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Target- Adverse Event Profiles to Augment 
Pharmacovigilance: A Pilot Study With Six New Molecular 
Entities

Peter Schotland1,*, Rebecca Racz1, David Jackson2, Robert Levin3, David G. Strauss1 and Keith Burkhart1

Clinical trials can fail to detect rare adverse events (AEs). We assessed the ability of pharmacological target adverse- event 
(TAE) profiles to predict AEs on US Food and Drug Administration (FDA) drug labels at least 4 years after approval. TAE pro-
files were generated by aggregating AEs from the FDA adverse event reporting system (FAERS) reports and the FDA drug 
labels for drugs that hit a common target. A genetic algorithm (GA) was used to choose the adverse event (AE) case count 
(N), disproportionality score in FAERS (proportional reporting ratio (PRR)), and percent of comparator drug labels with an AE 
to maximize F-measure. With FAERS data alone, precision, recall, and specificity were 0.57, 0.78, and 0.61, respectively. After 
including FDA drug label data, precision, recall, and specificity improved to 0.67, 0.81, and 0.71, respectively. Eighteen of 23 
(78%) postmarket label changes were identified correctly. TAE analysis shows promise as a method to predict AEs at the time 
of drug approval.
CPT Pharmacometrics Syst. Pharmacol. (2018) 7, 809–817; doi:10.1002/psp4.12356; published online on 
24 October 2018.

In 2016, the US Food and Drug Administration (FDA) re-
ceived over 1.6 million adverse event (AE) reports and the 
number of reports has increased yearly.1 Many of these AEs 
are serious, including fatalities.2 Thus, drug AE prediction 
would serve a critical public health need. Although clinical 
trials may be a gold standard for detecting more common 
AEs, these trials are often not of a sufficient size or duration 
to detect rare or time- dependent AEs that emerge when 
the drug is used in clinical practice. Indeed, a recent review 
of therapeutics approved by the FDA between 2001 and 
2010 found that 32% of drugs experienced a postmarket 
safety event, including withdrawal from the market, addition 

of a boxed warning, or an FDA- issued safety communica-
tion.3 Additionally, the studied population may be highly 
selective in a clinical trial. Because of exclusion criteria, 
many concomitant medications and comorbidities may be 
eliminated from a trial, leading to many potentially import-
ant drug interactions and AEs being missed. Furthermore, 
with trials becoming smaller and more selective, increas-
ing emphasis and importance is placed on postmarket 
pharmacovigilance.

Traditional pharmacovigilance relies on data mining sys-
tems, such as the FDA adverse event reporting system 
(FAERS)4 and the Sentinel Initiative4 to obtain information 
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE 
TOPIC?
✔  To date, predictive safety in the postmarket setting at 
the FDA has relied upon expert review of available evi-
dence from case reports, medical records, FAERS, and 
the literature. Systemic, quantitative methods are being 
evaluated.
WHAT QUESTION DID THIS STUDY ADDRESS?
✔  TAE profiles aggregate drug AEs by shared pharmaco-
logical targets. This study assesses the use of TAE pro-
files in anticipating significant postmarket drug AEs of 
interest.

WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
✔  This study confirms that aggregating AEs by pharma-
cological target is predictive of postmarket AEs.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, 
DEVELOPMENT, AND/OR THERAPEUTICS?
✔  In addition to assisting with postmarket pharmacovigi-
lance, this approach may also be used to anticipate AEs 
that may occur during drug development.
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about safety events once the drug is in the marketplace. 
However, these methods are not predictive or proactive; 
rather, they are reactive. A recent example is the FDA safety 
communication regarding increased risk for serotonin syn-
drome and adrenal insufficiency with opioid use.5 To over-
come these weaknesses, the center for drug evaluation 
and research (CDER) has a strong interest in developing 
predictive methods to assist in postmarket surveillance of 
AEs. To date, there have been many efforts to predict AEs 
using a variety of data, including FAERS reports,6,7 literature 
reports,7,8 pathway/signaling,8,9 cheminformatics,6,8,9 and 
chemogenomics data.8,9 Although many of these models are 
promising, several are limited in drug or AE scope, accuracy, 
or usage of proprietary data.

We have developed a model to predict AEs based on 
pharmacological target adverse event (TAE) analysis. TAE 
analysis aggregates AE reports from drugs that share mo-
lecular targets with a drug of interest. This model represents 
a blend of approaches; it applies a mechanistic target anal-
ysis to an observational database. Here, we describe a pilot 
study with six drugs of interest to assess the ability of TAE 
analysis to predict postmarket AEs. We focus on a set of 43 
AE categories of interest to regulators performing pharma-
covigilance, referred to as designated medical events.

MATERIALS AND METHODS
Study overview
We performed a study to predict what AEs are listed on the 
FDA label current to January 2017 using only data that were 
available at the time of approval for the drug of interest. 
This was performed with a multilabel classification method. 
Predictions are generated by aggregating historical AEs 
from comparator drugs that share receptor pharmacology 
with a drug of interest. See Figure 1 for an overview of the 
target analysis workflow.

Drugs chosen and generation of TAE profiles
Six drugs with at least 4 years postmarket experience were 
chosen to represent a variety of therapeutic areas: certoli-
zumab pegol, desvenlafaxine, etravirine, liraglutide, pazo-
panib, and rivaroxaban. The selected comparator drugs 
with shared pharmacologic targets are listed below.

• Certolizumab: adalimumab
• Desvenlafaxine: duloxetine, venlafaxine
• Etravirine: delavirdine, didanosine, lamivudine, zalcitib-

ine, zidovudine
• Liraglutide: exenatide
• Pazopanib: imatinib, palifermin, sorafenib, sunitinib
• Rivaroxaban: ardeparin, fondaparinux, heparin

See Table 1 for additional details of the TAE profiles that 
were generated, which consist of the set of AEs associated 
with a pharmacological target. The TAE profiles were gener-
ated separately by using data from the FAERS and the FDA 
drug labels.

TAEs from the FAERS reports
TAE profiles from the FAERS reports were generated using 
a bioinformatics tool, EFFECT.10 EFFECT aggregates the 
FAERS reports by mapping the active ingredients recorded 
in each case report to their respective pharmacological tar-
gets. The EFFECT knowledgebase can then be queried by 
target or a set of targets or a set of comparator drugs with 
shared targets to capture the subset of case reports, which 
can then be used to generate TAE profiles.

The publicly available FAERS data used in this study was 
mostly from 2004Q1 to 2015Q4. Within the data integration 
process, the FAERS medication synonyms are mapped to 
drugs and compounds in the DrugBank11 and PubChem.12 
Based on this medication- drug mapping the link to biomol-
ecules and molecular mechanisms involved in pharmacody-
namics and pharmacokinetics is established via UniProt13 
and the pathway resources NCI Nature,14 Reactome,15 
and BioCarta.16 Literature data is extracted based on co- 
occurrence of EFFECT entity names and synonyms in 
PubMed17 abstracts. Drugs are classified according to the 
Anatomical Therapeutic Chemical classification system.18 
Indications and reactions are classified using the MedDRA 
dictionary. Proportional reporting ratios (PRRs) are calcu-
lated using the approach described by van Puijenbroek 
et al.19 In a manner analogous to the computation of PRRs 
for drug AE pairs,19 2 × 2 contingency tables are generated 
and disproportionality scores computed for TAE pairs. In 
the case when multiple targets are used, disproportionality 
is computed for subset- AE pairs. For a more detailed de-
scription, see Schotland et al.20 and Racz et al.21 In the case 
when multiple targets or comparator drugs are used, dispro-
portionality is computed for subset- AE pairs, as described 
above via 2 × 2 contingency tables.

The resulting profile is a list of AEs coded as a medi-
cal dictionary for regulatory activities (MedDRA) Preferred 
Terms,22 each with an associated case count (N) and dis-
proportionality score (PRR with 95% confidence inter-
val). The MedDRA terms were then mapped to a list of 

Figure 1 Overview of target adverse event analysis workflow. 
FAERS, US Food and Drug Administration Adverse Event 
Reporting System; FDA, US Food and Drug Administration; IC50, 
half- maximal inhibitory concentration; Ki, inhibition constant; N, 
case count; PRR, proportional reporting ratio.
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designated medical events. Designated medical events 
are MedDRA Preferred Terms grouped to capture similar 
AEs into mechanistic- related safety events. For example, 
the MedDRA preferred terms “cerebral artery occlusion” 
and “cerebral artery thrombosis” may be used by different 
reporters to refer to the same AE. Thus, the combining of 
MedDRA Preferred Terms into designated medical events 
was designed to allow the aggregation of the FAERS re-
ports to capture relevant medical events with similar eti-
ologies and likely target- related mechanisms. Unlabeled 
designated medical events represent key AEs that are fol-
lowed by the FDA Office of Surveillance and Epidemiology 
in the postmarket setting. The existing list was expanded 
to a list of 43 categories (see Supporting Information for 
the full list). Figure 2 contains a list of the 43 designated 
medical events and their prevalence in the FAERS data-
base and the FDA product labels. Roughly 900 (4%) of 
MedDRA preferred terms were used and no term was used 
more than once. The presence of one MedDRA preferred 
term was sufficient to assign the designated medical event 
to the TAE profile. See Table 2 for an example TAE profile 
generated from the FAERS reports. The specific queries for 
the six digital object identifiers (DOIs) can be found in Data 
S1.

TAEs from the FDA drug labels
For each comparator drug, AEs were manually curated 
from the most recent drug label published prior to the ap-
proval of the drug of interest and mapped to the MedDRA 
vocabulary. Similarly to the profile from FAERS, MedDRA 
preferred terms were mapped to the designated medi-
cal event list to create drug label TAE profiles. The map-
ping was performed such that the presence of only one 

MedDRA preferred term was sufficient to assign the des-
ignated medical event to the TAE profile. Finally, for each 
designated medical event, the proportion of comparator 
drug labels reporting that designated medical event was 
computed. See Table 3 for an example TAE profile gen-
erated from the FDA drug labels. Historical product la-
bels were obtained from the National Library of Medicine 
DailyMed website.4,13

Classification and decision tree analysis
We used classification and decision tree analysis23 to con-
struct a multilabel decision tree such that TAE profiles (in-
dependent variables) were used to predict the approved 
product label of a drug of interest (dependent variable). 
The dependent variables to be predicted consisted of 43 
designated medical events described earlier. There was 
no restriction on the number or combination of designated 
medical events to be predicted. Three features were used 
to construct the decision tree: N (FAERS case count), 
PRR025 (the lower bound of the PRR 95% confidence 
interval), and the proportion of comparator drug labels 
with AE (label score). For TAE profiles generated from the 
FAERS data, a designated medical event was considered 
a prediction if N and PRR025 were both greater than spec-
ified threshold (split) value. For profiles generated from 
drug labels, a designated medical event was considered 
a prediction if label score was greater than a specified 
threshold value.

Predicted designated medical events were compared to 
designated medical events on the current FDA drug label. 
Metrics evaluated include precision (positive predictive 
value), recall (sensitivity or true positive rate), specificity 
(true negative rate), and F1 (harmonic mean of precision 

Table 1 Drugs chosen for this study

Drug Approval Indication Targets Comparators

Certolizumab 
Pegol

Apr 2008 Crohn disease, rheumatoid arthritis, 
psoriatic arthritis, ankylosing spondylitis

TNF Adalimumab

Desvenlafaxine Feb 2008 Major depressive disorder NET, SERT Duloxetine 
venlafaxine

Etravirine Mar 2012 HIV- 1 infection in conjunction with other 
antiretrovirals

HIV- 1 RT Delavirdine 
didanosine 
lamivudine 
zalcitibine 
zidovudine

Liraglutide Jan 2010 Improve glycemic control in adults with 
type 2 diabetes mellitus

GLP1R Exenatide

Pazopanib Oct 2009 Advanced renal cell carcinoma, 
advanced soft tissue sarcoma

VEGFR1, VEGFR2, VEGFR3, KIT, 
PDGFRA, PDGFRB, FGFR3, ITK/TSK, 
FGFR1

Imatinib, palifermin 
sorafenib, sunitinib

Rivaroxaban Jul 2011 DVT, pulmonary embolism, risk 
reduction of DVT and PE, prophylaxis of 
DVT following hip or knee replacement 
surgery

F10 (Factor Xa) Ardeparin fonda-
parinux 
heparin

DVT, deep vein thrombosis; FAERS, US Food and Drug Administration Adverse Event Reporting System; FGFR, fibroblast growth factor receptor; GLP1R, 
glucagon- like peptide- 1 receptor; HIV, human immunodeficiency virus; ITK,  tyrosine-protein kinase ITK/TSK; KIT, KIT proto-oncogene receptor tyrosine 
kinase NET, sodium-dependent noradrenaline transporter PDGFR, platelet- derived growth factor receptor; PE, pulmonary embolism; RT, reverse tran-
scriptase SERT, sodium-dependent serotonin transporter TNF, tumor necrosis factor; VEGFR, vascular endothelial growth factor receptor.
Six drugs were chosen for this study. The Targets column lists the pharmacological targets used to generate target- adverse event profiles from the FAERS 
reports. The Comparators column lists drugs used to generate target- adverse event profiles from historical product labels. Comparators share pharmaco-
logical targets with the six study drugs and have prior time on the US market.
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and recall). Precision, recall, and F1 were computed as fol-
lows and macro- averaged across the six study drugs where 
DME = designated medical event:

A genetic algorithm (GA) was used to choose threshold 
(split) values for N, PRR025, and label score to maximize 
macro- averaged F1 across study drugs. The GA parameters 
were: mutation rate, 0.2; crossover rate, 0.8; population size, 
100; elitism, 20; and maximum iterations, 1000. The R pack-
age GA was used to perform the calculations.24 Full details 
are provided as R code in Data S2. Please see TA_pilot.Rmd 
or TA_pilot.Rproj.

In total, three classification analyses were performed:  
(i) predictions were made from TAE profiles generated 
from the FAERS data only; (ii) predictions were made 
from TAE profiles generated from the FDA product label 
data only; (iii) predictions were made from TAE profiles 
generated from both FAERS data and the FDA product 
labels.

Safety label changes
For each of the six drugs in the study, the original drug label 
was compared to the current label to identify label changes. 
Twenty- three new designated medical event label changes 
were identified across the six drugs. Label changes were 
compared to classification and decision tree predictions 
made at maximum F1 and the percentage identified cor-
rectly was computed.

RESULTS
Classification performance
Classification and decision tree analysis was performed for 
three data sets: (i) TAE profiles generated from the FAERS 
data only; (ii) TAE profiles generated from label data only; 
(iii) TAEs generated from a combination of the FAERS and 
the FDA drug labels (Table 4). For FAERS- only TAE pro-
files, the algorithm chose N = 70 and PRR025 = 1.06 to 
maximize F1 to 0.64 (Table 4, row 1). Precision, recall, and 
specificity were 0.57, 0.78, and 061, respectively. For label- 
only TAE profiles, the algorithm chose label score = 0.18 to 
maximize F1 to 0.68 (Table 4, row 2). Precision, recall, and 
specificity were 0.67, 0.75, and 0.72, respectively. Combing 
the FAERS and label data, the algorithm chose N = 170, 
PRR025 = 1.52, and label score = 0.45 to maximize F1 
to 0.71 (Table 4, row 3). Precision, recall, and specificity 
were 0.67, 0.81, and 0.71, respectively. Overall, there was 

Precision=prob(DME is positive|DME is predicted)

=True positives/Predicted Positives

Recall=prob(DME is predicted|DME is positive)

=True positives/Positives

F1=2∗Precision∗Recall∕(Precision+Recall)

Figure 2 Designated medical events in the US Food and Drug Administration Adverse Event Reporting System (FAERS) reports 
and the US Food and Drug Administration (FDA) product labels. Designated medical events (DMEs) are plotted according to their 
frequency in the FAERS reports and the FDA product labels. FAERS reports: MedDRA PTs in FAERS case reports were mapped to the 
DME list and DME percentages computed for the entire database. FDA Labels: adverse events were text- mined from the FDA product 
labels, translated to MedDRA PTs and mapped to the DME list. DME percentages were computed among product labels, excluding 
combination products. SJS/TEN, Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis.
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improvement in performance when combining TAE profiles 
from the FDA product labels and the FAERS data.

Postmarket safety label changes
After approval of the six drugs of interest, 23 label changes oc-
curred in the postmarket setting (Table 5). These safety label 
changes were compared with predictions made at maximum 

F1 using TAE profiles from both the FAERS and product labels. 
Eighteen of 23 (78%) label changes were retrieved correctly.

DISCUSSION

We have presented a method for predicting labeled AEs of the 
FDA approved drugs with emphasis on designated medical 

Table 2 Etravirine target- adverse event profile from FAERS reports

Adverse event (MedDRA preferred term) N PRR PRR025 Designated medical event

Drug exposure during pregnancy 1,869 19.91 19.05

Pyrexia 1,113 3.29 3.11

Anemia 892 4.48 4.20 Anemia

Nausea 806 1.12 1.05

Vomiting 805 1.81 1.70

Diarrhea 780 1.67 1.56

Alanine aminotransferase increased 692 8.62 8.00

Aspartate aminotransferase increased 617 8.41 7.78

Pregnancy 597 16.18 14.93

Immune reconstitution syndrome 555 214.99 193.92

Renal failure acute 520 4.42 4.06 Renal toxicity

Asthenia 484 1.37 1.25

Drug interaction 482 3.11 2.85

Rash 468 1.44 1.32

Weight decreased 466 1.93 1.76

Drug ineffective 465 0.53 0.49

Neutropenia 462 5.15 4.70 Neutropenia

Dyspnea 455 0.88 0.81

Abdominal pain 454 2.02 1.84

Lactic acidosis 436 21.37 19.42

Headache 433 0.79 0.72

Abortion spontaneous 431 9.93 9.03

Renal failure 428 3.20 2.91 Renal toxicity

Death 407 0.58 0.53

Fatigue 394 0.69 0.62

Premature baby 388 15.04 13.61

Jaundice 369 10.08 9.10 Hepatic toxicity

Malaise 369 0.96 0.86

Blood bilirubin increased 360 10.03 9.04

Caesarean section 360 17.75 15.99

Blood creatinine increased 354 4.76 4.29 Renal toxicity

Hepatic failure 339 9.45 8.49 Hepatic toxicity

Pneumonia 335 1.27 1.14

Hepatitis 330 12.54 11.25 Hepatic toxicity

Blood alkaline phosphatase increased 318 8.39 7.52

Drug resistance 318 30.49 27.23

Gamma- glutamyltransferase increased 313 9.99 8.94

Pancreatitis 304 4.62 4.13 Acute and chronic 
pancreatitis

Thrombocytopenia 298 2.89 2.58 Anemia

Dizziness 290 0.61 0.55

FAERS, US Food and Drug Administration Adverse Event Reporting System; HIV, human immunodeficiency virus; N, case count; PRR, proportional reporting 
ratio; PRR025, lower bound of PRR 95% confidence interval.
FAERS was queried for all case reports with drugs targeting HIV- 1 Reverse Transcriptase and dated prior to the approval of etravirine in March 2012. The 
subset of FAERS generated contains 4,935 MedDRA preferred terms with at least one report. The 40 most frequent preferred terms are shown here. Mapping 
of MedDRA preferred terms to designate medical events is shown in the last column.
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events, a selection of AEs of high interest to postmarket safety 
reviewers at the FDA. The method is mechanistic, grouping 
AEs by shared pharmacological targets and combining them 
with observational data from the FAERS as well as the FDA 

drug labels. This method predicted the 2017 FDA drug labels 
for our drugs of interest with precision, recall, and specificity 
of 0.67, 0.81, and 0.71, respectively. Of great value, 78% of 
postmarket safety label changes were identified correctly.

Table 3 Etravirine target- adverse event profile derived from the FDA labels

DME Delavirdine Didanosine Lamivudine Zalcitibine Zidovudine Label score

Abnormal bleeding • • 0.4

Accidents and injuries • • 0.4

Acute and chronic pancreatitis • • • • • 1

Amyotrophic lateral sclerosis 0

Anemia • • • • • 1

Arterial thrombotic event 0

Cardiac arrhythmia • • 0.4

Coagulopathies 0

Colitis (excl infective) • • 0.4

Congenital disorders NEC 0

Deliria • • • 0.6

Encephalopathies 0

Edema • • • • 0.8

Extrapyramidal symptoms • • 0.4

Hemolytic anemia • • • 0.6

Heart failure • • • 0.6

Hepatic toxicity • • • • • 1

Hypersensitivity • • • • • 1

Hypertension • • 0.4

Impaired wound healing • • • • 0.8

Infection and infestation • • • 0.6

Interstitial lung disease 0

Malignancy 0

Metabolism • • • • 0.8

Myopathy • • • • • 1

Neuroleptic malignant 
syndrome

0

Neutropenia • • • • • 1

Peripheral neuropathy • • • • • 1

PML 0

Pulmonary hypertension 0

Renal toxicity • • • 0.6

Respiratory failure 0

Seizures • • 0.4

Sepsis 0

Serotonin syndrome 0

Sleep disturbance • • • 0.6

Special senses impairment • • • 0.6

SJS/TEN • • • 0.6

Sudden death 0

Suicide 0

Thrombotic event, vessel 
unspecified

• 0.2

Torsade de pointes 0

Venous thrombotic event 0

DME percent 0.53 0.21 0.26 0.60 0.40

DME, designated medical event; FDA, US Food and Drug Administration; HIV, human immunodeficiency virus; NEC, not elsewhere classified PML, progres-
sive multifocal leukoencephalopathy; SJS/TEN, Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis
The five HIV- 1 Reverse Transcriptase inhibitors on the US market prior to the approval of etravirine are shown. MedDRA preferred terms were manually cu-
rated from the most recent label published prior to the approval of etravirine and mapped to DMEs. The percentage of events on each label is recorded on 
the bottom row and the percentage of labels containing each DME is recorded in the last column (label score).
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Although there has been great interest in applying predic-
tive methods to the problem of drug safety,25 our method 
has unique aspects that make it relevant to AE predictions 
at the time of drug approval. Kuhn et al.26 and Wang et al.9 
so predict AEs on drug labels by integrating drug- target 
data with the FAERS data27; however, they do not focus 
on predicting designated medical events. Additionally, Xu 
and Wang7 relies heavily on LINCS L1000 gene expression 
data, which may not be available for new molecular entities. 

Finally, several methodologies focus on one class of AEs or 
specific drug- AE associations7,28,29; our methodology is dis-
tinctive in that we can predict a wide range of clinically sig-
nificant AEs for any drug that has a comparator with similar 
target activities at the time of approval.

Predictions were made at maximum F1, which is the har-
monic mean of precision and recall. The method, however, 
can be tuned to maximize recall (sensitivity) at the expense 
of specificity or precision (positive predictive value). The 
tunability and granularity of the method can be considered 
a strength. In fact, tuning to greater recall (sensitivity) may 
be useful to identify AEs for augmented pharmacovigilance 
activities. In practice, further mechanistic evaluations of the 
target’s relationship to an AE and literature reports for the 
association are evaluated to support or lessen the strength 
of a prediction. Unlabeled signals for comparator drugs 
have been identified in the process, as an additional benefit 
of this methodology.

As with any method using voluntary postmarket reporting 
data, such as FAERS, under- reporting or over- reporting bi-
ases and stimulated reporting occur.30 However, FAERS and 
other postmarketing databases have successfully predicted 
AEs in several other models.31,32 The strength of FAERS is 
the enhanced reporting of rare events as captured by our 
designated medical event list that are not identified in tri-
als. Additionally, we have addressed potential biases from 
FAERS by adding molecular TAE profiles generated from 
comparator FDA drug labels. This reflects other method-
ologies, such as those developed by Gurulingappa et al.32 
and Liu,33 in which multiple sources were used as features 
to make one prediction for a drug- AE association. The ad-
dition of the FDA drug labels to our methodology allowed 
the algorithm to choose higher values of N and PRR025, 
thereby reducing false- positive predictions from the FAERS- 
generated TAE profiles and improving specificity and preci-
sion. An additional limitation is the sample size of six drugs, 
which is too small to perform cross- validation for estimation 
of generalization error; the resulting model must, therefore, 
be understood as hypothesis generating. A larger validation 
study is underway.

Several future enhancements and analyses are planned 
to further strengthen and determine overall performance. 
First, false- positive predictions, or predictions made that 
were not on the label of the drug of interest, will be sys-
tematically and mechanistically analyzed using multiple 
sources. This will allow us to determine if this methodol-
ogy identified AEs that may be of concern, but have not yet 

Table 4 Classification and decision tree performance

TAE Precision (SD) Recall (SD) F1 (SD) Specificity (SD) Accuracy (SD) N PRR025 Lab Max

FAERS 0.57 (0.14) 0.78 (0.2) 0.64 (0.13) 0.61 (0.18) 0.69 (0.10) 78 1.06 NA F1

Labels 0.67 (0.17) 0.75 (0.18) 0.68 (0.12) 0.72 (0.16) 0.74 (0.11) NA NA 0.18 F1

FAERS + labels 0.67 (0.15) 0.81 (0.15) 0.71 (0.10) 0.71 (0.19) 0.76 (0.09) 170 1.52 0.45 F1

F1, harmonic mean of precision and recall; FAERS, US Food and Drug Administration Adverse Event Reporting System; FDA, US Food and Drug Administration; 
Lab, label score; Max, the performance metric maximized by the genetic algorithm; N, case count; NA, not applicable; PRR025, proportional reporting ratio 
lower bound of 95% confidence interval; TAE, target adverse- event profile(s) used.
Performance is compared for three sets of predictions: (i) target- adverse events profiles generated from FAERS data only; (ii) target- adverse events profiles 
generated from the FDA label data only; (iii) target- adverse events generated from a combination of the FAERS and the FDA labels. A genetic algorithm was 
used to specify N, PRR025, and label score to maximize F1.

Table 5 Safety label changes

Drug
DME change (original to 

current label) Predicted

Certolizumab- 
pegol

Arterial thrombotic event N

Deliria Y

Hypertension Y

Desvenlafaxine Arterial thrombotic event Y

Neuroleptic malignant syndrome
Respiratory failure

N
Y

Etravirine Edema Y

Hemolytic anemia Y

Peripheral neuropathy Y

Thrombotic event, vessel 
unspecified

N

Liraglutide Hepatic toxicity N

Renal toxicity Y

Pazopanib Acute and chronic pancreatitis Y

Cardiac arrhythmia Y

Coagulopathies Y

Colitis (excl infective) Y

Impaired wound healing Y

SJS/TEN Y

Sudden death N

Venous thrombotic event Y

Rivaroxaban Anemia Y

Infection and infestation Y

Metabolism Y

Percent predicted 0.78

DME, designated medical event; SJS/TEN, Stevens-Johnson Syndrome/
Toxic Epidermal Necrolysis.
For each drug of interest, the original drug label was compared to the cur-
rent label. Twenty- three new DMEs were identified across the six drugs. 
These label changes were then compared to classification predictions 
made at maximum F1. The percentage of label changes identified is shown 
on the bottom row.
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been recognized using current pharmacovigilance meth-
ods. Moreover, we are currently investigating additional 
features for prediction, including the likelihood- ratio test34 
and a third source, text- mined AEs from literature. We are 
also investigating the possibility of developing a database 
for common indications and comorbidities to reduce con-
founding and false- positive predictions from the FAERS 
data. Additionally, we are presently developing improved 
methodology incorporating multiple machine learning ap-
proaches to enhance the applicability, accuracy, and reli-
ability of our model. We also plan to include drug structure 
and target similarity measures as features for machine 
learning. Last, we are planning to increase the sample size 
to further validate our model. A larger study will allow us to 
cross- validate with independent test data, as well as assess 
model performance by subgroup (e.g., AE and number of 
comparator drugs).

TAE analysis shows promise as a predictive method to 
augment pharmacovigilance. With this approach, using the 
FAERS data and the FDA drug labels for comparator drugs 
that share pharmacological targets with a drug of interest, 
we can tune our classification performance metrics based 
on three predictors: number of FAERS cases, PRR025 in 
FAERS, and percent of comparator drug labels with the AE 
of interest. This allows us to choose metrics best suited for 
safety reviewers, such as increasing precision to allow for 
better decision making. With several additional enhance-
ments and analyses to better quantify performance of this 
methodology on the horizon, this pilot study demonstrates 
promise for this approach. In summary, this informatics 
approach using real- world data shows applicability to pro-
vide mechanistic data for drug safety evaluations for unla-
beled AEs.

Supporting Information. Supplementary information accompa-
nies this paper on the CPT: Pharmacometrics & Systems Pharmacology 
website (www.psp-journal.com).

Table S1. List of MedDRA- DME key value pairs.
Data S1. Search criteria for TAE profiles FAERS.
Figure S1. Reporting frequencies in FAERS by MedDRA PT and DME.
Data S2. Model code and data.
Data S3. FDA labels current multiquery.
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