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Abstract

Background and Aims: Metabolic dysfunction–associated fatty liver dis-

ease (MASLD) is the most prevalent chronic liver pathology in western

countries, with serious public health consequences. Efforts to identify causal

genes for MASLD have been hampered by the relative paucity of human

data from gold standard magnetic resonance quantification of hepatic fat. To

overcome insufficient sample size, genome-wide association studies using

MASLD surrogate phenotypes have been used, but only a small number of

loci have been identified to date. In this study, we combined genome-wide

association studies of MASLD composite surrogate phenotypes with genetic

colocalization studies followed by functional in vitro screens to identify bona

fide causal genes for MASLD.

Approach and Results: We used the UK Biobank to explore the associa-

tions of our novel MASLD score, and genetic colocalization to prioritize

putative causal genes for in vitro validation. We created a functional genomic

framework to study MASLD genes in vitro using CRISPRi. Our data identify

VKORC1, TNKS, LYPLAL1, and GPAM as regulators of lipid accumulation in

hepatocytes and suggest the involvement of VKORC1 in the lipid storage

related to the development of MASLD.

Conclusions: Complementary genetic and genomic approaches are useful for

the identification of MASLD genes. Our data supports VKORC1 as a bona fide

MASLD gene. We have established a functional genomic framework to study at

scale putative novel MASLD genes from human genetic association studies.

INTRODUCTION

Metabolic dysfunction–associated fatty liver disease
(MASLD) is the most common chronic liver condition,
with serious public health consequences. Globally, at
least 25% of adults are estimated to suffer from MASLD,
and cardiovascular disease is the leading cause of death
among these patients.[1,2] MASLD displays a wide
spectrum of liver pathology, ranging from NAFL, which
is typically benign, to metabolic dysfunction–associated
steatohepatitis, characterized by steatosis and features
of cellular injury, such as inflammation and hepatocyte
ballooning. Metabolic dysfunction–associated steatohe-
patitis may progress to liver cirrhosis, hepatic failure, and
HCC in the absence of significant alcohol consumption.
The degree of steatosis can be measured through
various imaging techniques but the gold standard of
these is abdominal MRI. However, abdominal MRI is not
typically conducted on asymptomatic individuals, often
leaving MASLD undiagnosed for years.

Genome-wide association studies (GWAS) have been
used to identify associations between MASLD and
common genetic variants.[3–5] Due to the scarcity of MRI
data, identifying risk loci for MASLD has been slower than

for other cardiometabolic diseases or their risk factors (eg,
body mass index (BMI) or biochemical measures (eg,
serum liver enzymes and lipids levels), and other complex
cardiometabolic diseases such as obesity, and diabetes.
One way to overcome data scarcity in MASLD is to
comprise latent proxies for MASLD using data more
readily available in large cohort studies. For instance,
Bedogni et al[6] established the fatty liver index (FLI) as a
surrogate variable for MASLD; however, FLI did not
outperform waist circumference in predicting MASLD in a
validation study.[7] Recently, Haas et al[8] used the then-
largest available data set on MRI-derived MASLD,
together with machine learning, to identify five new
MASLD risk loci. Nevertheless, significant gaps remain
in the understanding of the genetic architecture of MASLD.

Aiming to increase our understanding of the molecular
etiology of MASLD, we here generate (MASLD-S), a
composite variable of anthropometric and biochemical
variables to predict liver fat. By using an alternative
surrogate to predict liver fat, and running GWAS combined
with genetic colocalization, we identify novel loci associ-
ated with MASLD. We use CRISPR-interference
(CRISPRi) to interrogate the impact of multiple genes on
both transcriptional changes and functional phenotypes, at
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a single-cell level.[9–11] We characterize a subset of
putative MASLD genes in vitro and in vivo through an
integrated framework and identify VKORC1 as a likely
causal MASLD gene.

EXPERIMENTAL PROCEDURES

For details, please refer to the Supplemental Materials,
http://links.lww.com/HEP/I623.

Human molecular genetics

This research was conducted using a purposeful subset of
the UK Biobank (UKB) data under application number
13721, described in detail in the Extended Methods.
Research was conducted in accordance with both the
Declarations of Helsinki and Istanbul. Ethical approval
was obtained from the Swedish Ethical Review Authority
(approval nr 2006/784-31/1). A new surrogate marker
for MASLD (MASLD score) was generated, whose
predictive value was compared to other biochemical
surrogate markers of MASLD. Human molecular genetic
approaches, including genetic colocalization, were
adopted to select target genes for functional genomic
experimentation. The colocalization analyses were carried
out using custom pipelines, described in detail in the
Extended Methods, found in the Supplemental Material,
http://links.lww.com/HEP/I623.

CRISPRi and perturb-seq

A human hepatocyte cell line, suitable for large-scale
CRISPRi and Perturb-seq, was generated and charac-
terized using single-cell RNA-seq. Details are described

in the Extended Methods, found in the Supplemental
Material, http://links.lww.com/HEP/I623.

CRISPRi for hepatocyte lipid accumulation and
Perturb-seq was conducted for selected target genes
in the HepaRG cell line under established culturing
protocols. The VKORC1 gene was validated as a novel
MASLD gene using single small guide RNA (sgRNA)
knockdowns. Transcript levels of VKORC1 and PLIN2
were analyzed in HepaRG cells on gene knockdown.
To functionally assess the role of VKORC1 in MASLD,
we explored lipid droplet staining in HepaRG cells
where VKORC1 had been knocked down, described in
detail in the Extended Methods, found in the Supple-
mental Material, http://links.lww.com/HEP/I623.

Validation of VKORC1 as a MASLD gene in
murine and human disease

The expression levels of the VKORC1 transcript were
explored in a murine model of MASLD, where animals
were treated with an HFD for 30 days. Publicly available
data from the Gene Expression Omnibus (GEO,
GSE130970) of 78 transcriptomes from patients in
differential stages of MASLD were analyzed. The global
biobank engine was used to explore the lead MASLD-S
single nucleotide polymorphism (rs9934438) in relation to
other cardiometabolic traits (Global Biobank Engine,
Stanford, CA). GTEx was used to explore rs9934438
quantitative trait locus.

Statistical analyses

All statistical analyses pertaining MASLD score gener-
ation and single-cell RNA-seq were carried out in
R 3.5.1, and Plink v.2 was used for genetic analyses.
Details are described in detail in the Extended Methods,
found in the Supplemental Material, http://links.lww.
com/HEP/I623.

Ethical approval and consent to participate

Ethical approval was obtained from the Swedish Ethical
Review Authority (approval number 10627/18).

Data availability

All sequencing files from HepaRG cell line characterization
and Perturb-seq experiements have been deposited on
GEO and are publicly available. The repositories are
GSE261025, GSM8132774, GSM8132775, GSM8132776,
GSM8132777, GSM8132778 GSE238219, GSM7660623,
GSM7660624, GSM7660625, GSM7660626, and GSM766
0627.

TABLE 1 Variables used to construct the MASLD-S with their
respective estimates, SEs, Z-statistics, and p-values

Variable Estimate SE Z Stat p

Intercept −3.20145 0.34775 −9.206 2.00E-16

Sex −0.52707 0.0803 −6.564 5.23E-11

Waist Circ 0.53716 0.06679 8.043 8.79E-16

GGT 0.06514 0.03899 1.671 0.0948

BMI 0.06973 0.01178 5.921 3.20E-09

Cholesterol −0.14647 0.03079 −4.757 1.97E-06

AST 0.15941 0.03241 4.918 8.73E-07

HbA1c 0.15286 0.03031 5.043 4.58E-07

AST/ALT −0.40867 0.03461 −11.809 2.00E-16

TGs 0.45029 0.03574 12.598 2.00E-16

Alb 0.17569 0.03024 5.811 6.23E-09

Abbreviations: Alb, albumin; BMI, body mass index; MASLD-S, metabolic
dysfunction–associated fatty liver disease-score; TGs, triglycerides.
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RESULTS

Anthropometric and biochemical data
predict MASLD in UKB

Anthropometric and biochemical variables related to
MASLD and cardiometabolic traits were interrogated for
their ability to predict MASLD defined as liver fat
percentage > 5.5% (2544 MASLD cases and 10,168
controls) using multivariate regression models. The
variables that significantly predict MASLD can be found
in Table 1. Predictors of MASLD were selected to create
a MASLD score using Equation 1.

MASLD score improves MASLD
approximation

The power to approximate MASLD using the generated
MASLD score (MASLD-S) was assessed using a
receiver operating characteristic curve, and the AUC
was compared between MASLD-S, FLI, and several

individual anthropometric and biochemical variables.
Our results reveal that MASLD-S improves the approx-
imation of MASLD status compared to FLI. Further,
MASLD-S outperformed all individual anthropometric
and biochemical variables on which the MASLD-S was
based (Figure 1A).

The MASLD-S was calculated for a subset of
nonmoderate and moderate drinkers in the UKB, and
a GWAS was carried out on MASLD-S as a continuous
variable. In parallel, GWAS were carried out for liver fat
percentage (MRI_UKB) and ALT (qnormALT_UKB) in
the same subset of UKB. Our results show numerous
associations with liver fat percentage, MASLD-S, and
ALT (Figure 1B–D). There is a sizable overlap in loci
that are associated with MASLD-S and liver fat
percentage. For example, the PNPLA3 locus is
detected in GWAS of MASLD-S, ALT, and liver fat
percentage. However, since ALT and MASLD-S use a
larger portion of the UKB, there is a substantially larger
number of associations for ALT and MASLD-S, com-
pared to liver fat percentage. Another effect of the larger
sample size used in the association studies for ALT and

F IGURE 1 Human molecular genetic analyses in the UK Biobank. Nonmoderately or moderately drinking European ancestry British partic-
ipants were selected for the analyses. (A) receiver operating characteristic curve showing the predictive power of MASLD-S and individual
biochemical and anthropometric variables on MASLD status as defined by liver fat >5.5% in UK biobank. (B) Manhattan plot for the genome-wide
association study on MASLD defined as > 5.5% liver fat in UK biobank. (C) Genome-wide association study on MASLD score in UK biobank,
visualized using a Manhattan plot. (D) ALT associations from the genome-wide association study in UK biobank, visualized by a Manhattan plot.
(E) Q-Q plot for the genome-wide association studies on ALT, MASLD, and MASLD score, plotted together to visualize the differences in
significance obtained. y-axes in Manhattan plots are scaled for comparison between the 3 association studies. Abbreviations: BMI, body mass
index; FLI, fatty liver index; MASLD, metabolic dysfunction–associated fatty liver disease; MASLD-S, metabolic dysfunction–associated fatty liver
disease-score; TG, triglycerides; UKB, UK Biobank.
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* Gene list attached as supplementary table
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CDK2AP1
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(A) (B)Causality inference using genetic
colocalisation

e/sQTLs

F IGURE 2 Colocalization study of MASLD-S–associated SNPs in the UK Biobank. (A) Strategy for genetic colocalization studies to infer
causality of novel putative MASLD genes found from genome-wide association studies with metabolically active tissues in the GTEx (v8)
database. Liver enzymes include ALT, ALP, GGT and qnormALT_UKB, MRI/ML MRI_UKB and machine learning MRI, MASLD-S out novel
MASLD score, and the MASLD score from Miao and colleagues. (B) Overlap of genes with a significant liver eQTL/sQTL colocalization. GSEA
gene set enrichment analysis of colocalized genes can be found in Table 2. Full list of colocalizations can be found in Supplemental Table S5,
http://links.lww.com/HEP/I624. Abbreviations: cALT, chronic ALT (Alanine Transaminase); ML, machine learning; QTL, quantitative trait locus.
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TABLE 2 Results of pathway enrichment analysis for all colocalization signals obtained from MASLD-S associations studies, which demonstrate enrichment in primarily lipid and sterol
metabolism pathways

Gene set name [# Genes (K)] Description
# Genes in Overlap
(k) k/K p FDRq-value

GOBP_LIPID_HOMEOSTASIS [172] Any process involved in the
maintenance of an internal steady
state of lipid within an organism or cell.
[GOC:BHF, GOC:rl]

8 — 1.22 e-7 1.29 e-3

GOMF_OXIDOREDUCTASE_ACTIVI-
TY_ACTING_ON_PAIRED_DO-
NORS_WITH_OXIDATION_OF_A_-
PAIR_OF_DONORS_RESULTIN-
G_IN_THE_REDUCTION_OF_MOLE-
CULAR_OXYGEN_TO_TWO_MO_-
MOLECULES_OF_WATER [10]

Catalysis of an oxidation-reduction
(redox) reaction in which hydrogen or
electrons are transferred from each of
two donors, and molecular oxygen is
reduced to 2 molecules of water.
[GOC:mah]

3 — 4.22 e-6 2.22 e-2

GOBP_HOMEOSTATIC_PROCESS
[1690]

Any biological process involved in the
maintenance of an internal steady
state. [GOC:jl, ISBN:0395825172]

18 — 1.33 e-5 3.29 e-2

GOBP_STEROID_METABOLIC_PRO-
CESS [323]

The chemical reactions and pathways
involving steroids, compounds with a
1,2,
cyclopentanoperhydrophenanthrene
nucleus. [ISBN:0198547684]

8 — 1.35 e-5 3.29 e-2

GOBP_LIPID_METABOLIC_PROCESS
[1398]

The chemical reactions and pathways
involving lipids, compounds soluble in
an organic solvent but not, or
sparingly, in an aqueous solvent.
Includes fatty acids; neutral fats, other
fatty-acid esters, and soaps; long-
chain (fatty) alcohols and waxes;
sphingoids and other long-chain
bases; glycolipids, phospholipids and
sphingolipids; and carotenes,
polyprenols, sterols, terpenes, and
other isoprenoids. [GOC:ma]

16 — 1.75 e-5 3.29 e-2

GOCC_GAMMA_TUBULIN_COMPLEX
[16]

A multiprotein complex composed of
gamma-tubulin and other nontubulin
proteins. Gamma-tubulin complexes
are localized to microtubule organizing
centers, and play an important role in
the nucleation of microtubules. The
number and complexity of non-tubulin
proteins associated with these
complexes varies between species.
[GOC:clt, PMID:12134075]

3 — 1.94 e-5 3.29 e-2
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GOBP_STEROL_HOMEOSTASIS [100] Any process involved in the
maintenance of an internal steady
state of sterol within an organism or
cell. [GOC:BHF, GOC:rl]

5 — 2.19 e-5 3.29 e-2

GOBP_CHEMICAL_HOMEOSTASIS
[1027]

Any biological process involved in the
maintenance of an internal steady
state of a chemical. [GOC:
isa_complete]

13 — 4.07 e-5 4.83 e-2

GOBP_CELL_CYCLE [1847] The progression of biochemical and
morphological phases and events that
occur in a cell during successive cell
replication or nuclear replication
events. Canonically, the cell cycle
comprises the replication and
segregation of genetic material
followed by the division of the cell, but
in endocycles or syncytial cells nuclear
replication or nuclear division may not
be followed by cell division. [GOC:
go_curators, GOC:mtg_cell_cycle]

18 — 4.27 e-5 4.83 e-2

GOMF_STEROL_BINDING [59] Binding to a sterol, a steroid containing a
hydroxy group in the 3 position, closely
related to cholestan-3-ol. [GOC:mah]

4 — 4.59 e-5 4.38 e-2
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MASLD-S is the typically smaller p-value for these
associations, which is visualized by scaled y-axes on
Manhattan plots, and the 3 association studies plotted
in the same Q-Q plot, Figure 1E. Summary statistics for
significant associations can be found in Supplemental
Tables S1–S3, http://links.lww.com/HEP/I624.

To aid in inferring causality and to prioritize genes for
functional follow-up, we assessed GWAS SNPs asso-
ciated with liver fat percentage and common surrogates
through genetic colocalization to eQTL and sQTLs from
GTEx (v8) using our custom pipeline.[12] For this
analysis, we used our MASLD-S as well as a previously
published score, recently published data on liver
enzymes, chronically elevated ALT and MRI/machine
learning approaches to approximate MASLD
(Figure 2A) to explore the overlap between different
approaches to detect genetic associations and causal
genes for MASLD.[8,13–15] Genes demonstrating a
significant colocalization to the liver tissue in the GTEx
data base were prioritized.

Due to the relative paucity of GWAS data for liver fat
percentage, only 4 colocalizations were found for our
MRI/machine learning in liver: PNPLA3 (which is also
shared with all MASLD surrogate markers), CYP3A5,
ABHD12, and ENTPD6. In contrast, we observed
numerous colocalizations originating from GWAS of
MASLD surrogates, with sizable overlap between the
different surrogates, Figure 2B and Supplemental Table
S4, http://links.lww.com/HEP/I624. Numerous other
genes that have previously been suggested to influence
MASLD also show significant colocalization; eg, in or
near GPAM (ALT), AKNA (ALT and MASLD-S), and the
TNKS/PPP1R3B (ALT). VKORC1, a gene previously
associated with triglyceride levels and body fat distri-
bution, colocalizes with MASLD-S.[16,17] We then used
colocalized MASLD-S genes as input in a gene set
enrichment analysis pathway enrichment analysis,
and show that these genes are enriched in processes
related to lipid homeostasis, steroid and lipid

metabolism, and sterol homeostasis, Table 2. Colocal-
ized ALT genes, however, are primarily enriched in
processes pertaining to organelle organization, small
molecule metabolic processes, response to stress, and
lipid metabolism, Supplemental Table S5, http://links.
lww.com/HEP/I624. Importantly, our MASLD-S outper-
forms ALT in approximating liver fat > 5.5%, and
variants associated with MASLD-S more often co-
localize with lipid metabolism–related eQTLs in the liver
(n= 32 genes) than variants associated with ALT
(n= 12 genes). This provides a rationale for using
composite surrogate variables for GWAS of MASLD as
these may capture more of the biology of the disease
and provide better insight into the natural history of
MASLD than single biochemical surrogates.

Collectively, these data not only suggest that creating
composite surrogate markers for MASLD may be used
to identify putative MASLD genes when there is a
paucity of gold standard MRI data, but also that there
may be biological differences driving the different
associations with surrogate phenotypes, which has
implications for the pathogenesis of MASLD.

Establishing a HepaRG cell line suitable for
genome editing

To do functional follow-up studies following gene
knockdown experiments, we genetically engineered
HepaRG cells to stably express dCas9-KRAB, which
allows for CRISPRi. The introduction pHR-SFFV-
KRAB-dCas9-P2A-mCherry into HepaRG cells allows
for transcriptional interference of genes targeted by
sgRNAs by KRAB. The resulting cell line (dCas9-
KRAB-HepaRG) was used to characterize putative
MASLD genes. HepaRG cells underwent single-cell
RNA sequencing (scRNA-seq) to characterize the
model system and ensure that the introduction of
dCas9-KRAB does not alter the function and the ability
to differentiate HepaRG cells. dCas9-KRAB-HepaRG
cell line was efficiently differentiated using established
protocols (Figure 3A), did not differ at the transcriptome
level, assessed by scRNA-Seq, regardless of dCas9-
KRAB integration, and assumed a hepatocyte-like
phenotype on treatment with a differentiation media for
2 weeks (Supplemental Figure S1, http://links.lww.com/
HEP/I625).

Standard scRNA-seq quality control steps were
taken, and revealed that, on differentiation, HepaRG
cells increased their expression of mitochondrial genes,
while the overall number of genes expressed at
detectable levels was marginally decreased, Supple-
mental Figure S2, http://links.lww.com/HEP/I626. The
upregulation of mitochondrial genes was not surprising
as on differentiation, HepaRG cells have been docu-
mented to increase their metabolism while suppressing
proliferation. Clustering of single cells showed that there

TABLE 3 Presentation of the genes targeted in Perturb-seq
experiments to create and validate our functional genomic framework

Target genes Perturb-seq

C6orf106

GPAM

LYPLAL1

NCKIPSD

PNPLA3

PPP1R3B

RBM6

TNKS

TRIB1

VKORC1

WDR6
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scRNA-seq Characterisation of HepaRG cells

Single-cell RNA-Seq of HepaRG cells Differential Expression by clustering
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F IGURE 3 Characterization of a HepaRG model system that is genetically engineered to allow for CRISPRi gene-editing. (A) Description of
HepaRG culturing, indicating at which point scRNA-seq was used to characterize the model system. (B) Clustering by both genotype and
differentiation stage (temporal analysis along the differentiation axis). Data demonstrate that cells efficiently differentiate regardless of genotype
(dCas9-KRAB integration) and that cells remain in their differentiated phenotype two weeks after differentiation is complete. This allows for gene
editing after complete HepaRG differentiation. (C) Clustering of scRNA-seq data, where proliferative and differentiated cells are plotted together,
irrespective of genotype (dCas9-KRAB integration). Data show 11 different clusters divided over two distinct populations of cells. (D) Differential
gene expression analyses based on clustering in B. Clusters 1, 3, and 5 belong to undifferentiated cells, whereas the remaining clusters belong to
the differentiated HepaRG cells; genes involved in drug-metabolizing pathways, lipid metabolism, hemostasis, and albumin were significantly
upregulated in differentiated cells, particularly in clusters 0, 2, 4, 6 and 9. Lists for differentially expressed genes can be found in Supplemental
Table S6, http://links.lww.com/HEP/I624. (E) Clustering by differentiation status irrespective of genotype. Data demonstrate a perfect clustering of
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are no significant differences between wild type (Wt)
and genetically engineered dCas9-KRAB-HepaRG
cells (Figure 3B), and thus, all cells were analyzed
jointly.

Clustering with regard to single-cell transcriptomes of
Wt and dCas9-KRAB HepaRG cells revealed 11 distinct
clusters; clusters 1, 3, and 5 belong to undifferentiated
cells, whereas the remaining clusters belong to differ-
entiated HepaRG cells. Genes involved in the cell cycle,
G2M checkpoint, epithelial-mesenchymal transition,
and cell division are all more highly expressed in the
undifferentiated clusters. In contrast, genes involved in
drug-metabolizing pathways, lipid metabolism, hemo-
stasis, and albumin are significantly upregulated in
differentiated cells in clusters 0, 2, 4, 6, and 9
(Figure 3C-D, Supplemental Table S6, http://links.lww.
com/HEP/I624). It is expected that numerous cells
undergo apoptosis during the differentiation process.
In line with this, cells within clusters 8 and 10 express
genes involved in apoptosis, p53, and programmed cell
death (Figure 3D), Supplemental Table S6, http://links.
lww.com/HEP/I624. Cells within cluster 7 seem to
consist of a population of cells that may not be fully
differentiated, as they highly express some hepatocyte
and proliferative markers (Figure 3D and Supplemental
Table S6, http://links.lww.com/HEP/I624). In summary,
HepaRG cells are efficiently differentiated to a hepato-
cyte-like phenotype as the transcriptome of the cells
belonging to clusters 4, 6, 7, and 9 (> 50% of cells)
indicate a shift consistent with hepatocyte biology and
function.

Differentiated and proliferative HepaRG cells cluster
separately, as shown in Figure 3E. We compared the
differentiated and undifferentiated cell populations
based on a list of hepatocyte markers and the human
liver atlas,[18] regardless of their dCas9-KRAB status.
Differentiated cells demonstrate an increased expres-
sion of hallmark hepatocyte genes, including ALB,
CYP3A4, HP, and DPP4 (Figure 3F). The expression
of a list of hepatocyte genes involved in drug and lipid
metabolism was also increased compared to
undifferentiated cells (Figure 3G). Next, we analyzed
global differential gene expression. Gene set enrich-
ment analysis revealed that differentiated HepaRG cells
increase their expression of genes involved in metabolic
processes, both in lipid metabolism and the genes
within drug metabolism (Figure 3H, Supplemental
Figure S3A, B, http://links.lww.com/HEP/I627, and

Supplemental Table S7, http://links.lww.com/HEP/
I624).

CRISPRi screen and Perturb-seq implicate
putative causal genes in MASLD

We created a combinatory lipid accumulation-based
CRISPRi and Perturb-seq screen in the dCas9-KRAB-
HepaRG cell system to investigate putative MASLD
genes. We optimized the lipid accumulation-based
CRISPRi system by knocking down the lipid droplet–
associated protein PLIN2 to markedly reduce lipid
accumulation. dCas9-KRAB-HepaRG cells were trans-
duced with 3 sgRNAs targeting PLIN2 along with a
nontargeting sgRNA as a control, loaded with 400 µM
oleic acid for 24 hours. Next, neutral lipids were stained
using Bodipy. Lipid loading was significantly increased
after 24 hours of oleic acid treatment, and the efficiency
of the sgRNAs was confirmed (Figure 4A–C). mCherry/
BFP+/+ HepaRG cells were sorted with regard to lipid
content after 10 days of gene editing, and genomic DNA
was isolated in the most and least lipid-laden cells (the
20th percentile in either tail) (Figure 4D, E). Sequencing
of genomic DNA from the most and least of lipid loaded
HepaRG cells, as measured by Bodypi staining,
revealed a significant enrichment of PLIN2 sgRNAs in
the least lipid-laden cells, indicating that PLIN2 knock-
down indeed impairs lipid accumulation (Figure 4F, G).
This experiment served as a proof-of-principle for our
CRISPRi screen, which included sgRNAs targeting a
small selection of putative MASLD genes, selected
based on our human molecular genetic analyses.

Eleven known and putative MASLD genes were
selected for tandem CRISPRi and Perturb-seq to
explore their role in MASLD development, as measured
by HepaRG lipid accumulation and single-cell transcrip-
tional changes. The genes were selected based on (1)
their robustness of association to MASLD (amount of
evidence if known MASLD gene), (2) emerging evi-
dence for an association without functional validation,
and (3) new association with MASLD-S that also
demonstrates association to other cardiometabolic
traits. The genes can be found in Table 2. Next,
sgRNAs directed toward selected MASLD genes were
transduced in differentiated dCas9-expressing HepaRG
cells for a tandem CRISPRi and Perturb-seq experiment
(Figure 5A).

HepaRG cells by their differentiation status. (F) Expression of hepatocyte hallmark genes ALB, CYP3A5, HP-1, and DPP4. Data show an
upregulation of these genes on differentiation. (G) Differential expression analyses of genes suggested to define hepatocytes from “the human
liver atlas.” Data show that the transcriptional program thought to define hepatocytes is enhanced on differentiation. (H) Global differential
expression analyses by differentiation status. Genes upregulated by differentiation are enriched in processes related to small molecule and lipid
metabolic processes, mitochondrial processes, and electron transport chain (Supplemental Table S10, http://links.lww.com/HEP/I624). Complete
lists of differentially expressed genes can be found in Supplemental Table S7, http://links.lww.com/HEP/I624. Abbreviations: scRNA, single-cell
RNA sequencing; UMAP, uniform manifold approximation and projection.
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HepaRG cells pre-lipid loading HepaRG cells post-lipid loading(A)
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F IGURE 4 Establishment of, and control experiments in a HepaRG cell CRISPRi gene-editing model system with lipid accumulation as
readout. (A) Micrographs showing that lipid loading using 400 µM of oleic acid results in significant formation of large lipid droplets. (B) Lipid loaded
HepaRG cells were stained with 1 µg/mL Bodipy and analyzed using flow cytometry. Data show that lipid loading (blue histogram) increases the
content of neutral lipids within the HepaRG cell compared to non-loaded control cells (red histogram). (C) PLIN2 was knocked down as a proof-
of-principle experiment. PLIN2 expression was efficiently silenced in our dCas9-KRAB expressing HepaRG cells, and sgRNAs from the v2
Weissman library. (D) Representative gates for sorting gene-edited HepaRG cells (blue), and an untransduced control, negative for both mCherry
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Cells were loaded with oleic acid and then sorted
based on mCherry/BFP+/+, and their lipid accumulation
was measured by Bodipy staining. Sequencing of
genomic DNA from either extreme population with
regard to lipid accumulation (approximately top/bottom
15%) revealed that VKORC1 and TNKS sgRNAs are
enriched in the bottom population, whereas GPAM and
LYPLAL1 sgRNAs are enriched in the top population.
This suggests that VKORC1 and TNKS knockdown
reduces lipid accumulation, whereas GPAM and
LYPLAL1 knockdown increases lipid accumulation
(Figure 5B).

In parallel to the lipid accumulation-based CRISPRi
screen, we produced single-cell transcriptomes from all
perturbations. The experiment was performed in a total
of five 10× genomics single-cell captures, from 2
biological replicates. Single-cell transcriptomes were
analyzed using Seurat, and the general quality control
data is visualized in Supplemental Figure S3A, http://
links.lww.com/HEP/I627. While there was no clustering
by replicate or sgRNA identity, perturbations produced
by the sgRNAs are consistently efficient and specific as
only the intended target gene is significantly knocked
down (Figure 5C–E). VKORC1 knockdown produced
the most striking transcriptional changes and will be
discussed in detail below. GPAM knockdown resulted in
a downregulation of genes enriched in oxidative
phosphorylation and RNA transcription pathways, while
the upregulated genes were enriched in pathways
pertaining cellular stress, glycolysis, apoptosis, and cell
cycle (Supplemental Table S8, http://links.lww.com/
HEP/I624). LYPLAL1 knockdown resulted in the down-
regulation of genes involved in interferon-response,
adipogenesis, and oxidative phosphorylation, among
others. Genes upregulated by LYPLAL1 knockdown are
enriched in metabolism of heme and blood vessel
formation (Supplemental Table S8, http://links.lww.com/
HEP/I624). We found pathway enrichments in adipo-
genesis, HDL, and chylomicron metabolism, and estro-
gen response among genes downregulated on TNKS
knockdown. Differential gene expression for all pertur-
bations are visualized as heatmaps in Supplemental
Figure S4, http://links.lww.com/HEP/I628, and Supple-
mental Table S8, http://links.lww.com/HEP/I624).

While we decided to focus on the target gene
VKORC1—because of its novelty and significant impact
on lipid accumulation—we validate one gene (GPAM)

influencing lipid accumulation in the opposite direction
to VKORC1 in HepaRG cells. We knocked down GPAM
using single sgRNA transductions, and recapitulated
the findings from the lipid accumulation-based CRISPRi
screen, where GPAM knockdown results in an increase
in lipid accumulation (Supplemental Figure S5A–D,
http://links.lww.com/HEP/I629).

VKORC1 is involved in the development
and progression of hepatosteatosis

Differential gene expression as a result of VKORC1
knockdown was investigated over the 2 replicates of
Perturb-seq experiments using the scMAGeCK pack-
age in R. All differentially expressed genes from 2
replicates were investigated for gene set enrichment,
and results show that genes enriched in lipid metabolic
pathways are downregulated on VKORC1 knockdown
(Figure 5F, G and Supplemental Tables S9–S11,
http://links.lww.com/HEP/I624). Further, agnostic dif-
ferential gene expression analyses demonstrate that
VKORC1 knockdown alters the expression of a set of
genes related to liver lipid metabolism and insulin
resistance (Supplemental Figure S5E, http://links.lww.
com/HEP/I629). Specifically, under VKORC1 knock-
down conditions, there is a trend for reduced expres-
sion in cells of genes involved in lipoprotein production
and secretion (DGAT1, DGAT2, APOB, APOC1, and
MTTP) and of the lipid accumulation marker PLIN2.
Our scRNA-seq data reinforces the notion that
VKORC1 may influence lipid accumulation and PLIN2
expression since there is a correlation between PLIN2
and VKORC1 expression in cells transduced with
nontargeting sgRNAs in our Perturb-seq experiments
(Supplemental Figure S5F, G, http://links.lww.com/
HEP/I629).

We construct a protein-protein interaction network
using BioGRID to explore what proteins might interact
with VKORC1. Analyses reveal that there is a physical
interaction with apolipoproteins, which reinforces the
notion that VKORC1 may have a previously unexplored
role in liver lipid metabolism (Supplemental Figure S6A,
http://links.lww.com/HEP/I630). We investigate gene
set enrichment of all VKORC1 interactors, and enrich-
ments were found in processes pertaining to lipid
homeostasis, oxidoreductase activity, lipid metabolic

and BFP (red). The Q2 gate contains the gene-edited cells, which express dCas9-KRAB and have been efficiently transduced with sgRNAs. (E)
Gene-edited HepaRG cells from Q2 were sorted based on their Bodipy content; approximately the top and bottom 18% of cells were sorted, and
gDNA was prepared from both extreme populations. gDNA was then sequenced using NGS. (F–G) By assessing the enrichment of PLIN2
sgRNAs in the cell population with the least intracellular lipids, we find a 2–3 times enrichment of PLIN2 sgRNAs compared to nontargeting
sgRNAs. As one would expect, these data demonstrate hampered lipid accumulation in HeapRG cells that do not express PLIN2. The casTLE
pipeline was also piloted for this purpose, and analyzed data recapitulates simple sgRNA counting and fold change calculations in that we show a
2 times enrichment of PLIN2 sgRNAs in the least lipid-laden cells compared to what one would expect by chance. Data show that the model
system can provide useful information on the effect of genes on lipid accumulation in HepaRG cells, and show that appropriate analysis methods
are employed. Abbreviation: sgRNA, small guide RNA.
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Tandem lipid-based CRISPRi and Perturb-seq
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F IGURE 5 Tandem lipid-based CRISPRi and Perturb-seq in HepaRG cells to explore the involvement of genes, suggested by human
molecular genetics, in MASLD pathogenesis. (A) Experimental outline of tandem CRISPRi and Perturb-seq in HepaRG cells. HepaRG cells were
harvested on day 42 of culturing, as per the protocol described in Figure 3A. (B) Volcano plot, following sequencing of gDNA in the most and least
lipid-laden HepaRG cells, where casTLE effect and score are plotted against each other. Data demonstrate that the knockdown of VKORC1 and
TNKS results in less intracellular lipids. Conversely, the knockdown of genes GPAM and LYPLAL1 increases intracellular lipids. (C, D) Perturb-seq
is performed in parallel to our lipid accumulation-based CRISPRi to explore the transcriptomic profiles resulting from a gene knockdown. No major
changes in the clustering of gene-edited cells by replicate and sgRNA identity is observed. Data show that replicates are very similar, and sgRNAs
have modest effects on the transcriptome that causes the cells to cluster separately. (E) Dotplot is visualizing that the knockdown of sgRNAs
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processes, and sterol homeostasis (Supplemental
Table S11, http://links.lww.com/HEP/I624).

We next performed knockdown experiments of
VKORC1 in HepaRG cells using single sgRNA trans-
ductions to confirm our observations from single-cell
CRISPRi screens, with a nontargeting sgRNA as control.
The knockdown was confirmed using RT-quantitative
polymerase chain reaction against VKORC1 (Figure 6A).
We recapitulated the in vitro phenotype observed in the
single-cell CRISPRi screens, where the reduction of
VKORC1 expression brought about a reduction in PLIN2
expression, accompanied by a reduction in lipid accu-
mulation as measured by Bodipy using flow cytometry
and confocal microscopy (Figure 6B–E).

To better understand the role of VKORC1 expression
in human MASLD, we investigated publicly available
data on VKORC1 transcript levels in a cohort of 78
human livers encompassing the entire spectrum of
MASLD. Our analyses suggest a positive association
between MASLD activity score, steatosis, and inflam-
mation with VKORC1 expression (Figure 6F–H). These
data suggest that VKORC1 is involved in the initiation of
MASLD; however, VKORC1 does not seem to the
primary driver of the progression of disease as
transcript levels only increase over the lowest grade of
disease, and not as grades of disease progress.

We explored the co-expression patterns of VKORC1
and transcripts of a selection of genes involved in lipid
metabolism and fibrosis that are thought to drive
disease progression in healthy human liver. Co-expres-
sion patterns suggest that VKORC1 expression corre-
lates with the expression of genes involved in uptake of
lipids, as well as in intracellular fatty acid and
triglyceride synthesis. Further, VKORC1 mRNA levels
are correlated with transcript levels of collagen and
TGFβ, which are genes known to promote fibrosis
(Supplemental Figure S7A, http://links.lww.com/HEP/
I631). VKORC1 was negatively correlated with genes
involved in the mobilization of lipids from hepatocytes;
MTTP and SREBF1, suggesting that VKORC1 expres-
sion promotes the intracellular accumulation of lipids in
human liver. Collectively, several lines of suggestive
data indicate that VKORC1 may be involved in the initial
stages of MASLD natural history.

The in vitro MASLD phenotype is also recapitulated
in mice fed a high-fat diet for 30 weeks, known to induce
MASLD, where both Vkorc1 and Plin2 expression is
concomitantly increased in animals on high-fat diet
(Supplemental Figure S6B, http://links.lww.com/HEP/
I630).

Further exploration of genetic data and PheWAS
revealed a large Lipid droplet-block in the MASLD-S–
associated VKORC1 locus, and that the MASLD-S
reducing A allele of lead single nucleotide polymor-
phism rs9934438 is also associated with reduced lower
hip and waist circumference, BMI, and numerous fat
mass phenotypes (Supplemental Figure S8A, B, http://
links.lww.com/HEP/I632). The rs9934438 A allele also
shows a protective association with biomarkers of
cardiometabolic disease, including lower plasma trigly-
cerides, ApoB, HbA1c, and higher HDL and ApoA
(Supplemental Figure S8B, http://links.lww.com/HEP/
I632). Finally, the rs9934438 A allele is associated with
a lower VKORC1 expression in the liver (GTEx v8
database), reinforcing the observed relationship be-
tween VKORC1 and an in vitro MASLD phenotype, as
well as the phenotype obtained from in vivo models of
disease (Supplemental Figure S8C, http://links.lww.
com/HEP/I632).

In summary, we have demonstrated the usefulness
of using MASLD-S as a surrogate marker for MASLD,
prioritized candidate MASLD genes from past and
present studies using a custom genetic colocalization
analysis for functional follow-up. After assigning puta-
tive causal genes for functional follow-up coming from
GWAS for different MASLD surrogates, we performed a
functional CRISPRi screen for lipid accumulation and
Perturb-seq transcriptional analysis at a single-cell
level, which constitutes a functional genomic framework
and allows for interrogation of putative MASLD genes at
scale. By using our functional genomics framework,
originating from human genetics, moving to functional
in vitro studies, and later to murine and human disease,
we propose that VKORC1 is implicated in the patho-
genesis of MASLD. Our data suggest that VKORC1
expression is associated with the increase in intra-
cellular accumulation of lipids, and thereby drives the
intiation of MASLD development. Investigations can
now be expanded to interrogate a large selection of
putative causal MASLD genes to further determine the
molecular landscape of disease development and
progression.

DISCUSSION

In the present study, we generate a MASLD-S that
outperforms single variable surrogates when validated
against “ground truth” MASLD as defined by >5.5%
liver fat obtained from proton density fat fraction from

targeting the selected genes is efficient and specific as demonstrated by the blue dots along the diagonal. (F, G) Differential gene expression
analyses on VKORC1 knockdown are carried out using the scMaGeCK R-package, and differentially expressed genes are plotted in a
representative heatmap. Results reveal that VKORC1 knockdown changes the transcriptional landscape, and reduces the gene expression of
genes involved in lipid metabolism, Golgi and ER, as well as homeostatic processes. Complete results of differentially expressed genes for all
perturbations can be found in Supplemental Figure S4, http://links.lww.com/HEP/I628, and Supplemental Table S8, http://links.lww.com/HEP/
I624. Abbreviations: sgRNA, small guide RNA; UMAP, uniform manifold approximation and projection.
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MRI images in the UKB. By using a new surrogate
marker of MASLD for our GWAS, together with
colocalization analyses of previous GWAS, we expand
the knowledge on the genetic susceptibility to MASLD.
We create a functional genomic framework to validate
putative MASLD genes and explore the role of a subset
of genes on hepatocyte lipid accumulation, single-cell
transcriptomes, and murine and human disease.

GWAS have been useful in the identification of
common susceptibility variants for various cardiometa-
bolic traits. However, GWAS for MASLD have remained
small and underpowered, and therefore, surrogate
markers of MASLD have been extensively used, all
with their strengths and drawbacks. The FLI does not
seem to outperform waist circumference in predicting
MASLD,[4] MASLD may be present without ALT
elevation,[19,20] and high ALT levels could reflect a
myriad of liver insults. Thus, FLI and ALT may constitute
poor surrogates for MASLD. Our MASLD-S might not
only reflect metabolic liver disease but also an insulin
resistance phenotype as the score takes into account
waist circumference, BMI, HbA1c, and triglyceride
levels, which are all also associated with insulin
resistance. By integrating anthropometric and bio-
chemical data into a single score, we sought to capture
the global etiology of MASLD given its correlation with
dyslipidemia, type II diabetes, and obesity. We out-
perform ALT levels in predicting liver fat in the UKB;
however, mitigation of the drawbacks of using ALT
measurements as surrogate for MASLD could be
achieved by using chronic ALT elevation, which has
been described elsewhere.[14] We find several overlaps
in the genetic colocalizations between several MASLD
surrogates, which suggests that these surrogates
capture a common part of the disease etiology, but
also may reflect different aspects of the natural history
of MASLD.

We created a HepaRG cell model system suitable for
large-scale CRISPRi screening and Perturb-seq to
explore putative MASLD genes. We selected a group of
both previously associated (PNPLA3, TNKS/PPP1R3B,
GPAM, LYPLAL1, TRIB1) and novel or less established
(WDR6, VKORC1, RBM6, NCKIPSD, C6orf106) MASLD
candidate genes to establish a functional genetic frame-
work to interrogate new potential disease genes at scale.
We screened the selected genes for their influence on

hepatocyte lipid accumulation in our in vitro gene-editing
system, and generated single-cell transcriptomes for
these CRISPR-based knockdown perturbations. Our data
suggest the involvement of VKORC1 and TNKS
(increased lipid content), LYPLAL1 andGPAM (decreased
lipid content) on lipid accumulation in hepatocytes, which
we further validated for VKORC1 and GPAM. The latter is
a well-established MASLD locus whose loss-of-function
has been suggested to reduce MASLD, and its knock-
down resulted in increased lipid accumulation in HepaRG
cells. However, conflicting data do exist with regard to the
protective effects of GPAM KO.[21] It is well known that
GPAM is involved in the TAG synthesis (forming mono-
acyl glycerol). The effects we see on GPAM KD could
arise due to the experimental conditions under which
these experiments have been conducted. The increased
neutral lipid staining may come from the lipid overload in
this setting that increases uptake, FA synthesis and
reduced lipid excretion. This may be supported by the
concomitant reduction in APOB and increase in FASN
mRNA expression (Supplemental Figure S5E, http://links.
lww.com/HEP/I629). This would facilitate less production
of triglyceride-rich lipoprotein particles for excretion, and
increased fatty acid synthesis. Further, it is known that
Gpat1 KO results in increased Acyl-CoAs,[22,23] which we
cannot exclude influencing the lipid accumulation (Bodipy)
readout. To speculate, the explanation of this phenome-
non could be that GPAM KD cells compensate for the
inability to form new triacylglycerol molecules by excreting
less triglyceride-rich lipoproteins, and synthesizing and
taking up more free fatty acids. The unexpected results
that GPAM KD resulted in increased lipid accumulation
under lipid loading conditions may be explaint by this
compensatory mechanism when triacylglycerol synthesis
is hampered. In contrast, VKORC1 knockdown resulted in
less lipid accumulation, possibly mediated by lower PLIN2
levels. The knockdown of VKORC1 also resulted in the
perturbation of the transcriptional landscape of lipid
metabolism, and insulin resistance genes like PNPLA2
(upregulation), and G6PC, PLIN2, and INSR (down-
regulation) were dysregulated. Finally, we explored the
mRNA expression of VKORC1 in a murine model of
disease, where VKORC1 expression consistently was
increased on high-fat diet. We strengthen the notion that
low VKORC1 expression may be protective of human
disease development by exploring the expression levels in

F IGURE 6 Validation experiments of VKORC1 knockdown in differentiated HepaRG cells and the relationship between VKORC1 transcript
and human disease. (A) Single sgRNA knockdown of VKORC1 in differentiated HepaRG cells results in a significant knockdown of the VKORC1
transcript as measured by qPCR. Concomitant with VKORC1 knockdown, we demonstrate a significant downregulation of the PLIN2 transcript. (B,
C) VKORC1 knockdown results in the reduction of intracellular neutral lipids by Bodipy staining and flow cytometric analysis. (D, E) Confocal
microscopy of HepaRG cells on VKORC1 knockdown shows a significant reduction in Bodipy neutral lipid staining, lipid droplet number, lipid
droplet area, and PLIN2 positive area. (F–H) By exploring VKORC1 expression levels in different stages of human disease we demonstrate an
upregulation of the VKORC1 transcript in livers of a higher degree of metabolic dysfunction–associated fatty liver disease activity score, steatsis,
and inflammation. N for experimental data is 6–7 replicates, Ordinary one-way ANOVA was performed to compare the nontargeting sgRNA with
the VKORC1 targeting sgRNAs. Total n for human liver samples is 78. * p <0.05, ** p<0.01, ***p<0.001, ****p< 0.0001. Abbreviations: KD,
knockdown; LD, lipid droplet; NT, non-targeting; qPCR, quantitative polymerase chain reaction; sgRNA, small guide RNA.
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relation to the degree of steatosis, MASLD activity score,
and inflammation. By using humanmolecular genetics, we
demonstrated that the MASLD-S lowering single nucleo-
tide polymorphism rs9934438 also improves other anthro-
pometric and biochemical cardiometabolic traits, while
lowering the expression of the VKORC1 transcript.
Collectively, this suggests a protective role of low
VKORC1 expression in MASLD.

VKORC1 is known to reduce vitamin K to its active
form, which promotes the formation of functional clotting
factors from proclotting factors. This process is inhibited
by warfarin and ultimately results in reduced activation
of coagulation factors IX, VII, and prothrombin, which is
how warfarin exerts its antithrombotic effects.[24] Some
studies have indeed described an association between
thrombotic risk factors and the extent of fibrosis in
MASLD.[25] Similarly, researchers have found
elevated and increased activity of coagulation factors in
MASLD.[26] Likewise, it has been observed that there
is a higher-than-expected prevalence of MASLD in
patients suffering from idiopathic venous thromb-
oembolism.[27] However, to the best of our knowledge,
we provide the first data implicating VKORC1 in the
hepatocyte lipid metabolism, that is also reflected in
VKORC1 expression levels in murine and human
disease.

Several genetic variants in the VKORC1 locus have
been described to influence patients’ response to
warfarin treatment.[28] However, to the best of our
knowledge, no genetic variants in this locus have been
described to influence MASLD. By using a composite
variable as a proxy for MASLD, we may capture more of
the genetic variability contributing to MASLD, than when
using single surrogate variables. We may capture more
of the metabolic phenotype of MASLD than if only ALT
levels had been used since the MASLD-S is made up of
liver enzymes, biochemical, and anthropometric varia-
bles that are highly correlated with MASLD, obesity, and
diabetes. Interestingly, GWAS for BMI,[29] triglycerides
LDL, total cholesterol, and HDL[16] have identified
genetic signals in the VKORC1 locus, and we find
strong colocalization signals for VKORC1 in the liver
(Supplemental Figure S8, http://links.lww.com/HEP/
I632). Moreover, human PheWAS data show a
strong association with BMI, triglycerides, and HDL
(among other cardiometabolic values) between variants
in VKORC1, including a splice donor variant
(rs2884737). These data support our transcriptional
data that show a dysregulation of lipid metabolism
genes on VKORC1 knockdown, and our protein-protein
interaction network suggests a role for VKORC1 in lipid
and cholesterol metabolism.

Collectively, present and previous data provide a
potential rationale for the involvement of VKORC1 in the
pathogenesis of MASLD through the regulation of lipid
accumulation and cholesterol metabolism in human
hepatocytes. To the best of our knowledge, we provide

the first experimental evidence suggesting VKORC1 as
a MASLD susceptibility gene.

In summary, we have expanded our knowledge of
the genetic susceptibility for MASLD by using GWA and
genetic colocalization studies of surrogate markers of
MASLD. Above all, we have established a functional
genomic framework to study putative MASLD genes at
scale. Large-scale CRISPRi screens have not only
paved the way to study genes involved in various
cardiometabolic phenotypes,[30] but also intricate multi-
dimensional gene cellular functions. Our efforts have
implicated the VKORC1 gene in the pathogenesis of
MASLD. Taken together, this study provides a sound
rationale for use of CRISPRi screens to delineate the
roles of known and new putative causal risk genes for
both MASLD, and other cardiometabolic traits.

Limitations

This work was conceived and executed before the
change in guidelines, and nomenclature from NAFLD to
MASLD as per the Delphi consensus statement
published in December 2023.[31] Admittedly, adopting
a simple 5.5% liver fat from MRI images in nonmoderate
and moderate drinkers as a definition of MASLD
constitutes a limitation. Adopting a 5.5% liver fat cutoff
from MRI images was motivated as a measure of being
conservative with regard to MASLD diagnosis. This
may, naturally, have influenced these results as the
number of MASLD diagnoses is lower than had a 5%
cutoff been adopted. The approximation of the MASLD-
S is directly influenced by this cutoff and, therefore, also
downstream analyses. While the discovery of VKORC1
as a novel MASLD gene was made in vitro, which can
be viewed as a limitation, the strength of this transla-
tional framework lies within the replication of VKORC1
across species, and from human hepatocytes to liver
tissue. Finally, the effect of VKORC1 on adiposity,
insulin resistance, and dyslipidemia, which mediates
the influence on MASLD, cannot be excluded.
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