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ABSTRACT
Restriction-site associated DNA sequencing (RADseq) has become a powerful and
useful approach for population genomics. Currently, no software exists that uti-
lizes both paired-end reads from RADseq data to efficiently produce population-
informative variant calls, especially for non-model organisms with large effective
population sizes and high levels of genetic polymorphism. dDocent is an analysis
pipeline with a user-friendly, command-line interface designed to process individ-
ually barcoded RADseq data (with double cut sites) into informative SNPs/Indels
for population-level analyses. The pipeline, written in BASH, uses data reduction
techniques and other stand-alone software packages to perform quality trimming
and adapter removal, de novo assembly of RAD loci, read mapping, SNP and Indel
calling, and baseline data filtering. Double-digest RAD data from population pair-
ings of three different marine fishes were used to compare dDocent with Stacks, the
first generally available, widely used pipeline for analysis of RADseq data. dDocent
consistently identified more SNPs shared across greater numbers of individuals and
with higher levels of coverage. This is due to the fact that dDocent quality trims
instead of filtering, incorporates both forward and reverse reads (including reads
with INDEL polymorphisms) in assembly, mapping, and SNP calling. The pipeline
and a comprehensive user guide can be found at http://dDocent.wordpress.com.

Subjects Bioinformatics, Genomics, Marine Biology, Molecular Biology
Keywords RADseq, Population genomics, Bioinformatics, Molecular ecology,
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INTRODUCTION
Next-generation sequencing (NGS) has transformed the field of genetics into genomics

by providing DNA sequence data at an ever increasing rate and reduced cost (Mardis,

2008). The nascent field of population genomics relies on NGS coupled with laboratory

methods to reproducibly reduce genome complexity to a few thousand loci. The most

common approach, restriction-site associated DNA sequencing (RADseq), uses restriction

endonucleases to randomly sample the genome at locations adjacent to restriction-enzyme

recognition sites that, when coupled with Illumina sequencing, produces high coverage

of homologous SNP (Single Nucleotide Polymorphism) loci. As such, RADseq provides a

powerful method for population level genomic studies (Ellegren, 2014; Narum et al., 2013;

Rowe, Renaut & Guggisberg, 2011).
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The original RADseq approach (Baird et al., 2008; Miller et al., 2007), and initial

population genomic studies employing it (Hohenlohe et al., 2010), focused on SNP

discovery and genotyping on the first (forward) read only. This is because the original

RADseq method (Baird et al., 2008; Miller et al., 2007) utilized random shearing to

produce RAD loci; paired-end reads were not of uniform length or coverage, making it

problematic to find SNPs at high and uniform levels of coverage across a large proportion

of individuals. As a result, the most comprehensive and widely used software package for

analysis of RADseq data, Stacks (Catchen et al., 2013; Catchen et al., 2011), provides SNP

genotypes based only on first-read data. In contrast, RADseq approaches such as ddRAD

(Peterson et al., 2012), 2bRAD (Wang et al., 2012), and ezRAD (Toonen et al., 2013) rely

on restriction enzymes to define both ends of a RAD locus, largely producing RAD loci

of fixed length (flRAD). Paired-end Illumina sequencing of flRAD fragments provides an

opportunity to significantly expand the number of SNPs that can be genotyped from a

single RADseq library.

Here, the variant-calling pipeline dDocent is introduced as a tool for generating

population genomic data; a brief methodological outline of the analysis pipeline also

is presented. dDocent is a wrapper script designed to take raw flRAD data and produce

population informative SNP calls (SNPs that are shared across the majority of individuals

and populations), taking full advantage of both paired-end reads. dDocent is configured

for organisms with high levels of nucleotide and I polymorphisms, such as are found

in many marine organisms (Guo, Zou & Wagner, 2012; Keever et al., 2009; Sodergren et al.,

2006; Waples, 1998; Ward, Woodwark & Skibinski, 1994); however, the pipeline also can

be adjusted for low polymorphism species. As input, dDocent takes paired FASTQ files

for individuals and outputs raw SNP and I calls as well as filtered SNP calls in VCF

format. The pipeline and a comprehensive online manual can be found at (http://dDocent.

wordpress.com). Finally, results of pipeline analyses, using both dDocent and Stacks, of

populations of three species of marine fishes are provided to demonstrate the utility of

dDocent compared to Stacks, the first and most comprehensive, existing software package

for RAD population genomics.

METHODS
Implementation and basic usage
The dDocent pipeline is written in BASH and will run using most Unix-like operating

systems. dDocent is largely dependent on other bioinformatics software packages, taking

advantage of programs designed specifically for each task of the analysis and ensuring that

each modular component can be updated separately. Proper implementation depends on

the correct installation of each third-party packages/tools. A full list of dependencies can

be found in the user manual at (http://ddocent.wordpress.com/ddocent-pipeline-user-

guide/) and a sample script to automatically download and install the packages in a

Linux environment can be found at the dDocent repository (https://github.com/jpuritz/

dDocent).
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dDocent is run by simply switching to a directory containing input data and starting the

program. There is no configuration file, and dDocent will proceed through a short series

of command-line prompts, allowing the user to establish analysis parameters. After all

required variables are configured, including an e-mail address for a completion notifica-

tion, dDocent provides instructions on how to move the program to the background and

run, undisturbed, until completion. The pipeline is designed to take advantage of multiple

processing-core machines and, whenever possible, processes are invoked with multiple

threads or occurrences. For most Linux distributions, the number of processing cores

should be automatically detected. If dDocent cannot determine the number of processors,

it will ask the user to input the value.

There are two distinct modules of dDocent: dDocent.FB and dDocent.GATK.

dDocent.FB uses minimal, BAM-file preparation steps before calling SNPs and Is,

simultaneously using FreeBayes (Garrison & Marth, 2012). dDocent.GATK uses GATK

(McKenna et al., 2010) for I realignment, SNP and I genotyping (using

HaplotypeCaller), and variant quality-score recalibration, largely following GATK Best

Practices recommendations (Van der Auwera et al., 2013; DePristo et al., 2011). The

modules represent two different strategies for SNP/I calling that are completely

independent of one another. Currently, dDocent.FB is easier to implement, substantially

faster to execute, and depends on software that is commercially unrestricted; consequently,

the remainder of this paper focuses on dDocent.FB. Additional information on dDo-

cent.GATK may be found in the user guide.

Data input requirements
dDocent requires demultiplexed forward and paired-end FASTQ files for every individual

in the analysis (flRAD data only). A simple naming convention (a single-word locality

code/name and a single-word sample identifier separated by an underscore) must be fol-

lowed for every sample; examples are LOCA IND01.F.fq and LOCA IND01.R.fq. A sample

script for using a text file containing barcodes and sample names and process radtags from

Stacks (Catchen et al., 2013) to properly demultiplex samples and put them in the proper

dDocent naming convention, can be found at the dDocent repository (https://github.com/

jpuritz/dDocent).

Quality trimming
After dDocent checks that it is recognizing the proper number of samples in the current

directory, it asks the user if s/he wishes to proceed with quality trimming of sequence

data. If directed, dDocent can use the program Trim Galore! (http://www.bioinformatics.

babraham.ac.uk/projects/trim galore/) to simultaneously remove Illumina adapter

sequences and trim ends of reads of low quality. By default, Trim Galore! looks for

double-digest RAD adapters (Peterson et al., 2012) and trims bases with quality scores

less than PHRED 10 (corresponding to a 10% chance of error in the base call). The

read mapping and variant calling steps of dDocent account for base quality, so minimal

trimming of the data is needed. Typically, quality trimming only needs to be performed

once, so the option exists to skip this step in subsequent dDocent analyses.
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Figure 1 Levels of coverage for each unique read in the red snapper data set. The horizontal axis
represents the minimal level of coverage, while the vertical axis represents the number of unique paired
reads in thousands.

De novo assembly
Without reference material, population genomic analyses from RADseq depend on de

novo assembly of a set of reference contigs. Intrinsically, not all RAD loci appear in all

individuals due to stochastic processes inherent in library preparation and sequencing and

to polymorphism in restriction-enzyme restriction sites (Catchen et al., 2011). Moreover,

populations can contain large levels of within-locus polymorphism, making generation

of a reference sequence computationally difficult. dDocent minimizes the amount of data

used for assembly by taking advantage of the fact that flRAD loci present in multiple

individuals should have higher levels of exactly matching reads (forward and reverse) than

loci that are only present in a few individuals. Caution is advised for unique reads with

low levels of coverage throughout the data set as they likely represent sequencing errors or

polymorphisms that are shared only by a few individuals.

In the first step of the assembly process, untrimmed, paired-end reads are reverse com-

plemented and concatenated to forward reads. Unique paired reads are identified and their

occurrences are counted in the entire data set. These data are tabulated into the number of

unique reads per levels of 1X to 50X coverage; a graph is then generated and printed to the

terminal. The distribution usually follows an asymptotic relationship (Fig. 1), with a large

proportion of reads only having one or two occurrences, meaning they likely will not be

informative on a population scale. Highly polymorphic RAD loci still should have at least

one allele present at the level of expected sequence coverage, so this can be used as a guide

for informative data. The user chooses a cut-off level of coverage for reads to be used for

assembly—note that all reads are still used for subsequent steps of the pipeline.

Puritz et al. (2014), PeerJ, DOI 10.7717/peerj.431 4/14

https://peerj.com
http://dx.doi.org/10.7717/peerj.431


After a cut-off level is chosen, remaining concatenated reads are divided back into

forward- and reverse-read files and then input directly into the RADseq assembly program

Rainbow (Chong, Ruan & Wu, 2012). The default parameters of Rainbow are used except

that the maximum number of mismatches used in initial clustering is changed from four

to six to help account for highly polymorphic species with large effective population sizes.

In short, Rainbow clusters forward reads based on similarity; clusters are then recursively

divided, based on reverse reads, into groups representing single alleles. Reads in merged

clusters are then assembled using a greedy algorithm (Pop & Salzberg, 2008). dDocent

then selects the longest contig for each cluster as the representative reference sequence for

that RAD locus. If the forward read does not overlap with the reverse read (almost always

the case with flRAD), the forward read is concatenated to the reverse read with ten ‘N’

characters as padding to represent the unknown insert. If forward and reverse reads do

overlap, then a full contig is created without N padding. Finally, reference sequences are

clustered based on overall sequence similarity (chosen by user, 90% by default), using the

program CD-HIT (Fu et al., 2012; Li & Godzik, 2006). This final cluster step reduces the

data set further, based on overall sequence identity after assembly. Alternatively, de novo

assembly can be skipped and the user can provide a FASTA file with reference sequences.

Read mapping
dDocent uses the MEM algorithm (Li, 2013) of BWA (Li & Durbin, 2009; Li & Durbin,

2010) to map quality-trimmed reads to the reference contigs. Users can deploy the default

values of BWA or set an alternative value for each mapping parameter (match score,

mismatch score, and gap-opening penalty). The default settings are meant for mapping

reads to the human genome, so users are encouraged to experiment with mapping

parameters. BWA output is ported to SAMtools (Li et al., 2009), saving disk space, and

alignments are saved to the disk as binary alignment/Map (BAM). BAM files are then

sorted and indexed.

SNP and INDEL discovery and genotyping
dDocent uses a two-step process to optimize the computationally intensive task of

SNP/I calling. First, quality-trimmed forward and reverse reads are reduced to

unique reads. This data set is then mapped to all reference sequences, using the previously

entered mapping settings (see Read Mapping above). From this alignment, a set of intervals

is created using BEDtools (Quinlan & Hall, 2010). The interval set saves computational

time by directing the SNP-/I-calling software to examine only reference sequences

along contigs that have high quality mappings. Second, the interval list is then split

into multiple files, one for each processing core, allowing SNP/I calling to be

optimized with a scatter-gather technique. The program FreeBayes (Garrison & Marth,

2012) is then executed multiple times simultaneously (one execution per processor and

genomic interval). FreeBayes is a Bayesian-based, variant-detection software that uses

assembled haplotype sequences to simultaneously call SNPs, I, multi-nucleotide

polymorphisms (MNPs), and complex events (e.g., composite insertion and substitution

events) from alignment files; FreeBayes has the added benefit for population genomics
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of using reads across multiple individuals to improve genotyping (Garrison & Marth,

2012). FreeBayes is run with minimal changes to the default parameter minimum mapping

quality score and base quality score are set to PHRED 10. After all executions of FreeBayes

are completed, raw SNP/I calls are concatenated into a single variant call file (VCF),

using VCFtools (Danecek et al., 2011).

Variant filtering
Final SNP data-set requirements are likely to be highly dependent on specific goals and

aims of individual projects. To that end, dDocent uses VCFtools (Danecek et al., 2011) to

provide only basic level filtering, mostly for run diagnostic purposes. dDocent produces a

final VCF file that contains all SNPs, I, MNPs, and complex events that are called in

90% of all individuals, with a minimum quality score of 30. Users are encouraged to use

VCFtools and vcflib (part of the FreeBayes package; https://github.com/ekg/vcflib) to fully

explore and filter data appropriately.

Comparison between dDocent and Stacks
Two sample localities, each comprising 20 individuals, were chosen randomly from

unpublished RADseq data sets of three different, marine fish species: red snapper (Lutjanus

campechanus), red drum (Sciaenops ocellatus), and silk snapper (Lutjanus vivanus). These

three species are part of ongoing RADseq projects in our laboratory, and preliminary

analyses indicated high levels of nucleotide polymorphisms across all populations. Double-

digest RAD libraries were prepared, generally following Peterson et al. (2012). Individual

DNA extractions were digested with EcoRI and MspI. A barcoded adapter was ligated to the

EcoRI site of each fragment and a generic adapter was ligated to the MspI site. Samples were

then equimollarly pooled and size-selected between 350 and 400 bp, using a Qiagen Gel

Extraction Kit. Final library enhancement was completed using 12 cycles of PCR, simulta-

neously enhancing properly ligated fragments and adding an Illumina Index for additional

barcoding. Libraries were sequenced on three separate lanes of an Illumina HiSeq 2000 at

the University of Texas Genomic Sequencing and Analysis Facility. Raw sequence data were

archived at NCBI’s Short Read Archive (SRA) under Accession SRP041032.

Demultiplexed individual reads were analyzed with dDocent (version 1.0), using three

different levels of final reference contig clustering (90%, 96%, and 99% similarity) in an

attempt to alter the most comparable analysis variable in dDocent to match the maximum

distance between stacks parameter and the maximum distance between stacks from

different individuals parameter of Stacks. The coverage cut-off for assembly was 12 for

red snapper, 13 for red drum, and nine for silk snapper. All dDocent runs used mapping

variables of one, three, and five for match-score value, mismatch score, and gap-opening

penalty, respectively. For comparisons, complex variants were decomposed into canonical

SNP and I representation from the raw VCF files, using vcfallelicprimitives from vcflib

(https://github.com/ekg/vcflib).

For analysis with Stacks (version 1.08), reads were demultiplexed and cleaned using

process radtags, removing reads with ‘N’ calls and low-quality base scores. Because dDocent

inherently uses both reads for SNP/I genotyping, forward reads and reverse reads
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were processed separately with denovo map.pl, using three different sets of parameters. The

first set had a minimum depth of coverage of two to create a stack, a maximum distance

of two between stacks, and a maximum distance of four between stacks from different

individuals, with both the deleveraging algorithm and removal algorithms enabled. The

second set had a minimum depth of coverage of three to create a stack, a maximum

distance of four between stacks, and a maximum distance of eight between stacks from

different individuals, with both the deleveraging algorithm and removal algorithms

enabled. The third set had a minimum depth of coverage of three to create a stack, a

maximum distance of four between stacks, and a maximum distance of 10 between stacks

from different individuals, with both the deleveraging algorithm and removal algorithms

enabled. SNP calls were output in VCF format.

For both dDocent and Stacks runs, VCFtools was used to filter out all Is and SNPs

that had a minor allele count of less than five. SNP calls were then evaluated at different

individual-coverage levels: the total number of SNPs; the number of SNPs called in 75%,

90%, and 99% of individuals at 3X coverage; the number of SNPs called in 75% and 90%

of individuals at 5X coverage; the number of SNPs called in 75% and 90% of individuals

at 10X coverage; and the number of SNPS called in 75% and 90% of individuals at 20X

coverage. Overall coverage levels for red snapper were lower and likely impacted by a few

low-quality individuals; consequently, the number of 5X and 10X SNPs shared among 90%

of individuals (after removing the bottom 10% of individuals in terms of coverage) were

compared instead of SNP loci shared at 20X coverage. Results from two runs of Stacks (one

using forward and one using reverse reads) were combined for comparison with dDocent,

which inherently calls SNPs on both reads. All analyses and computations were performed

on a 32-core Linux workstation with 128 GB of RAM.

RESULTS AND DISCUSSION
Results of SNP calling, including run times (in minutes) for each analysis (not including

quality trimming), are presented in Table 1. Data from high coverage SNP calls, averaged

over all runs for each pipeline, are presented in Fig. 2. While Stacks called a larger

number of low coverage SNPs, limiting results to higher individual coverage and to higher

individual call rates revealed that dDocent consistently called more high-quality SNPs. Run

times were equivalent for both pipelines.

At almost all levels of coverage in three different data sets, dDocent called more SNPs

across more individuals than Stacks. Two key differences between dDocent and Stacks

likely contribute these discrepancies: (i) quality trimming instead of quality filtering, and

(ii) simultaneous use of forward and reverse reads by dDocent in assembly, mapping,

and genotyping, instead of clustering as employed by Stacks. As with any data analysis,

quality of data output is directly linked to the quality of data input. Both dDocent and

Stacks use procedures to ensure that only high-quality sequence data are retained; however,

Stacks removes an entire read when a sliding window of bases drops below a preset quality

score (PHRED 10, by default), while dDocent via Trim Galore! trims off low-quality bases,

preserving high-quality bases of each read. Filtering instead of trimming results in fewer
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Figure 2 SNP results averaged across the three different run parameters for dDocent and
Stacks. (A) Red snapper, (B) Red drum, (C) Silk snapper (see Methods or Table 1 for SNP categories
description). Error bars represent one standard error.

reads entering the Stacks analysis (between 65% and 95% of the data compared to dDocent;

data not shown), generating lower levels of coverage and fewer SNP calls than dDocent.

dDocent offers two advantages over Stacks: (i) it is specifically designed for paired-end

data and utilizes both forward and reverse reads for de novo RAD loci assembly, read

mapping, variant discovery, and genotyping; and (ii) it aligns reads to reference sequence

instead of clustering by identity. Using both reads to cluster and assemble RAD loci helps

to ensure that portions of the genome with complex mutational events, including Is

or small repetitive regions, are properly assembled and clustered as homologous loci.

Additionally, using BWA to map reads to reference loci enables dDocent to properly align

reads with I polymorphisms, increasing coverage and subsequent variant discovery

and genotyping. Clustering methods employed by Stacks, whether clustering alleles within

an individual or clustering loci between individuals, effectively remove reads, alleles, and

loci with I polymorphisms because the associated frame shift effectively inflates the

observed number of base-pair differences. For organisms with large effective population

sizes and high levels of genetic diversity, such as many marine organisms (Waples, 1998;

Ward, Woodwark & Skibinski, 1994), removing reads and loci with I polymorphisms

will result in a loss of shared loci and coverage.
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Table 1 Results from individual runs of dDocent and Stacks. dDocent runs varied in the level of
similarity used to cluster reference sequences: A (90%), B (96%), and C (99%). For Stacks, forward
reads and reverse reads were separately processed with denovo map.pl (Stacks version 1.08), using three
different sets of parameters: A, minimum depth of coverage of two to create a stack, a maximum distance
of two between stacks, and a maximum distance of four between stacks from different individuals; B,
minimum depth of coverage of three to create a stack, a maximum distance of four between stacks,
and a maximum distance of eight between stacks from different individuals; and C, minimum depth of
coverage of three to create a stack, a maximum distance of four between stacks, and a maximum distance
of 10 between stacks from different individuals. For dDocent, complex variants were decomposed into
canonical SNP and I calls and I calls were filtered out. SNP calls were evaluated at different
individual coverage levels: (i) total number of SNPs; (ii) number of SNPS called in 75%, 90%, and 99% at
3X coverage; (iii) number of SNPS called in 75% and 90% of individuals at 5X coverage; (iv) number of
SNPS called in 75% and 90% of individuals at 10X coverage; and, (v) number of SNPS called in 75% and
90% of individuals at 20X coverage. Run times are in minutes. Results from forward and reverse reads of
Stacks were combined for comparison with dDocent, which inherently calls SNPs on both reads.

dDocent A dDocent B dDocent C Stacks A Stacks B Stacks C

Red snapper

Total 3X SNPS 53,298 53,316 53,361 28,817 33,479 34,459

75% 3X SNPs 21,195 20,990 20,724 4,150 5,735 5,728

90% 3X SNPs 9,102 8,850 8,639 675 987 983

99% 3X SNPs 78 47 15 – – –

75% 5X SNPs 14,881 14,594 14,339 2,632 4,351 4,324

90% 5X SNPs 5,021 4,925 4,785 179 579 574

75% 10X SNPs 7,556 7,318 7,154 783 1,618 1,579

90% 10X SNPS 1,414 1,340 1,286 7 48 47

90% IND 90% 5X 10,267 10,026 9,798 806 1,807 1,079

90% IND 90% 10x 4,242 4,093 3,974 129 441 434

Run time 41 41 42 70 47 53

Red drum

Total 3X SNPS 46,378 46,688 46,832 45,792 50,821 52,366

75% 3X SNPs 36,745 36,905 36,900 24,134 28,991 28,981

90% 3X SNPs 32,356 32,424 32,330 13,439 17,946 17,874

99% 3X SNPs 11,906 11,910 11,774 828 1,264 1,259

75% 5X SNPs 34,279 34,393 34,336 21,021 26,526 26,464

90% 5X SNPs 28,532 28,566 28,431 10,494 15,282 15,207

75% 10X SNPs 27,523 27,605 27,488 12,928 17,018 16,983

90% 10X SNPS 19,434 19,442 19,283 4,159 6,734 6,705

75% 20X SNPs 15,080 15,111 14,981 2,276 3,538 3,516

90% 20X SNPs 7,365 7,409 7,304 243 1,974 1,961

Run time 43 45 45 58 55 65

Silk snapper

Total 3X SNPS 68,668 68,825 68,861 48,742 55,505 58,352

75% 3X SNPs 30,771 30,391 30,051 7,596 9,705 9,696

90% 3X SNPs 14,952 14,673 14,415 2,007 3,439 3,433

99% 3X SNPs 4,294 4,060 3,952 132 527 523

75% 5X SNPs 20,534 20,188 19,968 4,789 7,290 7,274
(continued on next page)
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Table 1 (continued)
dDocent A dDocent B dDocent C Stacks A Stacks B Stacks C

90% 5X SNPs 9,103 8,750 8,533 1,225 2,573 2,570

75% 10X SNPs 9,765 9,400 9,159 2,094 3,547 3,546

90% 10X SNPS 3,923 3,691 3,490 489 1,224 1,223

75% 20X SNPs 4,069 3,832 3,624 703 1,415 1,411

90% 20X SNPs 1,431 1,313 1,228 136 417 418

Run time 88 95 59 93 89 204

dDocent is specifically designed to efficiently generate SNP and I polymorphisms

that are shared across multiple individuals. To that end, the output reference contigs

and variant calls represent a subset of the total, genomic information content of the raw

input data; RAD loci and variants present in single individuals are largely ignored. Other

analysis software, such as the scripts published by Peterson et al. (2012), represent a more

comprehensive alternative for generating for a full de novo assembly of RAD loci and

would increase the chance of discovering individual level polymorphisms. For population

genomics, loci that are not shared by at least 50% of all individuals and/or have minor

allele frequencies of less than 5% are often filtered out. dDocent saves computational time

by ignoring these loci from the outset of assembly; however, users can pass in a more

comprehensive reference (including an entire genome) in order to include all possible

variant calls from the data.

CONCLUSION
dDocent is an open-source, freely available population genomics pipeline configured for

species with high levels of nucleotide and I polymorphisms, such as many marine

organisms. The dDocent pipeline reports more SNPs shared across greater numbers of

individuals and with higher levels of coverage than current alternatives. The pipeline and

a comprehensive online manual can be found at (http://dDocent.wordpress.com) and

(https://github.com/jpuritz/dDocent).
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