD suppresses 

tumor growth by exploiting the metabolic dependence of CRC cells on CAFs. Inhibitors of 

these two enzymes include metformin, a common anti-diabetic drug found to inhibit HK in 

breast and cervical cancer cell lines (Liu et al., 2017; Marini et al., 2013) and polydatin, a 

natural molecule found in plants found to inhibit G6PD in HNSCC cell lines (Mele et al., 

2018). It will be of great interest to validate the efficacy of metformin and polydatin in CRC 

cell lines. Clinically, selective blockade of HK and G6PD remains a critical challenge as HK 

and G6PD are ubiquitously expressed in all mammalian cells. However, emerging targeted 

therapies such as bispecific antibodies and proteolysis targeting chimeras (PROTACs) may 

enable us to reevaluate the druggability of these genes as well as their upstream regulators.

4.3. UpFBA sheds light on dynamic metabolic physiology

Method wise, our work demonstrates upFBA as an effective data- driven approach for 

inferring flux distributions from high-throughput metabolomics data. Metabolite pool size 

profiling alone may be insufficient for understanding the causes of metabolic alterations due 

to the intertwined structure of metabolic networks, as we have shown in Section 3.1. While 

transcriptomics and proteomics data are commonly used to investigate drivers of metabolic/

phenotypic differences (Hahne et al., 2010; Wang et al., 2020a; Suh et al., 2015; Nuber 

et al., 2021), the expression levels of genes encoding the metabolic enzymes do not fully 

represent their enzymatic activities. Our method serves to complement the tool box available 

for metabolism research by making direct use of data obtained at the metabolite level. Future 

work can investigate further the metabolic alterations shown to occur. For example, 13C 

tracing studies can be applied to determine how glutamine is being utilized. In addition, 

upFBA can be applied to investigate how metabolism of CRC cells is influenced by CAFs. 

In this way, we can understand reciprocal metabolic interactions between CRC cells and 

CAFs. Additionally, here, we focused on KRASMUT cells. However, the same approach can 

be applied to cells from other genetic backgrounds.
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4.4. Limitations and assumptions of this study

We acknowledge some limitations of our study. First, we aim to capture the averaged 

metabolite dynamics and assume that the rate of change of metabolites is constant between 

T = 0hrs and T = 24hrs. Similar to uFBA (Bordbar et al., 2017), more frequent sampling 

will enable us to capture the fast dynamics more accurately by discretizing metabolite time 

profiles into time intervals for piecewise simulation. Second, we have only compared CRC 

media and CAF-conditioned media in this work. Media derived from co-cultures of CRC 

cells and CAFs, however, may diverge from media derived from either cell type alone. It will 

be interesting to study the metabolism of cancer cells cultured in the media derived from 

co-cultures of CRC cells and CAFs. In addition, upFBA cannot identify the mechanism(s) 

underlying flux changes, e.g., whether a change in flux is driven by a change in the 

substrate concentration or a conformational change in the enzyme. Nevertheless, upFBA 

shows promise as a bridge connecting metabolomics and fluxomics in systems biology and 

multi-omics studies.

In addition to these limitations, we acknowledge certain assumptions that can affect 

the model predictions. Specifically, we consider the reliability of initial metabolite 

measurements, flux split between glycolysis and PPP, and metabolite steady state. Below, we 

describe additional model calculations generated when assumptions based on these factors 

are relaxed.

Reliability of initial metabolite levels.—Although we measured the relative changes 

of more than 80 metabolites in this study, only 14 of those metabolites are involved in 

central carbon metabolism. We chose to exclude seven out of these 14 metabolites because 

the lower and upper bounds of the range estimates found in literature differ by more than 

one order of magnitude, compared to an average of 3-fold range for the seven metabolites 

included (Table S3) (Roy and Finley, 2017). To understand the effect of other metabolites 

on the calculated fluxes, we performed upFBA by including all 14 metabolites, imposing 

nonzero mass balance constraints for those metabolic species. The predicted median fluxes, 

MADs, and adjusted p-values are provided in Supplementary File 6 and Figs. S7–S9. More 

variation was observed in the calculated fluxes through PPP due to the wider range estimates 

of initial metabolite concentrations (Table S3 and Fig. S8), but qualitatively, our findings 

remained the same (Table S4). More work is needed to understand the level of uncertainty 

in range estimates that can be tolerated by upFBA. Such simulations can also investigate the 

question about how strongly the intracellular metabolite data affects the model predictions, 

compared to data for extracellular species (i.e., uptake and secretion rates).

Glycolysis and PPP flux split.—In implementing upFBA, we constrained the flux 

split between glycolysis and PPP to be 90/10 following a previous study (Zielinski et 

al., 2017). To determine the effect of this constraint, we performed upFBA allowing the 

glycolysis to PPP flux ratio to vary. Without constraining the flux ratio, upFBA yields a 

biologically unrealistic solution where there is very little flux entering the oxidative arm 

of the PPP (Supplementary File 7). Meanwhile, previous 13C tracing studies showed that 

approximately 16% and 5% of glucose uptake is diverted to PPP in A549 and MCF7 

cancer cell lines, respectively (Zielinski et al., 2017). This suggests that incorporating 
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existing biological knowledge into the analysis is essential for the interpretation of the 

results. Another discrepancy between constraining and not constraining the flux ratio is the 

variability of fluxes in oxidative PPP. The oxidative PPP fluxes do not differ significantly 

between the two media conditions, whereas the non-oxidative PPP fluxes in KRASMUT 

cells are higher in CRC media than in CAF-conditioned media (Fig. S11). The predicted 

median fluxes, MADs, and adjusted p-values are provided in Supplementary File 7 and Figs. 

S10–S12.

Metabolite steady state.—To understand the benefits we gained from upFBA, we 

performed conventional parsimonious FBA (pFBA) on the same metabolic network and 

assessed the global differences between the calculated fluxes of the upFBA and pFBA 

models. The predicted fluxes are provided in Supplementary File 8 and Figs. S13–S15. We 

found considerable differences between the predicted fluxes of non-oxidative PPP, TCA 

cycle, and glutaminolysis (Figs. 5–7 and S13-S15; Tables 1 and S5-S7). Most notably, 

upFBA predicts that fluxes through the TCA cycle are either decreased or unchanged in 

KRASMUT compared to KRASWT cells (Fig. 7 and Table S6), whereas pFBA predicts 

that the TCA cycle reaction fluxes are either unchanged or increased in KRASMUT cells 

compared to KRASWT cells (Fig. S15 and Table S7). Compared to pFBA, the findings of 

upFBA are more consistent with previous studies showing that KRASMUT and BRAFMUT 

either decrease or have no effect on the expression of TCA cycle enzymes (Ying et al., 2012; 

Hutton et al., 2016; Haq et al., 2013).

The results of upFBA differ from pFBA because the former considers the measurements 

of metabolite changes while the latter does not. Between T = 0hrs and T = 24hrs, the 

intracellular lactate level increases more in KRASMUT than in KRASWT cells (Fig. 3(e)). To 

explain the increased intracellular fold change of lactate in KRASMUT cells, upFBA infers 

an elevated flux of pyruvate converted to lactate and decreased flux of pyruvate entering 

the TCA cycle in KRASMUT cells (Fig. 8(d) and Table S8). Conventional pFBA, however, 

predicts a simultaneous increase of lactate production (LDH) and mitochondrial transport 

(MCP), as it bases the optimization solely upon the exchange fluxes without considering 

the transient changes in intracellular metabolite levels (Fig. S16 and Table S8). Compared 

to pFBA, upFBA is more data-oriented, with the aim to find a solution that optimizes the 

objective function and explains the data simultaneously. It enables us to generate insights 

that may not be deemed obvious based on measurements of metabolite exchange rates alone.

4.5. Conclusions

By combining metabolomics data and constraint-based modeling, we have identified 

metabolic perturbations that exploit the CAF-induced metabolic changes in CRC cells. 

Our work not only provides quantitative insights that complement experimental studies 

to develop therapeutic strategies for reducing CRC cell growth but also drives targeted 

follow-up experiments that can accelerate biological discovery as well as potential clinical 

translations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Experimental workflow of our study. KRASWT and KRASMUT CRC cells were first cultured 

in CRC media (DMEM) for 24hrs. At T = 0hrs, they were either left in their normal 

media, i.e., CRC media, or switched to CAF-conditioned media for another 24hrs. At T = 

24hrs, metabolites were extracted from cells and from the media and subjected to LC-MS 

analysis. For all conditions (KRASWT CRC cells in CRC media, KRASMUT CRC cells in 

CRC media, KRASWT CRC cells in CAF-conditioned media, and KRASMUT CRC cells 

in CAF-conditioned media), we measured the fold changes of intracellular metabolites and 

the secretion/uptake rates of glucose, lactate, and glutamine. These measurements were 

used to constrain an upFBA model we developed to infer the flux distributions of central 

carbon metabolism in CRC cells. (See Section 2 for details). This figure was created from 

BioRender.com.
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Fig. 2. 
A constraint-based modeling approach to predicting metabolic phenotypes. The same 

workflows are carried out repeatedly for each set of initial metabolite concentration that 

was sampled (j = 1, 2, …100).
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Fig. 3. 
Distinct metabolic profiles of CRC cells grown under different conditions. a) - d) 

Comparison of intracellular metabolites between two conditions. The wide tilde in the x-axis 

label represents the fold change in metabolite abundance between T = 0hrs and T = 24hrs. 

Metabolites that are significantly different between two groups are highlighted in red (FDR 

< 0.05, fold change > 1.2). Metabolites unique to glycolysis, PPP, and the TCA cycle are 

labeled. e) Fold changes of metabolites belonging to glycolysis, PPP, and the TCA cycle in 

KRASWT (top) and KRASMUT (bottom) CRC cells. (Glc, 6PG, and OAA are not shown due 
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to high coefficients of variation). The heights of the bars represent mean fold changes, and 

error bars represent standard deviations. A metabolite is considered significantly different 

between CRC media and CAF-conditioned media if its fold change is larger than 1.2 and 

FDR is less than 0.05 (asterisks above bars).
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Fig. 4. 
Experimentally measured growth rates of CRC cells and predicted upFBA-derived 

minimized sum of fluxes. Growth rates are represented by mean ± standard deviation of 

three replicates. Data shown are based off of the MultiCellDS name “Live cells” in Fig. S2. 

The predicted total fluxes are represented by mean ± standard deviation of 100 mass balance 

constraints.
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Fig. 5. 
Relative fluxes of glycolysis in KRASWT and KRASMUT CRC cells cultured in CRC 

media compared to CAF-conditioned media. Left, Schematic of the glycolysis pathway 

for reference. This schematic was created from BioRender.com. Directions of the arrows 

in the diagram represent directions of the reactions. Right, Predicted fluxes for glycolysis 

reactions. All reactions have been normalized to the respective flux in KRASWT CRC cells 

cultured in CRC media. The heights of the bars represent normalized median fluxes, and 

error bars represent normalized MADs. A flux is considered significantly different between 

CRC media and CAF-conditioned media if its fold change is larger than 1.2 and adjusted 

p-value is less than 0.001 (asterisks above bars). (We lower the p-value threshold in order 

to account for the larger sample size we achieved via simulations than experiments.) We 

outline in red the fluxes through GLUT and MCT, which are experimentally measured and 

supplied to the model as fixed constraints.
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Fig. 6. 
Relative fluxes of PPP in KRASWT and KRASMUT CRC cells cultured in CRC media 

compared to CAF-conditioned media. Left, Schematic of the PPP for reference. This 

schematic was created from BioRender.com. Directions of the arrows in the diagram 

represent directions of the reactions. Right, Predicted fluxes for PPP reactions. All reactions 

have been normalized to the respective flux in KRASWT CRC cells cultured in CRC 

media. The heights of the bars represent normalized median fluxes, and error bars represent 

normalized MADs. A flux is considered significantly different between CRC media and 

CAF-conditioned media if its fold change is larger than 1.2 and adjusted p-value is less than 

0.001 (asterisks above bars).
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Fig. 7. 
Relative fluxes of the TCA cycle and glutaminolysis. KRASWT and KRASMUT CRC 

cells cultured in CRC media are compared to CAF-conditioned media. Top, Schematic 

of the TCA cycle and glutaminolysis pathways for reference. This schematic was created 

from BioRender.com. Directions of the arrows in the diagram represent directions of 

the reactions. Bottom, Predicted fluxes for TCA cycle and glutaminolysis reactions. All 

reactions except GLNS and ASCT2 have been normalized to the respective flux in KRASWT 

CRC cells cultured in CRC media. For visualization, GLNS and ASCT2 have been 

normalized to the respective flux in KRASWT cells cultured in CAF-conditioned media. 
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The heights of the bars represent normalized median fluxes, and error bars represent 

normalized MADs. A flux is considered significantly different between CRC media and 

CAF-conditioned media if its fold change is larger than 1.2 and adjusted p-value is less 

than 0.001 (asterisks above bars). We outline in red the flux through ASCT2, which is 

experimentally measured and supplied to the model as a fixed constraint.
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Fig. 8. 
Predicted flux splits of metabolite species. a) NADH production; b) substrate-level 

phosphorylation; c) theoretical maximum yield of ATP; and d) cytosolic pyruvate 

consumption in CRC cells. The heights of the bars represent the total sums of absolute flux 

values. Colors represent enzyme-mediated reactions. Numbers at the top of each stacked bar 

represent the relative fractions of the total flux devoted to a reaction ( < 8% not shown). 

Error bars on top of each stacked bar represent the MADs of the fluxes.
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Fig. 9. 
Predicted maximal biomass growth rates upon gene deletions. uFBA was used to predict 

the maximal growth rates for KRASWT and KRASMUT CRC cells upon gene deletions. The 

x- and y-coordinates of each point represent the median maximal biomass growth rates of 

CRC cells cultured in CRC media and CAF-conditioned media, respectively when the same 

enzyme is inhibited. The dashed diagonal line represents equal median rates in both media. 

Gene deletions resulting in significantly different biomass growth rates between CRC media 

and CAF-conditioned media are represented by red dots (adjusted p-value < 0.001, fold 

change > 2). Enzymes belonging to glycolysis, PPP, the TCA cycle, and glutaminolysis are 

labeled.
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