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Bacillus anthracis, the etiological agent of anthrax, is a well-established
model organism. For B. anthracis and most other infectious diseases,
knowledge regarding transmission and infection parameters in
natural systems, in large part, comprises data gathered from
closely controlled laboratory experiments. Fatal, natural anthrax
infections transmit the bacterium through new host−pathogen
contacts at carcass sites, which can occur years after death of
the previous host. For the period between contact and death, all
of our knowledge is based upon experimental data from domestic
livestock and laboratory animals. Here we use a noninvasive method
to explore the dynamics of anthrax infections, by evaluating the ter-
minal diversity of B. anthracis in anthrax carcasses. We present an
application of population genetics theory, specifically, coalescence
modeling, to intrainfection populations of B. anthracis to derive
estimates for the duration of the acute phase of the infection and
effective population size converted to the number of colony-form-
ing units establishing infection in wild plains zebra (Equus
quagga). Founding populations are small, a few colony-forming
units, and infections are rapid, lasting roughly between 1 d and
3 d in the wild. Our results closely reflect experimental data, show-
ing that small founding populations progress acutely, killing the
host within days. We believe this method is amendable to other
bacterial diseases from wild, domestic, and human systems.
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Questions regarding pathology of microorganisms are often
addressed using animal models. Since the validation of

germ theory (using Bacillus anthracis) (1), animal models have
been used to elucidate various parameters of infection, such as
infectious dose, strain lethality, disease pathology, and host im-
mune response (2, 3). In most studies, inbred, small-animal lines
are used where age, sex, diet, and other variables are controlled
to reduce immune response variation among individuals. Yet, it
is difficult to assess to what degree these controlled studies re-
flect how these infectious agents behave in natural hosts. This is
due to variation in immune response within heterogeneous host
populations where genetic and life history variation can affect
the outcome of an infection (4). Furthermore, use of natural
hosts in pathological studies can be, in practice, impossible, due
to necessary permissions, facilities, and ethical considerations.
As a result, disease pathology data are lacking in most large, wild
hosts and leave general pathological questions, regarding these
species, open.
The Gram-positive, spore-forming bacterium B. anthracis cau-

ses anthrax. An acute infection, anthrax can start via several routes
of infection: inhalational, cutaneous, ingestional, and injection.
The pathogen occurs globally where its main hosts are large un-
gulates, yet most mammals and even birds can be susceptible (5,
6). B. anthracis is an “obligately lethal pathogen,” where the host
must die for transmission to occur. In some anthrax endemic areas,

transmission may be enhanced with the involvement of biting
flies and blowflies (7). Yet, regardless of these other types of
transmission, anthrax associated with grazing at carcass sites by
new hosts is the backbone of its epidemiology across systems
(5, 8).
According to Glomski et al. (9), ingestional anthrax infections

in mice can start in the upper gastrointestinal tract, associated
with previous damage to the epithelium, or in the lower gas-
trointestinal tract, within the lymphatic tissue of the oropharynx
or Peyer’s patches, respectively. Stimulation of phagocytic cells,
such as dendritic cells and macrophages to engulf spores via the
classic complement pathway (CCP), plays an important role in
establishing the infection. Interaction between BclA glycopro-
tein, a major structural component of the B. anthracis exospo-
rium (10), and complement component C1q stimulate both entry
into epithelial cells and further activation of CCP, beginning the
complement system cascade, marking them for uptake by phago-
cytic cells providing carriage across the epithelium to adjacent
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lymphatic tissues (11). After passage past the epithelium, the
disease seems to progress very similarly, regardless of the initial
route of infection. Spores germinate to vegetative cells, which
proliferate and spread through the draining lymphatic system,
notoriously involving the spleen, and shortly thereafter become
a systemic infection. Hemorrhaging from orifices occurs around
the time of death, releasing B. anthracis into the soil and inducing
sporulation allowing the pathogen to survive for years in the
environment (8).
In Etosha National Park, Namibia, anthrax has been moni-

tored, but not managed, for roughly 40 y, throughout which an
effort was made to sample all discovered mortalities. Plains zebra
(Equus quagga) are the most common host for B. anthracis in
Etosha. Most of these infections likely occur after ingesting
spores while grazing at anthrax carcass sites (8), and not from
drinking contaminated water (8) nor from inhalation of spores
(12). Anthrax mortalities in zebra peak during the rainy season,
where enhanced production of forage occurs at nutrient-rich
carcass sites (13). Although the majority of the zebra in Etosha
have trace levels of antibodies against B. anthracis (indicating a
high exposure rate) (14), disease mortality remains quite low,
even in outbreak years (<5%), implying few actually succumb to
the infection (15).
Our previous study described how increased exposure to high

concentrations of the pathogen increases the probability of in-
fection (8). Experimentally, high doses are used to induce gas-
trointestinal lethal infection in various ungulates, tens to hundreds
of millions of spores (8). This is in contrast to the injection route,
where LD50s are only tens to hundreds of spores (5), showing that
low doses through certain routes can lead to fatal infection.
To investigate these dynamics in nature, we isolated 30 indi-

vidual colony-forming units (CFUs) from 11 naturally occurring
zebra mortalities and genotyped the 330 isolates using multilocus
variable number tandem repeat (VNTR) analysis (MLVA) and
single-nucleotide repeat (SNR) data, as these markers mutate
quickly enough to allow within-host resolution. In conjunction,
we conducted a mutation rate experiment to calculate the av-
erage number of mutations per gene per generation (μ), treating
each VNTR or SNR as a gene. We then designed a joint maxi-
mum likelihood (ML) approach for the coalescent process (16)
under constant and variable effective population size (17),
leveraging the experimental data and the carcass genotyping data
to estimate the time to the most recent common ancestor
(TMRCA) and effective population sizes (Ne) starting a given
infection. The full mathematical and statistical approach de-
tailed in Methods uses recent theory (18, 19), algorithms (17),
and ML techniques using Markov chain Monte Carlo (MCMC)
for hierarchical models (20–22).

Results
Genotype Data. SNR and MLVA data yielded 43 unique geno-
types from 11 carcasses (30 isolates per carcass) (SI Appendix,
Fig. S1 and Table S1). All data are available per request from
either corresponding author, N.C.S. or W.C.T.

Laboratory Experiment. Assuming a constant population size across
the laboratory experiment, the ML estimate for the average num-
ber of mutations separating a sample size of two genes, θ̂= 0.46
(CI: 0.09, 1.42), using the data cloning (DC) methodology de-
scribed in Methods. Noting that the average number of mutations
that separates two genes, θ, is defined in terms of the mutation rate
μ and the effective population size Ne as θ= 2Neμ, we then used
MCMC to sample from the conditional distribution of the
TMRCA given the ML estimate of θ̂, stored the median TMRCA,
and computed Ne = 126.5 (CI: 101.3, 181.3) by dividing the dura-
tion of the experiment in generations (n = 214) by that median.

The mutation rate per gene, per generation, was then computed as
μ= θ̂=2Ne = 0.002 (CI: 0.0005, 0.004).

Carcass Sampling. Assuming constant population size from the
zebra carcasses, estimates of θ varied between 0.28 and 1.1, and
thus, assuming a mutation rate μ = 0.002, the effective population
size of B. anthracis varied between 77.24 and 301.08. TMRCA
varied between 24.26 d and 91.46 d (Table 1).
The exponential model gave radically different results. In that

model, it is assumed that the effective population grows expo-
nentially from past to present at a rate β. Under the coalescent
process, this exponential growth model for the effective pop-
ulation size is formulated as a change from the present (zebra’s
time of death) to the past until the time of infection by a
“founder” B. anthracis population using NeðtÞ=Neð0Þe−βt. In this
model, θ changes over time according to θðtÞ= 2NeðtÞμ (see
full description of the model in Methods). Estimates of the B.
anthracis population θ at the moment of zebra death are given by
the value of θ at time 0 and are denoted θ0. Its estimates for each
zebra varied between 1.88 and 2.42, with β values ranging be-
tween 0.36 and 1.62 (Table 1). The effective population size of
the founder B. anthracis population (i.e., at the beginning of the
infection) is denoted as Neð1Þ (see Methods) and was estimated
to range between 118.09 and 295.38 (Table 1). Ne values are
converted to CFUs using the Ne scaling given by the mutation
rate experiment. Since this experiment was started with 1 CFU,
we then scaled effective population sizes assuming that Ne of
126.5 = 1 CFU. The CFUs at the moment of infection estimated
for all sampled zebras ranged between ∼1 and 3 (Table 1). The
estimated TMRCA from the coalescent model was used as an
estimate of the elapsed time from the moment of infection with a
founder B. anthracis population until death (see Methods). This
estimate varied between 0.73 d and 2.61 d for all zebras (Fig. 1).
Full results of the estimates of θ, β, Ne, and TMRCA and CIs for
each parameter are shown in Table 1. Finally, model selection
through likelihood ratio tests (LRTs) showed the exponential
population growth model was a better fit to the data for all ze-
bras (P value < 0.0001 in every case).

Discussion
Our best results, not surprisingly, were from the exponential
model, as this most closely resembles the population growth
dynamics of B. anthracis. From these data, we show estimates of
parameters of lethal anthrax infections in free-ranging wildlife
postmortem. Experimentally, infections have a short duration of
infection and, via injection models, low infectious doses (23).
Somewhat similar studies have estimated duration of infection
for chronic and highly mutable viral pathogens, namely HIV
(24). We use this method to estimate both duration of infection
and infecting founding population size on a slow-evolving, acute,
bacterial pathogen (25). It should be noted that the model used
here applies to B. anthracis, as the assumptions we make reflect
the biology of this highly clonal pathogen. Stratilo and Bader
(26) were the first to describe the use of SNRs to characterize
diversity within infections. To date it is likely the only developed
typing system using SNRs (27).

Population Dynamics. B. anthracis populations fluctuate through
transmission and infection stages. During an infection, the pop-
ulation increases exponentially and, afterward, goes through three
transmission bottlenecks (Fig. 2) to start an infection in a new host.
These bottlenecks occur in succession. The first is a slow process of
spore decay at carcass sites. This decay may be augmented slightly
by some vegetative activity during this telluric process (28); nev-
ertheless, the overall trend is decay (Fig. 2, points C to D), a
process taking years (8). The other two bottlenecks occur during
the infection process, first, upon ingestion of a subset of spores
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(ingested dose) from a carcass site, and, finally, a bottleneck as a
portion of the ingested population that establishes the infection
(founders), which we calculate here in this study (Table 1).

Grazing and Exposure to B. anthracis (Fig. 2, Point A). While many
vertebrates are suitable hosts for B. anthracis, the foraging be-
havior and overall ecology of many herbivores leads them to be

Table 1. Parameter estimates for both constant size and exponential population growth models

Constant Exponential

Zebra no. θ Ne TMRCA θ0 β Ne (1) TMRCA CFU

1 1.05 286.16 88.14 1.9(1.4,2.63) 0.69(0.2,1.18) 215.94(120.18,528.12) 1.47(0.86,4.35) 1.71(0.95,4.17)
2 1.08 294.08 89.41 1.92(1.39,2.7) 0.74(0.23,1.23) 212.13(116.52,514.11) 1.39(0.83,3.94) 1.68(0.92,4.06)
3 0.79 215.5 67.18 1.88(1.38,2.62) 0.57(0.1,1.08) 232.67(118.23,634.15) 1.74(0.94,7.33) 1.84(0.93,5.01)
5 0.52 142.3 44.13 1.88(1.38,2.61) 0.36(0.1,0.89) 295.38(126.63,636.11) 2.61(1.13,7.22) 2.34(1.00,5.03)
7 1.09 297.81 90.85 1.92(1.38,2.72) 0.76(0.25,1.26) 209.15(114.66,508.35) 1.36(0.81,3.75) 1.65(0.91,4.02)
8 1.03 280.55 82.05 2.02(1.27,3.33) 0.96(0.29,1.6) 193.25(88.07,621.59) 1.11(0.64,3.37) 1.53(0.70,4.91)
9 0.6 163.24 49.7 1.91(1.31,2.88) 0.58(0.1,1.18) 235.22(101.56,708.49) 1.74(0.86,7.23) 1.86(0.80,5.60)
13 1.1 301.08 91.46 1.92(1.38,2.75) 0.77(0.25,1.28) 208.01(112.63,509.58) 1.33(0.8,3.69) 1.64(0.89,4.03)
14 0.52 142.3 44.13 1.88(1.38,2.61) 0.36(0.1,0.89) 295.38(126.63,636.11) 2.61(1.13,7.22) 2.34(1.00,5.03)
17 0.53 145.22 45.06 1.89(1.38,2.66) 0.45(0.1,1) 260.27(116.15,650.11) 2.15(1.01,7.21) 2.06(0.92,5.14)
19 0.28 77.24 24.26 2.42(1.67,3.64) 1.62(0.63,2.47) 118.09(52.91,375.73) 0.73(0.47,1.81) 0.93(0.42,2.97)

θ is the average number of mutations that separates two genes under the coalescent process. It is defined as twice the effective population
size Ne times the mutation rate μ. This number remains the same under the constant effective population size model. Under the exponential
population growthmodel, the zebra’s B. anthracis population value of θ at themoment of death is θ0, and the effective population size changes
(from present to past) according to the exponential function NeðtÞ=Neð0Þe−βt, where β is the exponential rate parameter and Neð0Þ= θ0=2μ.
Accordingly, Ne (1) represents the effective population size of B. anthracis in each zebra at the moment of infection using the experiment’s
estimated mutation rate (see full model and statistical analyses description in Methods). Confidence intervals are calculated only for the
exponential population growth model, since it was the best fit to the data. TMRCA is expressed in days, assuming a mutation rate of 0.002.
The founding size of the population has been converted to CFU from the effective population size from the exponential model.

Fig. 1. Histograms of the TMRCA for 11 zebra carcasses plotted for 50,000 samples of the posterior distribution given the likelihood of the constant
population size (black) and exponential population growth (gray) models. According to DC theory, the ML estimate of TMRCA (red vertical line) is given by
the mean of these 50,000 samples. The estimates have been rescaled to represent time in days and not coalescent time.
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the major hosts and maintainers of anthrax in natural settings.
Here, ingestional anthrax, contracted from grazing at contami-
nated carcass sites (13), is purportedly the most common path-
way of infection in wild and domestic ungulates, although other
routes of transmission may occur (7, 8, 29, 30). For E. quagga in
Etosha, grazing and ingestion of spores via contaminated plants
and soil represents the largest hazard. It is difficult to know how
strong of a bottleneck occurs between the ingested dose and the
infecting dose, as the dose ingested is likely to be highly variable
depending on site age and host behavior. However, simulation
models of zebra foraging behavior indicate that there is a high
probability of ingesting doses up to 106 spores with even a bite or
two of grass at a carcass site within the first 2 y (8). Over 5 y of
simulations, there remained a spike in the probability of ingest-
ing doses up to 105 to 106; doses higher than this were highly
improbable.

Establishment of the Infection (Fig. 2, Point B). After ingestion, the
process of infection establishment begins. For mouse gastroin-
testinal animal models, two major locations, the oropharynx
(when epithelium is damaged) and/or Peyer’s Patches, are tissues
commonly associated with B. anthracis entry from the lumen into
the body (9). In wild ungulates, infection establishment has been
speculated to be enhanced through damaged tissues caused by
rough forage (31, 32) or gut parasites such as helminths due to
higher activity of immune cells at these wound sites (32). Entry
occurs through phagocytosis of spores by macrophages, carriage
across the epithelium, and transport to lymphatic tissue. After
phagocytosis, spores germinate and the vegetative cells escape
the phagosome, starting the infection (33). High proportions of
spores can germinate within hours, but can also be quite stag-
gered, depending on germinates present (34).
Although anthrax establishes via several routes of infection,

crossing the epithelium is typically mediated through macro-
phages, and, from our data and in accordance with Lowe et al.
(35), B. anthracis incurs a large population bottleneck starting the
infection. Parsimoniously, our data suggest a small population can
result in these animals and progress quickly to a lethal infection.
The majority of the subsequent population diversity seems to be
arising in-host; hence, there are very similar diversity patterns
among infections. Likewise, Lowe et al. (35) suggest a similar
mechanism creating a bottleneck for an intranasal anthrax model,

where a substantial population bottleneck occurs between the
inoculum and the founding population in the nasal mucosa-
associated lymphoid tissue.
For anthrax, route of infection greatly affects the necessary

dose to reach an LD50. This is especially true between oral and
injectional routes, where the epithelium acts as an effective
barrier to infection. For instance, de Vos (36) reports that kudu
(Tragelaphus strepsiceros) ingestional lethal doses were estimated
at 1.5 × 107 (range 1 × 106 to 6.5 × 107), while a parenteral
(injected) dose of 250 cells proved fatal to impala (Aepyceros
melampus). These data also reflect trends for sheep where le-
thality for ingestional anthrax requires much larger doses and
only tens of cells required via injection (23). By our estimates,
the founding population reflects the number of spores which
crossed the epithelium and successfully germinated to start the
infection. Despite our estimated low number of spores, large
doses of ingested spores may be required to start gastrointestinal
anthrax infections. Where BclA on the outmost coat stimulates
the classical complement system (11), a high dose might be needed
to produce an adequate innate immune response to stimulate
macrophages and dendritic cells to take up spores marked with
C3 fragments. Strikingly, infectious doses among zebras in this
study were very similar, which reflects pathogen diversity and
suggests some common pathology for B. anthracis and/or a shared
trait among the individual zebra mortalities, such as genetic, be-
havioral, or life history, including previous exposure.
The success of using coalescence modeling to estimate Ne and

TMRCA depends on having enough genetic resolution within
the sampled population. This means having sampled enough
individuals from a given population in combination with a high
enough diversity, which corresponds to mutation rate. Although
pathogens such as B. anthracis, Yersinia pestis, and others are
often referred to as “highly clonal” or “slowly evolving,” it is
important to make some distinctions. These pathogens are often
classified this way due to high sequence similarity in coding re-
gions, yet mutations such as indels (including VNTRs/SNRs) and
genomic rearrangements are ignored in this classification. This is
especially true with the use of genome sequencing for population
studies, where, most often, resequencing and aligning to a ref-
erence are used, which often, technically, have hurdles in as-
sembling larger VNTRs and ignore rearrangements in favor of
reference synteny. Yet, longer read technology and de novo
alignment will make these data available. In conclusion, this
method may be quite amendable to other disease systems and
even clinical settings, given that these types of markers (VNTRs
and SNRs) are used and may yield valuable information for
curtailing disease transmission.

Methods
Study Area. This study was conducted using isolates of B. anthracis collected
from anthrax carcasses in central Etosha National Park, Namibia, from 2008
to 2012. Anthrax is endemic in Namibia, and Etosha National Park has reg-
ular annual outbreaks of anthrax recorded primarily in grazing herbivores
(37, 38). More than 50% of anthrax cases recorded are of plains zebras (E.
quagga), and, among the herbivorous species, zebras show the strongest
propensity for foraging on grasses at anthrax carcass sites (13).

Isolation of B. anthracis from Blood Swabs. Culture and isolation of B.
anthracis was done at the Etosha Ecological Institute’s pathogen laboratory.
Dried, refrigerated carcass swabs from 11 zebra anthrax mortalities with
three zebra from 2008, four from 2009, two from 2010, and two from 2012
(SI Appendix, Fig. S2) were used to collect isolates for this study. Swabs were
rehydrated in 1.5 mL of sterile distilled water and agitated occasionally for
several minutes to suspend spores. Dilutions of 10−2, 10−4, and 10−6 were
prepared and plated on PLET (polymyxin-lysozyme-EDTA-thallous acetate)
agar using 5 μL of each dilution and the undiluted with an additional 50 μL
of sterile, distilled water to spread the sample evenly over the agar. Thirty
isolated colonies were selected from among the plates for each carcass. If a
particular morphology was in doubt as to whether or not it was B. anthracis,
standard confirmation tests (penicillin and Ɣ-phage) on a representative
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Fig. 2. Illustration of population dynamics of B. anthracis through infection-
transmission cycles for log(N) B. anthracis population (shaded yellow) over
time (split into days and years). Point A denotes ingestion: Ungulates grazing
at carcass sites ingest a portion of the spores present along with forage and
soil, creating a bottleneck. Point B denotes crossing epithelium: After in-
gestion, only a portion of the ingested cells cross the epithelium, starting the
infection. Point C denotes climax population: the population climax, near the
time of death. Point D denotes local pathogen extinction: the point where no
infectious spores remain at the carcass site.
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from that morphology were done before picking samples. Entire colonies
were transferred from the culture plates to 0.5-mL cryotubes containing 0.25
mL of PLET agar, using sterile toothpicks, and incubated for several days at
37 °C before shipping at ambient temperature to University of Florida in
Gainesville.

Mutation Rate Experiment Methods. An isolate was obtained from a blood
swab from a zebra carcass containing the most common genotype in Etosha
(genotype 6) according to Beyer et al. (39). This isolate is from A.Br.003
(A.Br.Aust94) using Van Ert et al.’s (40) global classification, and group 5.4
using a new population genomic classification (41). The zebra carcass was
found on 22 February 2010 (carcass ID: EB100224-01WT). The colony was
placed into 25 mL of Difco nutrient broth in a 50-mL tube and mixed gently
in an incubator at 37 °C (range 35 °C to 41 °C) for 24 h. The remaining part of
the colony was transferred to a cryotube to preserve as the initial diversity
for the experiment. After 24 h, the B. anthracis culture in nutrient broth was
diluted to 10−6 in sterile water. We then inoculated 1 μL of 10−6 dilution into
60 50-mL tubes each with 25 mL of nutrient broth. These 60 samples were
gently mixed in the incubator at 37 °C for 24 h. From these original 60 tubes,
five additional serial transfers were done. Isolates from the 60 lineages and
the progenitor were shipped to University of Florida. The starting isolate
used for this experiment was sequenced and is available on GenBank (Sub-
mission ID: SUB6568587; Sequence accession: SAMN13323522; Bioproject
accession: PRJNA590262) (42).
DNA extraction. At University of Florida, isolates were grown on 5% sheep
blood agar for 24 h to 48 h, and DNAwas isolated using a modification of the
method presented by Van Ert et al. (40).
MLVA-25 genotyping. MLVA-25 genotyping was performed as described by
Lista et al. (43), with minor changes in PCR chemistry and volumes to reduce
genotyping costs and adaptations in primer labeling to accommodate
analyses on the Applied Biosystems (ABI; Applied Biosystems) instruments.
Briefly, cold start, multiplex PCR was performed using 5.0-μL reactions (rxn)
containing 0.5 U/rxn Taq DNA Polymerase (Syd Laboratories), 1× Syd Taq
Buffer (contains MgCl2), 1× concentration of multiplex primer mix, 0.25 mM
each 2′-deoxynucleoside 5′-triphosphates (dNTPs) (Applied Biosystems), and
0.5 μL of template DNA. Thermal cycling conditions were as per Lista et al.,
with the exception of omitting the initial denaturation step (cold start po-
lymerase). PCR products were diluted 1:40 by the direct addition of 195 μL of
molecular-grade water to the PCR plates, and 1.0 μL of diluted product was
added to 19.0 μL of a formamide/LIZ 1200 (ABI) size standard mixture (0.285 μL
size standard per well) and denatured. Electrophoresis was conducted on an
ABI 3730 sequencer and fragment sizes determined using GeneMapper
software (Applied Biosystems).
SNR-4 genotyping. The four SNR loci described in Kenefic et al. (27) were
amplified in multiplex. The 10.0-μL PCRs were carried out with final con-
centrations of the following: 1.0 μL of template DNA per reaction, 1× PCR
buffer, 0.5 U per reaction Pyrococcus furiosus (pfu) Polymerase (Agilent
Technologies), 3 mM MgCl2*, and 0.25 mM each dNTP. The final primer
concentrations in the reaction were 0.1 μMHM-1, 0.15 μMHM-2, 0.1 μMHM-
6, and 0.25 μM HM-13. The PCR products were diluted 1:20, and 1.0 μL was
mixed with 19.0 μL of a formamide/LIZ 500 (Applied Biosystems) size stan-
dard mixture (0.285 μL of standard per rxn) and denatured. Fragment sizing
for SNR-4 was performed on an ABI 3730 (Applied Biosystems), and array
sizes were determined using GeneMapper software (Applied Biosystems).

Modeling Approach: An Overview. In what follows, we briefly overview our
modeling approach using the coalescent process (16), the rationale of our
analyses, and the questions we sought to answer with them. Then, we give a
detailed statistical account of our methodologies.

Here we used statistical inference for the coalescent process (16) to le-
verage the results from the serial passage culturing of B. anthracis, and the
MLVA and SNR types sampled from the 11 zebra carcasses. In a landmark
paper, Tavaré et al. (44) showed how to use computational sampling
methods to estimate the TMRCA from a sample of size n genes and the
count of “segregating sites,” or the number of variable loci in these genes.
Critical for their inferential approach is the adoption of a mutation model.
As these authors mention, a wide variety of models for the mutation process
can be incorporated into the coalescent. When the data are DNA sequences,
the infinitely-many-sites model (45) may be appropriate. This model is
commonly applied to sequence data (e.g., cytochrome b mitochondrial DNA
[mtDNA] used in ref. 46 to infer ancestry) and variation at loci among the
sampled genes. In this case, we refer to a gene as a sequence from an in-
dividual (or sample in our case). Specifically, these datasets consist of the
sequence of nucleotides at a specific region of the genome for which indi-
viduals are variable at specific loci within the region. The number of these

variable loci is the number of segregating sites, which is critical for our
calculations. Furthermore, identical sequences within a group of individuals
are labeled as haplotypes, and their frequencies in the sample are recorded
(see figure 1 in ref. 46).

A careful reading of Watterson (45), Ward et al. (46) and Tavaré et al. (44)
suggests the infinitely-many-sites model seems to be equally applicable to
MLVA and SNR data structure and nature of polymorphic microsatellites.
With respect to the data structure, the analogy is as follows: In our case, the
equivalent to one DNA sequence haplotype is a series of the MLVA/SNR
alleles at every MLVA/SNR locus found in one sample (e.g., SI Appendix,
Table S2A). In what follows, we call each different sequence of MLVA/SNR
alleles an MLVA/SNR haplotype. Also, just as with the mtDNA data, we also
have the observed frequencies of each one of the MLVA/SNR haplotypes
within the samples in each zebra. The annotated table of MLVA/SNR haplo-
types and their frequencies is shown in SI Appendix, Table S1. In that table, ni
refers to the total number of samples for zebra i (i = 1, 2. . . 11). For more
details about the data structure and notation, see the example in Statistical
Analyses.

With respect to the biological justification of the applicability of the
infinitely-many-sites model to the MLVA/SNR dataset, the analogy with
Watterson’s (45) setting is as follows. Watterson first assumed, as his data
unit, a portion of DNA specifying a single polypeptide chain of an enzyme (a
functional “gene”). Recombination due to crossing over could be ignored so
new alleles only result from mutation. Furthermore, the model does not
require accommodating linkage and/or independence among loci. The
model name, “infinitely-many-sites,” assumes no two mutations ever occur
at the same site (locus), so, at each site, there are only two possible nucle-
otides: the original wild type and the mutant type. In our case, then,
adopting this model assumes the interallelic mutations at each MLVA/SNR
locus are symmetrical and identical. Although we recognize this assumption
is a simple approximation of reality, it allows a clever MCMC solution by
Ewens and Joyce (17) (described in Statistical Analyses) to bypass the in-
tegration over all genealogies and target the estimation of the TMRCA,
while ignoring the estimation of the topology of the genealogical tree
among the MLVA/SNR genes. Having a quick access to the estimation of the
TMRCA allowed us to, first, estimate the TMRCA from the serial transfer
experiments, calibrate this coalescent time with real time units (in days), and
estimate a laboratory effective population size and mutation rate. Second, it
allowed us to estimate the time (in days) from initial host infection to host
death as the TMRCA between all of the MLVA/SNR variants sampled within a
single host, for each host. Third, it allowed us to carry out a test of the
hypothesis of within-host exponential growth of the effective population
size vs. the usual coalescent assumption of constant effective population
size. Infection by B. anthracis undergoes at least two bottlenecks driven by
host resistance in specific organs (35), suggesting that a model with expo-
nential growth posterior to initial infection might be a more realistic sce-
nario than the constant population size model. Fourth, adopting the
infinitely-many-sites model allowed estimates of the effective population
size of the MLVA/SNR genes upon death for each zebra. Finally, our meth-
odology also allowed us to estimate the effective population size for these
genes at the onset of host infection. In that sense, the joint estimation of the
effective population size and the hypothesis test mentioned above allowed
us to distinguish between two hypotheses: 1) Each host was initially invaded
with a large B. anthracis load which did not grow significantly; 2) zebra were
initially infected with a small B. anthracis load, which grew fast and expo-
nentially during infection. The comparison of the effective population sizes
with the laboratory effective population size which underwent various
bottlenecks allowed us to discuss the within-host population processes from
the time of infection until host death.

In what follows, we delve into the mathematical modeling details, starting
with the description of the model parameters and likelihood functions under
both models, and detailing the coalescent time scaling transformation to real
time units.

Statistical Analyses.
Data structure and general model setting. Before setting our statistical notation,
recall that, here, our functional “gene” unit is the B. anthracis genome,
genotyped for 25 MLVA and four SNR sites for any one sample within a
zebra. For zebra 2, for example, for which there were 26 samples (our
“genes”), four MLVA/SNR sites were variable (see SI Appendix, Table S2 A
and B for the table presenting the raw data). These samples have seven
distinct MLVA/SNR haplotypes. Heretofore, we will simply say for zebra 2 we
have 26 sampled genes and seven MLVA/SNR haplotypes, each one with
frequencies shown in SI Appendix, Table S2C.
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The key parameter in the coalescent process with neutral mutations is θ,
the average number of mutations separating a sample of size n = 2 genes.
Furthermore, θ= 2Neμ, where Ne is the “effective population size” and μ is
the mutation rate (per gene, per generation). “N-Coalescent” time is mea-
sured retrospectively, with 0 being at present and increasing from present to
past. Formally, this stochastic process is a pure death process (16), where the
quantity that is “dying” is the number of distinct gene lineages, from pre-
sent to past. This effective population size Ne is assumed constant over time
and is defined as the size of the “population” of genes from which the
samples in the present time are taken. This quantity is equal to the census
population size in an idealized Wright−Fisher model (19). Although Ne is an
abstract parameter, for a real biological population, it is proportional to the
rate at which genetic diversity is lost or gained. In the absence of natural
selection and if the variation in the number of descendant genes per gene as
well as the generation time are known, a census population size can be
approximated (47). To date, statisticians working in this field (e.g., ref. 19)
adopt a more cautious interpretation of the effective population size and
simply see it as a measure of relative genetic diversity (48, 49). In any case,
this parameter (Ne) is useful, because, under the coalescent, time is rescaled
so one unit of continuous coalescent time is equivalent to Ne generations
(2Ne is used in diploid models). With that scaling, we can transform our
estimated TMRCA expressed in coalescent time units into real time units.

Several coalescent-based methods for estimation of Ne were derived using
stringent and flexible assumptions, such as constant population size, expo-
nentially growing population size, logistic, and piecewise linear. To remove
the inflexible conditions imposed by adopting any time-dependent model,
Palacios and Minin (19) go so far as to propose a nonparametric, stochasti-
cally varying Markov Random Field model for Ne (19). Even this last complex
model formulation can be tied to a specific mathematical model of pop-
ulation dynamics: a translated Stochastic Gompertz diffusion model of
population size growing under environmental variability (18). Because most
implementations of the coalescent under variable population size can be tied
to a population dynamics rationale, we opted for testing the applicability of
the constant vs. the exponentially growing Ne as way to compromise between
biological realism and estimability of parameters in the light of the data. Al-
though most of these methodologies have been implemented and readily
available software exists (e.g., “BEAST”) to analyze the data under different
models, these programs rely on a set of hard-coded genetic mutation models
to carry the likelihood calculation by integrating the genealogy likelihood over
all possible genealogies (50). Because we are mainly interested in the esti-
mation of the TMRCA and not in the topology of the within-host genealogies,
we used the approach proposed by Ewens and Joyce (17) to deal with this case,
to swiftly bypass the topology estimation problem. Although, in their lecture
notes, Ewens and Joyce only outline this approach, here we coded it de novo
and extended it for the joint estimation of θ and the TMRCA (scaled to real
time units) under a constant effective population size model and an expo-
nentially growing effective population size model. The code was originally
written by one of us (J.M.P.) during a mathematical population genetics
workshop taught in 2009 by Joyce, Ewens, Krone, and Ponciano at the Center
for Research in Mathematics in Guanajuato, Mexico.
The joint distribution of coalescent times. The coalescent process is a continuous-
time, discrete-state Markov death process, which is initiated at the present time
by gathering a random sample of n genes from a population of Ne genes. Then,
the process models how the number of distinct gene lineages sampled in the
present decreases one at a time when we traverse time from the present to the
past. When two genes sampled today find a common ancestor j generations
back into the past, we say a “coalescence” has occurred. These “coalescent
events” happen until all genes in a sample have found a common ancestor.
Kingman (16) and multiple authors subsequently described the mathematical
properties of the retrospective and random time period elapsed since the
moment one finds n genes in a sample until all of these genes have found their
most common recent ancestor (TMRCA). Regardless of the assumptions about
the size of Ne, TMRCA adopts a probability distribution that can be thought of
as the sum of all of the intercoalescent times in a genealogy, which are all of
the time periods between two consecutive coalescences in a genealogy. Using
stochastic processes terminology, these intercoalescent times are the interevent
times of the Markov death process.

One attractive feature of the coalescent model is its mathematical sim-
plicity, which allows an intuitive understanding of the model properties and
of the intercoalescent events using simple biological and probabilistic ra-
tionales. The number of discrete generations from the present to the past
until the first coalescence occurs is modeled using a geometric random
variable where the “success” probability p is the probability that, in a sample
of n genes, two individuals find a common ancestor one generation in the
past. Its complement, 1 − p, is the probability that no coalescence occurs.

Thinking of generations as independent trials, the probability of any two
genes among these n genes finding a common ancestor j generations back

in the past is simply ð1−pÞj−1p, and the probability of their first common
ancestor appearing more than r generations ago is ð1−pÞr. The analytical
expression for p is found as follows: The probability any two genes picked at
random today have two different ancestors one generation back in the past
is ðNe=NeÞ½ðNe − 1Þ=Ne�= ½1− ð1=NeÞ�, since the first gene has Ne choices for its
ancestor and the second has N − 1 choices. The probability that these two
genes have a common ancestor one generation back in the past (i.e., that a
coalescence occurs) is then simply 1− ½1− ð1=NeÞ�= 1=Ne. This fraction only
gives us the value of p for a sample of size 2 genes. Also, note that the
expected number of generations until two individuals find their common
ancestor is 1 ∕ ð1 ∕ NeÞ=Ne. Iterating the above argument to include three or
more genes, it is easy to see that the probability 1 − p that a sample of n
genes all find different ancestors one generation back in the past is

∏
n−1

i=1

�
1−

i
Ne

�
≈ 1−

nðn− 1Þ
2Ne

,

and hence the probability that at least one coalescence occurs one gener-

ation back in the past is 1−
�
1− nðn−1Þ

2Ne

�
=
�
n
2

�
1
Ne
. Denoting the inter-

coalescent, geometrically distributed, random time between k and k − 1
gene ancestors as Uk, it follows that

PðUk > rÞ=
�
∏
k−1

i=1

�
1−

i
Ne

��r
≈
�
1−

kðk−1Þ
2Ne

�r

for constant population size. Now, if Ne is large relative to nðn− 1Þ=2, co-
alescent events will occur rarely: Many generations would elapse before a
coalescence occurs. It then makes sense to rescale time using a continuous
scale instead of discrete generations by measuring it in units of Ne so that
r =Net coalescent time units (e.g., one coalescent time unit is equivalent to
Ne generations). Applying this rescaling is achieved by computing the limit

lim
Ne→∞

PðUk > tÞ= lim
Ne→∞

�
1−

kðk− 1Þt
2Net

�r

= e−
kðk−1Þ

2 t .

Thus, measured in continuous time, the intercoalescent time between k and
k − 1 gene ancestors can be modeled using an exponential distribution with

rate
�
k
2

�
. The TMRCA can be simply modeled as a sum of exponentially

distributed intercoalescent times. Using the Markov property, the joint
probability distribution of the intercoalescent times is simply written as the
product of all of the intercoalescent exponential distributions.

To set notation as well as visualize these intercoalescent times, we plotted
a realization of a genealogy under the coalescent process assuming that, at
present, a sample of n = 7 genes was gathered (SI Appendix, Fig. S3). In that
graph, the ui denote realizations of the (random) intercoalescent times, and
ti denote the accumulated time, from the present to the past. Accordingly,
under a model of changing effective population size Ne(t), the quantity
tk−1 = uk + tk is no longer exponentially distributed. Instead, the pdf of each
inter-coalescent time is (50)

Prðuk jtkÞ= kðk− 1Þ
2Neðuk + tkÞ × exp

8><
>:−

Zuk+tk

tk

kðk− 1Þ
2NeðtÞ dt

9>=
>;’

and their joint pdf is simply written as the product of these densities, for k =
n, n − 1,. . ., 2. When it is assumed the population grows exponentially from
past to present at a rate β (or, alternatively, decays exponentially from
present to the past), expressed as NeðtÞ=Neð0Þe−βt, then

Prðuk jtkÞ= kðk−1Þ
2Neðuk + tkÞ × exp

�
−
kðk− 1Þ
2Neð0Þ

�
eβtk−1 − eβtk

�	
.

Mutation in the coalescent. Amutationalmodel for the coalescent process is derived
by thinking once again in discrete generations and thenmaking a continuous time
approximation. Let μ denote the probability that the offspring of a gene, from one
generation to the next, is a mutant. Let Yr be the total number of mutations ac-
cumulated in one gene line of descent after r generations. Under the assumption
of independence across lineages, this number of mutations can be modeled with a
binomial distribution with probability μ and total number of trials r. Denote S2 the
number of mutations separating two individuals. Conditional on the timeU2 (in
discrete generations) until these two individuals find their most recent common
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ancestor, ðS2jU2 =u2Þ∼Binomðu2′μÞ, and recalling that E½U2�=Ne, it follows
that EðS2Þ=E½EðS2jU2Þ�= E½2U2μ�= 2Neμ= θ. Using the same time scale change
defined above and replacing r with Net, the binomial probability mass function
(pmf) of Yr becomes

PrðYNt = jÞ=
�
Nt
j

��
θ

2Ne

�j�
1−

θ

2Ne

�Nt−j
→

1
j!

�
θt
2

�j

e−θt ∕ 2

as Ne →∞. Thus, mutations in the coalescent are simply modeled with a
Poisson process with rate θt ∕ 2. Critical for this derivation is the conditioning
step, and the integration (i.e., calculation of the expected value or average)
over all of the possible genealogy lengths separating two individuals. The
same integration is needed to compute the overall likelihood functions.
Likelihood function under the coalescent with mutations. The reader familiar with
hierarchical or “state-space models” in biology, will recognize that the coalescent
process with mutation is indeed a hierarchical stochastic model. Such models al-
low researchers to incorporate variability in parameters that otherwise might be
unrealistically treated as fixed. In addition, these models allow the incorporation
of multiple layers of process and/or observation variability. Until recently, com-
putational difficulties rendered likelihood inference for these models unfeasible,
or plainly unreliable. For all but the simplest models, the likelihood function is
written as a multidimensional integral. Here we solve this integration problem
using DC, which is an efficient and extensively tested computational algorithm to
find the ML (20–22, 52–57). The DC theorem allows one to apply a typical
Bayesian posterior calculation and MCMC sampling to a number c of copies
(clones) of the data (53). When c is large, the sample mean vector of the resulting
simulated posterior distribution corresponds to the ML estimates of the param-
eters. Furthermore, the sample variance−covariance matrix of the posterior,
multiplied by c, provides estimates of the variances and covariances of these ML
estimates (the inverse of the observed Fisher’s informationmatrix). Ponciano et al.
(22) extended this estimationmethodology to a complete inferential approach by
proving and demonstrating how DC for hierarchical models can be easily ex-
tended to carry model selection, LRTs, and computing profile likelihood intervals
with much better coverage than the Wald confidence intervals for small sample
sizes. This DCmethodology is what we use here.We refer the interested reader to
Ponciano et al. (20), who show, step by step, the explicit DC calculations for an
analytically tractable example. We favored this methodology because, unlike any
available Bayesian software to work with the coalescent process, we can (and did)
explicitly and efficiently assess the identifiability and estimability of the model
parameters. This assessment is the greatest advantage of using DC for hierarchical
models vs. conforming to a Bayesian estimation methodology. Here again, we
refer the reader to Ponciano et al. (20) for explicit and extensive accounts of such
assessment. In SI Appendix, Table S2, we illustrate the assessment of parameter
identifiability using the data coming from one zebra.

With a sample of size n, a total of Sn segregating sites are observed, and
the likelihood function is written as the Poisson probability with Sn variants
emerging along the genealogy, averaged over all possible genealogies. The
joint distribution of the intercoalescent times ui,i = n, n − 1, . . ., 2 (Fig. 1) is
simply the product of their pdfs fðukÞ=Prðuk jtkÞ. For the constant Ne pop-
ulation model, this product is

fðu2Þfðu3Þ . . . fðunÞ= fðuÞ= ∏
n

k=2

kðk− 1Þ
2

ef−kðk−1Þ
2 ukg,

whereas, for the exponential model where it is assumed the population
decays exponentially from the present to the past according to the model
NeðtÞ=Neð0Þe−βt,

fðu2Þfðu3Þ . . . fðunÞ= fðuÞ= ∏
n

k=2

kðk− 1Þeβtk−1
2Neð0Þ × exp

n
− kðk−1Þ
2Ne ð0Þβ ðeβtk−1− e  βtkÞ

o
.

Since, along a branch of length u of the genealogy, the number of mutations
is distributed Poisson with mean θu/2 for the constant effective population
size model, given a particular genealogy (i.e., given an particular set of
values of un,un−1, . . . ,u2), the conditional distribution of the total number
of mutations Snjðun,un−1, . . . ,u2Þ along this genealogy is going to be
Poisson-distributed with mean θL/2, where

L =
Pn
i= 2

iui is the total length of a given genealogical tree (SI Appendix,

Fig. S3). That is,

PrðSn = sjðun,un−1, . . . ,u2Þ= e−
θL
2 ðθL ∕ 2Þs
s!

.

For the exponential growth model, the value of θ changes over time

according to θðtÞ= θ0e−βt, and we arbitrarily assume such changes only occur
at the coalescent events, and therefore,

PrðSn = sjðun,un−1, . . . ,u2Þ=
e−

Pn

i=2

θi−1 iui
2


Pn
i=2

θi−1 iui
2

�s

s!
.

Averaging these Poisson probabilities over all of the possible genealogy
lengths gives us the likelihood function as

PrðSn = sÞ=
Z

. . .

Z
PrðSn =nju2,u3 . . .unÞfðu2Þfðu3Þ . . . fðunÞdu2 . . .dun.

Both likelihood functions were maximized in the program JAGS (Just An-
other Gibbs Sampler) (57) using the DC methodology. Our computer code is
available at https://github.com/jmponciano/PNAS-Coalescent. After maximizing
the likelihood, we used the methodology in Ponciano et al. (22) to compute the
ML estimates of the latent variables u2, u2, . . ., un and of their sum, which is the
TMRCA. We also used Ponciano et al.’s (22) DC LRT and model selection tools to
test the goodness of fit of the exponential vis-à-vis the constant population size
model for the data in all zebra. For the laboratory data, we assumed the constant
population size model (59). Joyce et al. (59) demonstrated that the overall dy-
namics of a serial passage experiment with plasmid-carrying and plasmid-free
bacteria mirrored the dynamics during a single day, because bacteria were
grown approximately to the same total from one cycle to the next of the ex-
periment. Under these conditions, the bacterial dynamics could be accurately
predicted (60) and estimated by assuming a constant bacterial population size at
the end of each cycle. The alternative would be to fit a coalescent model with as
many bottlenecks as serial passage transfers, which is beyond the scope of this
work. The laboratory constant population size assumption allowed us to estimate
the laboratory Ne directly from the coalescent time scaling and the known
number of elapsed generations throughout the experiment (214, at 6 generations
per day). Since our coalescent model fitting gave us the ML estimate of the
TMRCA, and one unit of the coalescent time corresponds to Ne discrete genera-
tions, we simply obtained our Ne estimate as 214/TMRCA. Since our model fit-
ting also gives us an independent estimate of θ for the laboratory, we could
solve for the per generation mutation rate μ = 0.002.

Finally, the value of NeðtÞ in the above likelihood can be arbitrarily substituted
by θ(t) without affecting themaximum location in parameter space (61–63). After
all, both quantities are proportional to each other. After maximization, whenever
we fitted the constant population size, we accomplished the transformation from
values of θ to values of Ne by dividing by twice the laboratory mutation rate per
generation μ. Recalling one unit of coalescent time corresponds to Ne genera-
tions for this simple model and knowing the number of generations per day is
approximately six, we then transformed the ML estimate of the TMRCA to days
and took this value as the estimate of the retrospective number of days from
death to infection. For the exponential model, the transformation from co-
alescent time to generations was accomplished by solving the following question:
How many discrete generations j does it take to traverse τ units of exponentially
decaying coalescent time, starting from the present to the past?

Suppose the population size j generations back into the past, corre-
sponding to τ coalescent time units is N(j). Because the amount of coalescent
time traversed from generation i to i + 1 back in the past is 1=½NeðiÞ�, then,
during j generations, the total amount of coalescent time τ is given by

τ=gðjÞ=
Xj

i=1

1
NeðiÞ.

Having an estimate of τ (which, for us, will be the TMRCA), all we did was to
solve for j in the above equation, by using the exponential growth model
NeðtÞ=Neð0Þe−βt and the integral approximation

Xj

i=1

1
NeðiÞ≈

Z j

0

1
NeðsÞds=

1
Neð0Þβ

�
eβj − 1

�
.

Accordingly, j= ½lnðNeð0Þβτ+ 1Þ�=β.
For both models, we transformed the TMRCA from coalescent time units to real

time units assuming two possible values of Ne. First, we estimated Ne using the
mutation rate estimated from the laboratory experiment and theML estimate of θ
for each zebra and either the constant population size or exponential population
growthmodels. For the exponential population size model, we then estimated the
initial Ne when each zebra was infected using the ML estimates of β in each zebra.

Data Availability.All data and detailedmethods are available upon request to
W.C.T. or N.C.S. This includes detailed protocols, data (CFU counts and
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timetables for the transfer experiment, photos of sampled colonies for the
mutation rate experiment genotype data including raw fragment size data,
etc.).
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