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Abstract

Background

Four-dimensional computed tomography (4D-CT) ventilation is an emerging imaging modal-

ity. Functional avoidance of regions according to 4D-CT ventilation may reduce lung toxicity

after radiation therapy. This study evaluated associations between 4D-CT ventilation-based

dosimetric parameters and clinical outcomes.

Methods

Pre-treatment 4D-CT data were used to retrospectively construct ventilation images for 40

thoracic cancer patients retrospectively. Fifteen patients were treated with conventional

radiation therapy, 6 patients with hyperfractionated radiation therapy and 19 patients with

stereotactic body radiation therapy (SBRT). Ventilation images were calculated from 4D-CT

data using a deformable image registration and Jacobian-based algorithm. Each ventilation

map was normalized by converting it to percentile images. Ventilation-based dosimetric

parameters (Mean Dose, V5 [percent lung volume receiving�5 Gy], and V20 [percent lung

volume receiving�20 Gy]) were calculated for highly and poorly ventilated regions. To test

whether the ventilation-based dosimetric parameters could be used predict radiation pneu-

monitis of�Grade 2, the area under the curve (AUC) was determined from the receiver

operating characteristic analysis.

Results

For Mean Dose, poorly ventilated lung regions in the 0–30% range showed the highest AUC

value (0.809; 95% confidence interval [CI], 0.663–0.955). For V20, poorly ventilated lung

regions in the 0–20% range had the highest AUC value (0.774; 95% [CI], 0.598–0.915), and

for V5, poorly ventilated lung regions in the 0–30% range had the highest AUC value (0.843;

95% [CI], 0.732–0.954). The highest AUC values for Mean Dose, V20, and V5 were

obtained in poorly ventilated regions. There were significant differences in all dosimetric

parameters between radiation pneumonitis of Grade 1 and Grade�2.
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Conclusions

Poorly ventilated lung regions identified on 4D-CT had higher AUC values than highly venti-

lated regions, suggesting that functional planning based on poorly ventilated regions may

reduce the risk of lung toxicity in radiation therapy.

Introduction

Lung cancer is the leading cause of cancer and has the highest mortality rate in Japan [1].

Functional image-based treatment planning has been investigated by many researchers for its

potential to reduce lung toxicity after radiation therapy [2–5]. Single photo emission computed

tomography (SPECT), positron emission computed tomography (PET), and magnetic reso-

nance (MR) imaging have been used as functional imaging techniques for radiation therapy

treatment planning; these techniques can potentially provide information on perfusion in

addition to ventilation, and this may be more important than ventilation alone [2–6]. How-

ever, these functional imaging techniques require additional cost and time. As a result, func-

tional image-based treatment planning has not become widespread in the radiation therapy

community.

To address this issue, a new technique for ventilation imaging using four-dimensional

computed tomography (4D-CT) with deformable image registration (DIR) has been

reported [6–11]. In clinical practice, 4D-CT images are routinely acquired from thoracic

cancer patients, to permit accurate contouring of gross tumor volume (GTV) with respira-

tory motion. 4D-CT ventilation imaging technique is referred to as a surrogate measure of

ventilation. 4D-CT ventilation imaging technique can be used for treatment planning [6–

9], allowing ventilation imaging to be obtained without the additional cost and time of

other functional imaging modalities. The 4D-CT ventilation information can be calcu-

lated using DIR performed from the peak-exhale and peak-inhale images. In addition,

quantitative analysis techniques are required to calculate the ventilation values. Currently,

two calculation algorithms have been proposed: the Jacobian algorithm and the Houns-

field Unit (HU) change-based algorithm [12–13]. Differences between the ventilation

images generated by from the Jacobian and HU (or density) change-based algorithms

have been discussed in previous papers [12–13].

Castillo et al. reported that both Jacobian- and density-change-based methods correlate

well with global measurements of resting tidal volume [12]. In addition, the correlation with

clinical SPECT was evaluated using the Dice similarity coefficient, with the result that the den-

sity-change-based specific ventilation showed a statistically higher correlation (p<10−4) with

the clinical reference than did the Jacobian-based implementation [13].

To compare the Xe-CT ventilation measurements to the Jacobian from the image registra-

tion transformation, for each animal we manually registered the Xe-CT slices to a 3D rectan-

gular region in the 0 cm H2 O airway pressures image by using a rigid transformation to

match major anatomic landmarks [14]. There are low correction with comparing CT ventila-

tion and Xe-CT from sheep [15].

They concluded that using 3D image registration to match images acquired at 10-cm H2O

and 15-cm H2O airway pressures gave the best match between the average Jacobian and the

xenon CT-specific ventilation (linear regression, average r2 = 0.73) [14]. Yamamoto et al.

reported on a protocol developed for a prospective clinical trial to investigate the safety and

feasibility of CT ventilation functional image−guided radiation therapy [16]. Moreover, CT

Computed tomography ventilation image and lung toxicity for radiation

PLOS ONE | https://doi.org/10.1371/journal.pone.0204721 October 3, 2018 2 / 14

https://doi.org/10.1371/journal.pone.0204721


ventilation functional image-guided radiation therapy plans were designed to minimize the

specific lung dose–function metrics, including functional V20 (fV20), while maintaining target

coverage and meeting standard constraints for other critical organs [17]. Ireland et al. reported

on the application of MR, SPECT, PET and CT-based measures of lung biomechanics, review-

ing the practical issues involved with implementation of lung avoidance, including image reg-

istration and the role of both ventilation and perfusion imaging [6]. In these studies highly

ventilated regions were avoided according to the CT ventilation functional image-guided radi-

ation therapy plans. The use of 4D-ventilation to compare poorly and highly ventilated regions

may help to further minimize pulmonary toxicity.

In this study, 4D-ventilation imaging was used to separate poorly and highly ventilated

regions. Moreover, we evaluated correlations between 4D-CT ventilation-based dosimetric

parameters and the clinical outcomes of thoracic cancer patients treated with radiation

therapy.

Materials and methods

All patients provide informed consent to participate in this study. The institutional Research

Ethics Board at Kindai University Hospital (Osaka, Japan) Gave approval for their participa-

tion in this study (No. 28–113).

Patient characteristics

This prospective study was approved institutional review board. Forty thoracic cancer patients

who received conventionally-fractionated or hypo-fractionated radiation therapy were

included. Fifteen patients were treated with conventional radiation therapy, six were treated

with hyperfractionated radiation therapy and 19 patients were treated with stereotactic body

radiation therapy (SBRT). Risk factors for lung disease, pretherapeutic lung disease, infectious

lung disease during or after therapy and systemic therapy during and after radiotherapy were

analyzed. In this study, infectious lung disease during therapy was not founded. In this study,

risk factors for lung disease, pretherapeutic lung disease were defined chronic obstructive pul-

monary disease, interstitial pneumonia, emphysema and lung resection. All patients were

treated in our hospital from October 2011 to March 2015. The patients’ characteristics are

given in Table 1.

Radiation pneumonitis was graded according to the Common Terminology Criteria for

Adverse Events (CTCAE) version 4.0. Patients with written informed consent were followed

up at 1 and 3 months after treatment completion, and then every 3 months for 5 years accord-

ing to the Kindai protocol.

4D-CT ventilation

The 4D-CT scans were performed using an Optima CT (GE Medical Systems, Waukesha, WI)

in cine mode with the Varian Real-time Position Management (RPM) system (Varian Medical

Systems, Palo Alto, CA). The scans were acquired with a 2.5 mm slice thickness. A phase-

based sorting pattern was used for the 4D-CT images was used. In this phase-based sorting,

the GE Advantage 4D software (GE Medical Systems) was used to create a 4D-CT image set by

sorting CT slices into 10 respiratory bins, according to the RPM phase information. The next

step was to use DIR for spatial mapping of the peak-exhale 4D-CT images to the peak-inhale

images to derive a displacement vector field. The B-spline-based DIR algorithm implemented

in iVAS (ITEM Corporation, Japan) was used for this mapping [18], with the geometrical

accuracy of this algorithm having been previously validated [18–19]. Participants calculate

deformation fields and submit them to the EMPIRE10 organizational team for independent

Computed tomography ventilation image and lung toxicity for radiation
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evaluation. The deformation fields are evaluated over four individual categories: lung bound-

ary alignment, fissure alignment, correspondence of manually annotated point pairs, and the

presence of singularities in the deformation field [19].

We didn’t used ventilation weighted measure. We chose this DIR algorithm because previ-

ous studies had shown it to have the most accurate results for thoracic imaging [20–21]. The

4D-CT based ventilation images were then created using the Jacobian metric [13,22]. In addi-

tion, we normalized each ventilation map by converting it to percentile images.

Ventilation-based dosimetric parameters

The ventilation-based dosimetric parameters of Mean Dose, V5, and V20 were calculated in

highly and poorly ventilated regions. Previous researchers have reported a correction with

between radiation pneumonitis and the ventilation-based dosimetric parameters of Mean

Dose, V5, and V20 [23–24]. The conventional RT, hyperfractionated RT, and SBRT were rean-

alyzed to estimate the normalized total dose (NTD) according to the following equation [25–

27],

NTD ¼ D
1þ d

a=b

1þ 2
a=b

 !

Gyð Þ D is the total dose and d is the fraction dose; a
b is 3:ð1Þ
�

The venous oxygen saturation of all patients was also investigated, both before and after

radiation therapy.

To calculate the ventilation-based dosimetric parameters for the highly ventilated regions,

the lung regions were evaluated according to the following percentile ventilation ranges; 90%–

100%, 80%–100%, 70%–100%, 60%–100%, 50%–100%, 40%–100%, 30%–100%, 20%–100%,

10%–100%, and 0–100% where 0–100% means the total lung region. Similarly, to calculate the

Table 1. Patients’ background.

Characteristics Value or number

Gender

No. of males 30

No. of females 10

Median age (range) 66 (57–87)

Patients, treatment characteristics + Irradiation technique

Conventional RT 15

Hyper fractionated RT 6

Stereotactic body RT 19

Dose prescription

Conventional RT 60–66 Gy/30-33 fr

Hyperfractionated RT 45–54 Gy/30-36 fr

Stereotactic body RT 52 Gy/4 fr

Median follow up period (range) 18 months (6–48 months)

Radiation pneumonitis

Grade�2 10 (Conventional RT; 5, Hyperfractionated RT; 2, SBRT; 3)

Grade 1 30 (Conventional RT; 10, Hyperfractionated RT; 4, SBRT; 16)

Systemic therapy 18 (Grade�2; 5, Grade1; 13)

Risk factor for pretherapeutic lung disease 20 (Grade�2; 5, Grade 1; 15)

Infectious lung disease after therapy 3 (Grade 1)

https://doi.org/10.1371/journal.pone.0204721.t001
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ventilation-based dosimetric parameters for the poorly ventilated regions, lung regions were

evaluated according to the following percentile ventilation ranges; 0–10%, 0–20%, 0–30%,

0–40%, 0–50%, 0–60%, 0–70%, 0–80%, 0–90%, and 0–100%.

Analysis

To test whether the ventilation-based dosimetric parameters could be used to predict radiation

pneumonitis of�Grade 2 or higher, the area under the curve (AUC) was determined from

receiver operating characteristic (ROC) analysis [4, 28–29]. Using the AUC value with the

ROC and logistic regression analysis, radiation pneumonitis of�Grade 2 or higher was repre-

sented by positive values, while Grade 1 radiation pneumonitis was represented by negative

values. This analysis was performed using XLSTAT-software (Addinsoft, Paris, France) [30].

Student’s t-test and logistic regression were used to compare the dosimetric parameters from

highly ventilated regions with those from poorly ventilated regions over various percentile

ventilation ranges (e.g., 0–10% for poorly ventilated regions vs. 90%–100% for highly venti-

lated regions). Statistical significance was defined as p< 0.05.

Results

With a median follow-up duration of 18 months (range, 6–48 months), radiation pneumonitis

of Grade 2 or above was observed in 10 patients: 7 patients with Grade 2 pneumonitis, two

patients with Grade 3, and one patient with Grade 5. The remaining patients had Grade 1 radi-

ation pneumonitis. In this study, there were no significant correlation between radiation pneu-

monitis (Grade�2) and pretherapeutic lung disease, infectious lung disease after therapy or

systemic therapy during and after radiation therapy.

Figs 1–3 show the AUC values for Mean Dose (Fig 1), V20 (Fig 2), and V5 (Fig 3) for each

ventilated lung region. In these figures, it should be noted that the x-axis represents different

ranges for highly and poorly ventilated regions. For example, when the x value is 30, the plot

for the highly ventilated region means that the AUC value is for the lung region with a 70–100

percentile ventilation range. However, the plot for the poorly ventilated region means that the

AUC value is for the lung region with 0–30 percentile ventilation range. For all of the dosimet-

ric parameters, the highest AUC values were observed for poorly ventilated regions (e.g., the

30% range for Mean Dose with the value of 0.809 (95% CI, 0.663 to 0.955), the 20% range for

V20 with the value of 0.774 (95% CI, 0.598 to 0.915), and the 30% range for V5 with the value

of 0.843 (95% CI, 0.732 to 0.954)). In addition, for highly ventilated regions, the AUC value

increased with increasing percentile range.

Figs 1–3 demonstrate significant differences in all dosimetric parameters between poorly

and highly ventilated regions for each percentile range (p< 0.05; Student’s t test).

Table 2 summarizes of the dosimetric parameters for highly ventilated regions, poorly ven-

tilated regions, and the total lung for two patient sub-groups: one group with radiation pneu-

monitis of�Grade 2, and the other group with radiation pneumonitis of Grade 1. In this

analysis, we defined the highly ventilated region as the 70%–100% ventilation value and the

poorly ventilated region as the 0–30% value. For all of the dosimetric parameters, the group

with radiation pneumonitis of�Grade 2 had higher values than the group with radiation

pneumonitis of Grade 1 (e.g., V20 in highly ventilated region, 20.9 ±17.5% vs. 10.4 ±12.2%). In

the group with radiation pneumonitis of�Grade 2, all dosimetric parameters in the poorly

ventilated regions had higher values that those in the highly ventilated regions.

Table 3 summarizes of the dosimetric parameters for highly ventilated regions and poorly

ventilated regions for the two patient sub-groups. There were significant differences in all

Computed tomography ventilation image and lung toxicity for radiation
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dosimetric parameters between Grade 1 and Grade>2, in both for comparison of poorly and

highly ventilated regions.

Fig 4 shows representative ROC curve results (6 cases; Mean Dose, V5, V20, with poorly

and highly ventilated regions shown for each parameter).

Figs 5–7 show examples of dose distributions overlaid with the highly and poorly ventilated

regions. Fig 5 shows an example case of a patient without severe radiation pneumonitis (Grade

1). The Mean Dose, V20, and V5 for the total lung were 10.7 Gy, 17.4%, and 30.1% respec-

tively. For the highly ventilated region, these parameters in the highly ventilated region were

15.1 Gy, 25.5%, and 42.8% respectively, whereas for the poorly ventilated region, they were 5.4

Gy, 6.0%, and 12.6%. This clearly indicated that all the dosimetric parameters had lower values

in the poorly ventilated region than in the highly ventilated region, and that according to visual

inspection, this patient received a higher dose to the highly ventilated region. Conversely, Fig 6

shows an example case of a patient with severe radiation pneumonitis (Grade 3). Mean Dose,

V20, and V5 for the total lung were 17.8 Gy, 29.2%, and 43.6%, respectively. For the highly

ventilated region these parameters were 15.1 Gy, 25.5%, and 42.8% respectively, whereas for

the poorly ventilated region they were 28.3 Gy, 47.5%, and 59.2%. This showed that the poorly

Fig 1. Comparison between the Mean Dose AUC values for highly and poorly ventilated regions. The difference in mean dose between poorly and highly ventilated

regions was statically significant for each percentile range (p = 0.0093; Student’s t-test).

https://doi.org/10.1371/journal.pone.0204721.g001
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ventilated region had a higher value in all the dosimetric parameters than in the highly venti-

lated region, and that according to visual inspection, this patient received a higher dose to the

poorly ventilated region. Fig 7 shows an example case of a patient with severe radiation pneu-

monitis (Grade 5). The Mean Dose, V20, and V5 for the total lung were 19.5 Gy, 34.1%, and

47.2% respectively. In the highly ventilated region these parameters were 17.7 Gy, 30.9%, and

45.1% respectively, whereas in the poorly ventilated region they were 21.4 Gy, 37.1%, and

50.2%. This suggests that there was no correlation between ventilation-based dosimetric

parameters and lung toxicity.

Finally, for the entire patient group, there was no significant differences in the venous oxy-

gen saturation before and after radiation therapy.

Discussion

In this study, we aimed to clarify the relationship between 4D-CT ventilation-based dosimetric

parameters and clinical outcomes. Yamamoto et al. previously employed 4D-CT ventilation-

based functional planning for lung cancer patients to reduce the dose to highly ventilated

regions [15]. Furthermore, Vinogradskiy et al. demonstrated that incorporating ventilation-

Fig 2. Comparisons between the V20 AUC values for highly and poorly ventilated regions. The difference in V 20 between poorly and highly ventilated regions was

statically significant for each percentile range (p = 0.0138; Student’s t-test).

https://doi.org/10.1371/journal.pone.0204721.g002
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based functional imaging improved the prediction of radiation pneumonitis, although the

results were not significant at the 0.05 level when compared with other methods not using ven-

tilation-based functional imaging [6]. Our results were statistically significant for the AUC

value of poorly ventilated regions, and suggest the potential of 4D-CT ventilation-based func-

tional planning for a reducing the risk of lung toxicity after radiation therapy. However, our

Fig 3. Comparisons between the V5 AUC values for highly and poorly ventilated. The difference in V 5 between poorly and highly ventilated regions was statically

significant for each percentile range (p = 0.0236; Student’s t-test).

https://doi.org/10.1371/journal.pone.0204721.g003

Table 2. Summary of the dosimetric parameters calculated for highly ventilated regions, poorly ventilated regions, and total lung for two patient sub-groups: One

with radiation pneumonitis of�Grade 2 and the other with radiation pneumonitis of Grade 1.

Radiation Pneumonitis Dosimetric Poorly ventilated

regions

Highly ventilated

regions

Total lung

Parameter (0–30%)Average, SD (70–100%) Average, SD (0–100%) Average, SD

� Grade 2 (n = 10) Mean Dose (Gy) 19.1±16.3 15.6±7.5 14.4±6.4

V 20 (%) 29.6±15.8 20.9±17.5 20.0±12.0

V 5 (%) 44.8±19.3 37.5±16.3 38.9±8.9

< Grade 2 (n = 30) Mean Dose (Gy) 9.8±6.7 12.3±7.3 11.7±11.2

V 20 (%) 6.6±6.6 10.4±12.2 9.4±10.0

V 5 (%) 24.4±16.8 26.4±13.0 25.6±11.8

https://doi.org/10.1371/journal.pone.0204721.t002
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results were the opposite of previous studies. On the basis of Figs 1–3, our results suggest that

dose to poorly ventilated regions (0–30%) was associated with lung toxicity risk, and the data

in Table 3 suggest that the dose to poorly ventilated regions (0–30%) may reduce the lung tox-

icity risk. Additionally, the highest AUC values for all dosimetric parameters were observed in

the poorly ventilated regions (0–30%, 0–20%). As the percentile range for highly and poorly

ventilated regions increased, the AUC values approached those of the total lung. Thus, the

AUC value for 10% showed fluctuation for evaluating narrow lung area.

Table 3. P-values for t-tests and logistic regression comparing Grade 1 and� Grade 2 radiation pneumonitis in

both poorly and highly ventilated regions.

Variation p-Value p-Value

(t-test) (logistic regression)

Grade 1 vs. ≧ Grade 2
Poorly ventilation (30th percentile range)

Mean Dose 0.0487 0.0462

V 5 0.0006 0.2669

V 20 0.0070 0.0150

Highly ventilation (70 th percentile range)

Mean Dose 0.1118 0.6458

V 5 0.0438 0.7195

V 20 0.0486 0.9839

total lung

Mean Dose 0.1752 0.5724

V 5 0.0006 0.2003

V 20 0.0086 0.5286

https://doi.org/10.1371/journal.pone.0204721.t003

Fig 4. Representative ROCs from 6 cases; for poorly ventilated regions: (a) Mean Dose (b) V5, (c) V20, and for highly ventilated regions: (d) Mean Dose (e)

V5, (f) V20.

https://doi.org/10.1371/journal.pone.0204721.g004
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Aibe et al. demonstrated that lung V5 may be correlated with Grade 5 radiation pneumoni-

tis [31]. On the basis of our results, we could possibly explain this grade 5 radiation pneumoni-

tis according to the ventilation-based dosimetric parameters. When a low dose is extended to

poorly ventilated regions, Grade 5 radiation pneumonitis may occur, even though the V5

value is not large.

Several factors may influence 4D-CT ventilation imaging, including the DIR accuracy

and the reproducibility of the patient’s respiratory pattern. Yamamoto et al. showed that

the choice of DIR algorithm could change the results of 4D-CT ventilation imaging [32].

Although we chose a DIR algorithm giving reasonable accuracy, it is impossible to elimi-

nate residual DIR error. With respect to the reproducibility of the patient’s respiratory

pattern during 4D-CT ventilation imaging, Du et al. clearly showed that 4D-CT ventila-

tion had good reproducibility in anesthetized, mechanically ventilated animals, but

variations in respiratory effort and breathing patterns reduced reproducibility in sponta-

neously breathing humans [33]. Biological rationale between radiation pneumonitis (≧
Grade 2) and highly ventilated regions has not been shown. Some reports showed that

pulmonary emphysema was a high risk factor [29, 34]. Poorly ventilated regions might be

high radiation sensitivity as the pulmonary emphysema.

Although we made considerable effort to reduce irregular respiratory patterns during

image acquisition, there were still residual artifacts in the 4D-CT data sets used in this study.

These residual errors could have reduced the accuracy of our results.

Fig 5. Example case of a patient without severe radiation pneumonitis (Grade 1). The red contour indicates the highly ventilated region (70th–100th percentiles)

and the green contour indicates the poorly ventilated region (0–30th percentiles). The dose>5 Gy is shown.

https://doi.org/10.1371/journal.pone.0204721.g005
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Limitations

First, only forty patients were analyzed in this study. In addition, the study group included

patients treated with conventionally-fractionated radiation therapy and hypo-fractionated

radiation therapy. Finally, we did not analyze additional factors such as smoking. Smoking,

risk factors for lung disease, pretherapeutic lung disease, infectious lung disease during or after

therapy and systemic therapy during and after radiotherapy have been shown to be associated

with risk of toxicity [34–35]. In this study, there were no significant difference in X2 test

between radiation pneumonitis (≧Grade 2) and risk factors such as COPD, interstitial pneu-

monia, systemic therapy and infections.

Conclusions

Our results showed that dose deposition cannot reduce lung toxicity, but in contrast to highly

ventilated regions, dose deposition in poorly ventilated regions might be accompanied by a

reduced lung toxicity risk. In the comparisons of poorly and highly ventilated regions, there

were significant differences in all dosimetric parameters between patients who developed radi-

ation pneumonitis of Grade 1 and those who developed Grade 2 or higher. In the next study,

we will conduct a prospective clinical trial to investigate the safety and feasibility of reducing

Fig 6. Example case of a patient with severe radiation pneumonitis (Grade 3). The red contour indicates the highly ventilated region (70th–100th

percentiles) and the green contour indicates the poorly ventilated region (0–30th percentiles). The dose>5 Gy is shown.

https://doi.org/10.1371/journal.pone.0204721.g006
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the dose to areas defined as being poorly ventilated on CT ventilation image-guided radiation

therapy.
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