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Abstract: Arterial hypercapnia reduces renal perfusion. Beetroot juice (BRJ) increases nitric oxide
bioavailability and may improve renal blood flow. We tested the hypothesis that acute consumption
of BRJ attenuates both decreases in blood velocity and increases in vascular resistance in the renal
and segmental arteries during acute hypercapnia. In fourteen healthy young adults, blood velocity
and vascular resistance were measured with Doppler ultrasound in the renal and segmental arteries
during five minutes of breathing a carbon dioxide gas mixture (CO2) before and three hours after
consuming 500 mL of BRJ. There was no difference between pre- and post-BRJ consumption in the
increase in the partial pressure of end-tidal CO2 during CO2 breathing (pre: +4 ± 1 mmHg; post:
+4 ± 2 mmHg, p = 0.4281). Segmental artery blood velocity decreased during CO2 breathing in both
pre- (by −1.8 ± 1.9 cm/s, p = 0.0193) and post-BRJ (by −2.1 ± 1.9 cm/s, p = 0.0079), but there were
no differences between pre- and post-consumption (p = 0.7633). Segmental artery vascular resistance
increased from room air baseline during CO2 at pre-BRJ consumption (by 0.4 ± 0.4 mmHg/cm/s,
p = 0.0153) but not post-BRJ (p = 0.1336), with no differences between pre- and post-consumption
(p = 0.7407). These findings indicate that BRJ consumption does not attenuate reductions in renal
perfusion during acute mild hypercapnia in healthy young adults.

Keywords: nitrate; nitrite; nitric oxide; beet juice; renal blood flow; renal physiology; carbon
dioxide; kidney

1. Introduction

The physiological and pathophysiological responses of the kidneys and lungs to
maintain essential body homeostasis in health and disease, including acid–base regulation
and the handling of carbon dioxide (CO2) and bicarbonate, are remarkably integrative [1].
Therefore, it is not surprising that clinical conditions that are associated with chronic or
acute elevations in arterial CO2 content (i.e., hypercapnia) such as chronic obstructive
pulmonary disease (COPD) and sleep apnea are at greater risks of kidney disease and
acute kidney injury [1–6]. Hypercapnia during the daytime is present in ~14% of patients
with sleep apnea [7] and the induction or worsening of hypercapnia is the main risk associ-
ated with supplemental oxygen use in patients with an acute exacerbation of COPD [8,9].
Despite the potential pathophysiological effects of hypercapnia on the kidneys in these
patients, the physiological response of the renal vasculature to an acute hypercapnic state,
independent of changes in oxygen tension, had not been studied until our recent investi-
gation. We reported that in healthy young adults, an acute exposure to mild hypercapnia
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reduced renal perfusion (interpreted from reductions in renal and segmental artery blood
velocity) and increased vascular resistance in the kidneys [10]. As an extension of this study,
we sought to examine the potential efficacy of consuming beetroot juice on ameliorating
the renal vasoconstrictor responses to acute, mild hypercapnia.

Beetroot juice is an excellent source of antioxidants and micronutrients, including
potassium, vitamin C, magnesium, and inorganic nitrate (NO3

−) [11]. Most notably, it
is the NO3

- content of beetroot juice that has received much attention in both the litera-
ture and popular culture. NO3

− ingestion is associated with numerous health benefits,
including improvements in exercise performance in healthy populations [11] and patients
with COPD [12], although this is not a consistent finding in the latter population [13]. In
patients with chronic kidney disease, dietary NO3

− ingestion has been shown to lower
blood pressure and elicit reductions in renal resistive index that are interpreted as a di-
minished renal vasoconstriction [14]. When dietary NO3

− is ingested, the enterosalivary
pathway within the oral cavity reduces NO3

− to its bioactive form, nitrite (NO2
−), which

then enters the systemic blood circulation [15]. There are a number of pathways in the
human body by which NO2

− can be further reduced to nitric oxide (NO) [15], which exerts
vasodilatory effects by diffusing into vascular smooth muscle cells and causing relaxation
through activation of soluble guanylyl cyclase and subsequently forming cyclic guanosine
monophosphate [16]. As a vasodilator, NO exerts a significant role in renal hemodynamics
homeostasis in both normotensive and hypertensive conditions [17]. Furthermore, there
is some evidence to support that increased NO attenuates renal sympathetic nerve activ-
ity [18], which causes an increased renal blood flow [16]. To our knowledge, the effects of
beetroot juice consumption on the response of the renal vasculature to hypercapnia have
not been reported. Therefore, as an extension of our previous study [10], we hypothesized
that acute consumption of beetroot juice would attenuate both decreases in blood velocity
and increases in vascular resistance in the renal and segmental arteries during an acute
exposure to mild hypercapnia.

2. Materials and Methods
2.1. Participants

Fifteen healthy young adults participated in this study. Technical difficulties prohib-
ited data collection in one participant during the post-beetroot juice measurement period.
Thus, data are presented from 14 participants with the following characteristics: 7 females,
7 males; age: 25.6 ± 3.2 years; height: 169 ± 9 cm; weight: 65.1 ± 11.0 kg; and body
mass index: 22.7 ± 3.0 kg/m2 (4 out of fourteen participants had a body mass index
between 25.0 and 27.9 kg/m2). Thirteen of these participants were included in our previous
study [10]. Participants were free of any pre-existing autonomic, cardiovascular, metabolic,
respiratory, endocrine, and/or kidney disease. Additionally, participants were not on
medications and were not smokers. Female subjects were tested during the first 10 days
of their self-identified menstrual cycle and were confirmed to be not pregnant via a urine
pregnancy test.

2.2. Instrumentation and Measurements

Height and nude body weight were measured with a stadiometer and scale (Sartorius,
Bohemia, NY, USA). Urine-specific gravity was measured in duplicate with a refractometer
(Atago USA, Bellevue, WA, USA). A capnograph (Nonin Medical, Inc., Plymouth, MN,
USA) was used to measure the partial pressure of end-tidal CO2 (PETCO2) and index
changes in arterial CO2 content. Heart rate was continuously measured via three-lead
ECG (DA100C, Biopac Systems, Goleta, CA, USA). The Penaz method was used to mea-
sure beat-to-beat blood pressure via finger photoplethysmography (Finometer Pro, FMS,
Amsterdam, The Netherlands) from the middle finger of the left hand. Beat-to-beat blood
pressure was calibrated to brachial artery blood pressure in the supine position using
return-to-flow [19] and was confirmed intermittently by auscultation of the brachial artery
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with electrosphygmomanometry (Tango M2; SunTech Medical, Raleigh, NC, USA). Blood
pressure data from the beat-to-beat finger photoplethysmography technique are reported.

Doppler ultrasound-derived measures of renal and segmental artery hemodynamics
were obtained in the supine position using the coronal approach (GE Vivid-Q, Chicago,
IL, USA). We have previously described this technique in detail, where blood velocity of
the renal vasculature was measured in the distal segment of the right renal artery (renal
artery) and the mid-point of a segmental artery (segmental artery) [10,20–24]. The same
segmental artery, for a given subject, was used throughout the experimental protocol. Blood
velocity was measured across three consecutive cardiac cycles during which participants
were instructed to perform a mid-exhalation, non-Valsalva breath hold lasting no more
than 10 s [22]. To minimize transient increases in PETCO2 associated with breath holding,
blood velocity was measured in the segmental artery only during each minute of CO2
breathing, whereas renal artery blood velocity was not measured during each minute of
CO2 breathing. Both renal and segmental artery blood velocity were measured during
room air breathing and at the end of five minutes of breathing CO2. The same sonographer
obtained all renal measurements (C.L.C.). Additionally, the location for the ultrasound
transducer was marked on the participant with indelible ink. The transducer was held in
place (i.e., was not removed) during all measurements before beetroot juice consumption
and after consumption. However, the transducer was removed during the three-hour
period between pre- and post-beetroot juice measurements. This approached yielded a
within-subject test–retest coefficient of variation of 4.1 ± 1.8% (renal artery) and 5.7 ± 1.8%
(segmental artery). The strengths and limitations of this approach have been documented
in detail elsewhere [22]. In brief, changes in blood velocity in the renal vasculature were
interpreted to reflect changes in blood flow in these conduit vessels [22,25–27].

2.3. Experimental Protocol

Participants were instructed to abstain from antibacterial mouthwash and chew-
ing gum the morning of this study to avoid interference with the reduction NO3

− to
NO2

− [28–31]. Additionally, participants reported to the laboratory after abstaining from
caffeine, alcohol, and exercise for 12 h and food for two hours. The start time of each exper-
imental trial was within the same two-hour window for all participants (09:30–11:30 a.m.).
Upon arrival, euhydration was confirmed via assessment of a spot urine sample with a spe-
cific gravity <1.020. Then, participants assumed a supine position and were instrumented
accordingly. Following 45 min of supine rest, pre-beetroot juice baseline hemodynamic
and renal measurements were obtained while participants breathed room air through a
mouthpiece connected to a four-way valve (Air). Then, participants were switched to
breathing a CO2 gas mixture (CO2) consisting of 3% CO2, 21% O2, and 76% N2. Par-
ticipants breathed CO2 for five minutes with renal measurements and hemodynamics
obtained every minute (as described above). Following completion of all pre-beetroot juice
consumption measurements, participants consumed 500 mL of a commercially available
beetroot juice (Biotta® Beet Juice, Fishers, IN, USA) within 5 min. The 500 mL is the drink
volume that is commercially available, which we used to improve our external validity,
and resulted in an overall mean dose for participants of 7.9 ± 1.3 mL of beetroot juice
per kilogram of body mass. This beetroot juice and dose has been used in previous stud-
ies [30,31] and has an on-label nutrient profile of 0 g fat, 24 g carbohydrate, 3 g protein, and
95 mg sodium. Following beetroot juice consumption, participants rested quietly in the
laboratory for two hours and 15 min. During the break, participants were given 250 mL
water to consume to reduce thirst perception and eliminate any perceived aftertaste of
the beetroot juice. Participants were instructed to finish consuming this water at least
30 min prior to beginning supine rest and were not allowed any other additional food or
beverage items. Participants were also allowed to void their bladder during this break
period to reduce discomfort during post-consumption measurements. After the two hours
and 15 min break, participants assumed the supine position and rested quietly for 45 min.
After supine rest, post-beetroot juice measurements during room air and CO2 breathing
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occurred following the same procedures as pre-beetroot juice consumption. This timing
was specifically designed so that post-beetroot juice measurements occurred exactly three
hours after beetroot juice consumption, which has been documented by others as the time
by which blood NO2

− concentrations peak [30,32,33].

2.4. Data and Statistical Analyses

A data acquisition system (Biopac MP150; Goleta, CA, USA) was used to continuously
sample PETCO2 (15.6 Hz), heart rate (1000 Hz), and mean arterial pressure (62.5 Hz). To
minimize the influence of the breath hold procedure on PETCO2 measurements, PETCO2
data were extracted as the average during the 45 s period immediately prior to the renal
measurements (i.e., PETCO2 was extracted during normal breathing only). Heart rate and
mean arterial pressure data were extracted during the same cardiac cycles as the renal mea-
surements, as described above. Stroke volume was estimated by Modelflow [34]. Cardiac
output was calculated as the product of heart rate and stroke volume. The quotient of
mean arterial pressure and cardiac output was used to calculate total peripheral resistance.
Vascular resistance in the renal and segmental arteries were calculated as the quotient of
mean arterial pressure and blood velocity.

Segmental artery blood velocity, vascular resistance, and all hemodynamic variables
are reported as n = 14 (7 females and 7 males). Due to acoustic shadowing of the kidney
occurring during CO2 breathing pre-beetroot juice consumption (n = 1) or post-beetroot
juice consumption measurements (n = 3), renal artery blood velocity and vascular resistance
are reported as n = 10 (4 females and 6 males) for renal artery comparisons involving CO2
and n = 11 (5 females and 6 males) for renal artery comparisons involving the effects of
beetroot juice independent of CO2. Data were analyzed with Prism software (version 9.1,
GraphPad Software, La Jolla, CA, USA). Normality was confirmed using the Shapiro–
Wilk test. Hemodynamic and renal vascular responses to beetroot juice consumption,
independent of CO2 breathing, were analyzed with a two-tailed paired t-test. Two-way
repeated-measures ANOVAs were used to compare the effect of beetroot juice (condition)
on hemodynamic and renal vascular responses during 5 min of CO2 breathing (time).
When an ANOVA revealed a significant F statistic, post hoc Dunnett’s tests were used to
compare changes during CO2 from Air baseline (i.e., 0 min) and post hoc Sidak’s tests were
used to compare differences between pre-and post-beetroot juice consumption during CO2
breathing. Statistical significance was set a priori at p ≤ 0.05. Actual p-values are reported
where possible. Data are reported as the means ± SD.

3. Results
3.1. Effect of Beetroot Juice Consumption during Room Air Breathing

There was no effect of beetroot juice on any hemodynamic variables (p ≥ 0.1021,
Table 1). Additionally, beetroot juice consumption did not change blood velocity or vascular
resistance in the renal and segmental arteries (p ≥ 0.7516, Figure 1).

Table 1. Effect of beetroot juice consumption during room air breathing.

Parameter Pre-Beetroot Juice Post-Beetroot Juice p-Value

PETCO2 (mmHg) 45 (3) 45 (3) 0.8557
Mean arterial pressure (mmHg) 91 (5) 92 (7) 0.3929

Heart rate (bpm) 61 (6) 63 (9) 0.2413
Stroke volume (mL) 93 (14) 88 (18) 0.1689

Cardiac output (L/min) 5.7 (0.8) 5.4 (0.9) 0.2234
Total peripheral resistance

(mmHg/L/min) 16.4 (2.6) 17.7 (3.1) 0.1021

PETCO2: partial pressure of end-tidal CO2. Data were analyzed using a paired t-test and are presented as the
mean (SD). n = 14 (7 females and 7 males).
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Figure 1. Effect of beetroot juice (BRJ) at three hours post-consumption on renal (panels A and
C, n = 11, 5 females and 6 males) and segmental (panels B and D, n = 14, 7 females and 7 males)
artery blood velocity and vascular resistance during room air breathing. Data were analyzed using a
two-tailed paired t-test and are presented as the means (bar) with individual values.

3.2. Effect of Beetroot Juice Consumption during CO2 Breathing
3.2.1. PETCO2 and Cardiovascular Responses

PETCO2 increased from baseline during CO2 breathing in both pre- and post-beetroot
juice, and there were no differences between pre- and post-beetroot juice consumption
(p = 0.4281, Figure 2A). There was a significant main effect of beetroot juice for mean arterial
pressure (p = 0.0219), indicating a decrease in mean arterial pressure throughout CO2
breathing post-beetroot juice consumption compared to pre-beetroot juice consumption.
However, post hoc multiple comparisons analysis did not reveal differences between pre-
and post-beetroot juice consumption at any timepoint during CO2 breathing (p ≥ 0.1342,
Figure 2B). Heart rate was decreased at three minutes of CO2 breathing with post-beetroot
juice consumption compared to pre-beetroot juice consumption (p = 0.0539), but there were
no differences between trials at any other timepoint (p ≥ 0.1268, Figure 2C). There were no
differences between pre- and post-beetroot juice consumption in stroke volume (p = 0.3154,
Figure 2D), cardiac output (p = 0.9518, Figure 2E), and total peripheral resistance (p = 0.1051,
Figure 2F).
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Figure 2. Effect of beetroot juice (BRJ, condition) at three hours post-consumption on the hemodynamic response to five
minutes of CO2 breathing (time). Data are presented as the means ± SD as the change from room air baseline (0 min). Data
were analyzed using a two-way repeated-measures ANOVA with post hoc Dunnett’s tests to compare changes during CO2

from room air baseline and post hoc Sidak’s tests to compare differences between pre-and post-beetroot juice consumption
during CO2 breathing. (A) PETCO2: partial pressure of end-tidal CO2; (B) mean arterial pressure; (C) heart rate; (D) stroke
volume; (E) cardiac output (F) total peripheral resistance. n = 14 (7 females and 7 males). B different from room air baseline
(p ≤ 0.0074); * different from pre-beetroot juice consumption (p = 0.0539).

3.2.2. Segmental Artery Hemodynamics

Segmental artery blood velocity decreased from room air baseline during 3–5 min of
CO2 breathing at both pre- and post-beetroot juice consumption (p ≤ 0.0348), but there
were no differences in the magnitude of these decreases between pre- and post-beetroot
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juice consumption (p = 0.7633, Figure 3A). Segmental artery vascular resistance increased
from room air baseline during 4–5 min of CO2 breathing at pre-beetroot juice consumption
(p ≤ 0.0394, Figure 3B). However, there were no changes from room air baseline during CO2
breathing at post-beetroot juice consumption (p ≥ 0.0695), and there were no differences
between pre- and post-beetroot juice consumption throughout CO2 (p = 0.7407, Figure 3B).
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Figure 3. Effect of beetroot juice (BRJ, condition) at three hours post-consumption on blood velocity and vascular resistance
in the segmental artery during CO2 breathing (time). Data are presented as the means ± SD as the change from room
air baseline (0 min). Data were analyzed using a two-way repeated-measures ANOVA with post hoc Dunnett’s tests to
compare changes during CO2 from room air baseline and post hoc Sidak’s tests to compare differences between pre- and
post-beetroot juice consumption during CO2 breathing. (A) segmental artery blood velocity; (B) segmental artery vascular
resistance. n = 14 (7 females and 7 males). B different from room air baseline (p ≤ 0.0394).

3.2.3. Renal Artery Hemodynamics

Renal artery blood velocity decreased from room air baseline during CO2 breathing
at pre-beetroot juice consumption (p = 0.0093) but not post-beetroot juice consumption
(p = 0.4113, Figure 4A). There were no differences in the magnitude of change in blood
velocity between pre- and post-beetroot juice consumption (p = 0.2879, Figure 4A). Renal
artery vascular resistance increased from room air baseline during CO2 breathing at pre-
beetroot juice consumption (p = 0.0177), but not post-beetroot juice consumption (p = 0.2645,
Figure 4B). There were no differences between pre- and post-beetroot juice consumption
following CO2 breathing (p = 0.4977, Figure 4B).
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Figure 4. Effect of beetroot juice (BRJ, condition) at three hours post-consumption on blood velocity and vascular resistance
in the renal artery during five minutes of CO2 breathing (time). Data are presented as the means ± SD as the change from
room air baseline. Data were analyzed using a two-way repeated-measures ANOVA with post hoc Sidak’s tests to compare
changes from room air baseline and to compare differences between pre-and post-beetroot juice consumption during CO2

breathing. (A) renal artery blood velocity; (B) renal artery vascular resistance. n = 10 (4 females and 6 males). B different
from room air baseline (p ≤ 0.0177).
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4. Discussion

Contrary to our hypothesis, the findings from the present study do not support
that acute beetroot juice consumption attenuates decreases in blood velocity or diminishes
increases in vascular resistance in the renal and segmental arteries during an acute exposure
to mild hypercapnia in healthy young adults. Rather, we found similar reductions in
segmental artery blood velocity during CO2 breathing between pre- and post-beetroot
juice consumption. Additionally, we did not observe differences between pre- and post-
beetroot juice during CO2 in segmental artery vascular resistance. We did observe increases
from room air baseline in pre- but not post-beetroot juice. In the renal artery, we did
not observe differences in blood velocity and vascular resistance between pre- and post-
beetroot juice during CO2. However, pre-beetroot juice resulted in decreased blood velocity
and increased vascular resistance during CO2 compared to room air baseline, but there
were no differences from room air baseline during CO2 at post-beetroot juice.

We hypothesized that acute beetroot juice consumption would attenuate both de-
creases in blood velocity and increases in vascular resistance in the renal and segmental
arteries during an acute, mild hypercapnic state. Although the mechanisms are not fully
understood, the kidneys are acutely and dynamically sensitive to mild changes in arterial
CO2 content likely owing to increases in renal sympathetic nerve activity [10]. It has been
previously suggested that increasing NO bioavailability influences renal blood flow [16],
based on evidence indicating that NO inhibition, via N-methyl-L-arginine infusion, in-
creased renal sympathetic nerve activity in rats [18]. Along these lines, beetroot juice
consumption increases NO bioavailability via the NO3

−–NO2
−–NO pathway, which is

thought to become more pronounced during regional ischemia to augment the l-arginine–
NO synthase pathway [15]. In dogs, a more profound normoxic-hypercapnic stimulus (i.e.,
arterial CO2 partial pressure ~80 mmHg) reduced renal blood flow by ~20% [35] whereas
the mild normoxic-hypercapnic stimulus (i.e., PETCO2 of 48 ± 3 mmHg) in the present
study reduced segmental artery blood velocity by 8%. That beetroot juice consumption did
not improve renal perfusion during mild hypercapnia may be a result of an insufficient
duration or magnitude (i.e., the severity of the hypercapnia) of stimulus to elicit renal
ischemia. Therefore, the NO3

−–NO2
−–NO pathway may not have been promoted to influ-

ence renal perfusion. This speculation may explain why statistically significant increases in
segmental artery vascular resistance were observed during CO2 breathing at pre-beetroot
juice consumption, but not post-beetroot juice consumption. Additionally, whether these
acute effects reflect the response of the renal vasculature to hypercapnia with chronic beet-
root juice consumption remains unknown. Moreover, beetroot juice may be less efficacious
in young, healthy adults during acute perturbations in arterial CO2 content compared to a
clinical population. Therefore, future studies examining the potential efficacy of beetroot
juice in adults at risk for exacerbations of hypercapnia (i.e., COPD and sleep apnea) remain
warranted. There are concerns for kidney stone formation in patients with chronic kidney
disease due to the high oxalic acid composition of beetroot juice [36]. However, there may
be potential benefits in patients with chronic kidney disease, as acute dietary beetroot juice
supplementation improved exercise capacity [37] and chronic supplementation lowered
blood pressure and reduced renal resistive index [14]. While the beetroot juice did not
alter renal perfusion in the present study, there are likely other bioactive compounds that
may be beneficial for overall health, including betaine, betacyanins, betanins, polyphenols,
flavonoids, vitamins and minerals [36].

An interesting finding in the present study was that there was a significant main effect
of beetroot juice consumption for a reduced mean arterial pressure during CO2 breathing
(Figure 2B) despite no changes in mean arterial pressure during room air breathing (i.e.,
normoxic conditions). Thus, these data indicate that there may be other beneficial responses
of beetroot juice consumption for patients at risk of hypercapnia due to COPD or sleep
apnea. Given the links between hypertension and both sleep apnea [38] and COPD [39],
the data from the present study support further research in this area regarding the efficacy
of beetroot juice supplementation to improve blood pressure in these patient populations.
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The present study has several limitations that are worth discussing. First, we did
not include a time control group. Thus, we are unable to confirm that our findings are
not a result of the three hours that elapsed between testing periods. However, despite
this important limitation, efforts were made to improve scientific rigor, including having
the participants rest quietly during this break period. Second, the Doppler ultrasound
measures of renal and segmental artery blood velocity were interpreted to reflect changes
in renal blood flow in conduit vessels in the kidney. The findings of the present study
may potentially differ when using techniques to quantify renal plasma flow, such as para-
aminohippurate clearance, which involves quantifying the complete circulation throughout
the kidneys [40]. That said, the Doppler ultrasound technique employed in the present
study was determined to be advantageous compared to clearance techniques because of
the ability of Doppler ultrasound to capture rapid, dynamic changes in renal hemody-
namics [22]. Third, we did not measure NO2

− in the saliva or blood. Participants were
specifically instructed to abstain from antibacterial mouthwash and chewing gum the
morning of this study, as they have successfully increased circulating NO2

− according
to previous reports [29–31]. These products have been previously shown to profoundly
attenuate the ability of the enterosalivary pathway to reduce NO3

− into NO2
− in the oral

cavity, and therefore, attenuate increases in blood NO2
− concentration [28]. Previous

reports using the same commercially available beetroot juice product and the same 500
mL dose as the present study have reported that blood NO2

− increased by ~200 nM at
three hours post-consumption in healthy young adults [30]. Additionally, some studies
have given beetroot juice to participants following an overnight fast [30,33]. Future studies
are warranted to investigate whether the renal hemodynamic responses to beetroot juice
consumption differs following a prolonged fast. Fourth, we did not determine if there is a
dose–response effect of acute beetroot juice ingestion on renal hemodynamics.

In conclusion, our findings revealed that in healthy young adults, acute beetroot
juice consumption does not attenuate decreases in blood velocity or increases in vascular
resistance in the renal and segmental arteries during an acute exposure to mild hypercapnia.
Our data also indicate that acute beetroot juice consumption does not increase blood
velocity or decrease vascular resistance in the renal and segmental arteries during resting
normoxic conditions.
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