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Reconciling the opposing effects
of warming on phytoplankton
biomass in 188 large lakes
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Published online: 07 September 2017 . Lake ecosystems are deeply integrated into local and regional economies through recreation, tourism,
. and as sources of food and drinking water. Shifts in lake phytoplankton biomass, which are mediated
. by climate warming will alter these benefits with potential cascading effects on human well-being.
. The metabolic theory of ecology suggests that warming reduces lake phytoplankton biomass as basal
. metabolic costs increase, but this hypothesis has not been tested at the global scale. We use satellite-
based estimates of lake surface temperature (LST) and lake surface chlorophyll-a concentration (chl-a;
as a proxy for phytoplankton biomass) in 188 of the world's largest lakes from 2002-2016 to test for
. interannual associations between chl-a and LST. In contrast to predictions from metabolic ecology, we
. found that LST and chl-a were positively correlated in 46% of lakes (p < 0.05). The associations between
. LST and chl-a depended on lake trophic state; warming tended to increase chl-a in phytoplankton-
rich lakes and decrease chl-a in phytoplankton-poor lakes. We attribute the opposing responses of
chl-ato LST to the effects of temperature on trophic interactions, and the availability of resources to
. phytoplankton. These patterns provide insights into how climate warming alters lake ecosystems on
. which millions of people depend for their livelihoods.

- Metabolic ecology has gained prominence, in part, for its capacity to explain and predict macroecological patterns
. and the influences of climate warming on the Earth. Based on the fundamentals of metabolic ecology, warming
increases phytoplankton’s demand for resources to support higher metabolic rates at higher temperature'. If the
availability of rate-limiting resources remains constant as lake ecosystems warm, resources will become scarcer
relative to their demand causing a metabolic deficit>*. Metabolic deficits at higher temperatures would leave lakes
: capable of supporting less phytoplankton biomass>?. This theory has been used to explain how lake phytoplank-
: ton sizes and abundances decrease with warming in freshwater mesocosms>*.
: However, warming has the potential to affect trophic interactions, and the availability of resources for phy-
. toplankton, which could alleviate® or exacerbate® the warming-induced metabolic deficit. Thus, the cumulative
. effects of warming on phytoplankton biomass remain uncertain for most of the world’s global population of large
. lakes. Uncertainty in the simple directionality of responses of phytoplankton biomass to temperature prevents
meaningful estimates of how climate warming will affect lake carbon cycling’, food webs®, and biodiversity®-1°
at the global scale. Understanding which lake attributes are associated with the strongest positive and negative
effects of temperature on phytoplankton biomass could guide future research and inform lake management.
: To address this uncertainty, we compared interannual variability in surface chl-a to LST for 188 of the world’s
. largest lakes (listed in Supplementary Table 1). While they make up only a small proportion of Earth’s lakes, these
: 188 lakes contain much of Earth’s liquid surface freshwater!!, lake surface area!!, and endemic lake species'2. Even
if the 188 lakes are biased relative to the global population of lakes in terms of their surface area, they are repre-
sentative in terms of their depth, elevation, latitude, temperature, and average phytoplankton biomass. Changes
in phytoplankton biomass in some large lakes have been shown to have substantial effects on species, economies,
and livelihoods® 3.
: Satellite measurements of lake colour provide a useful, high-resolution (spatial and temporal) phytoplankton
* biomass proxy that enables links to LST at broad spatial scales'*. We obtained daily chl-a concentration data from
: 2002-2016 from the Moderate Resolution Imaging Spectroradiometer (MODIS)-Aqua mission as pre-processed
. by the National Aeronautics and Space Administration’s (NASA) Ocean Biology Processing Group (OBPG). We
. merged the chl-a data with daily LST data from 2002-2016 from the Group for High Resolution Sea Surface
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Figure 1. Stacked bar density distribution of lake-wide, interannual, Kendall’s rank correlation coefficients
between chl-a and LST for 188 of the world’s largest lakes. The significance of the p-value associated with the
coefficient is indicated by the greyscale. Correlations between chl-a and LST are highly variable across lakes
(i.e. both positive and negative correlations) and strong (i.e. high proportion of correlation coefficients are
significant, Wilcox signed-rank test, p < 0.05).
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Figure 2. Regional variability in the lake-wide, interannual, Kendall’s rank correlation coefficients between
chl-a and LST for 188 of the world’s largest lakes. The size of the dot is proportional to the significance of the
correlation. The color of the dot reflects the magnitude of the correlation. The map was made using R version
3.3.3% (https://www.R-project.org). Land mass polygons are from an open-access digitial map in the package
“ggmap” (https://github.com/dkahle/ggmap).

Temperature (GHRSST) (3,340,741 coincident observations). We calculated average lake-wide Kendall’s rank
correlations between chl-a and LST after accounting for seasonal and spatial variability within lakes (see meth-
ods). The average lake-wide correlations reported here reflect interannual associations between chl-a and LST, not
seasonal associations, and are thus most likely to reflect the directionality of long-term lake temperature forcing.
In situ monitoring data from the North American Great Lakes were used to validate the chl-a and LST data (see
methods).

Results and Discussion

We found that the lake-wide average correlations between chl-a and LST were highly variable across lakes
(i.e. both positive and negative correlations) and a high proportion of correlation coefficients were significant
(Wilcoxon signed-rank test, p < 0.05; Figs 1 and 2). Our analysis showed that 38% of the lakes had negative cor-
relations between chl-a and LST (72 out of 188 lakes), of which 68% (49 lakes) were significant after correcting
for multiple comparisons (Wilcoxon signed-rank test, p < 0.05; Fig. 1). These negative interannual correlations
between chl-a and LST may;, in part, reflect reductions in phytoplankton size and abundance with warming as
predicted from metabolic theory*>.

Despite the metabolic deficit imposed on phytoplankton by warming?, lake-wide correlations between chl-a
and LST were positive in 62% of lakes (116 out of 188), of which 74% (86 lakes) were significant after correcting
for multiple comparisons (Wilcoxon signed-rank test, p < 0.05; Fig. 1). Thus, our overall findings did not offer
strong support for predictions from the metabolic theory that warming will reduce phytoplankton biomass.

To offer insights about which lake attributes influence the association between chl-a and LST, we compared
the average lake-wide correlations between chl-a and LST across lakes to their ecological, morphometric, and
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Figure 3. Each coloured dot represents one lake’s average lake-wide correlation coefficient between chl-a and
LST, as in Fig. 2. The size of the dot reflects the significance of the Kendall’s rank correlation p-value. The colour
of the dot reflects the value of the correlation coefficient in parallel with the y axis. The y-axis is hyperbolic

sine transformed and the x axis is log,, transformed for visualization purposes. The grey dots represent the
interannual correlation coefficients for the five North American Great Lakes based on in situ data. The black line
represents the effect of median chl-a concentration on the interannual correlation between chl-a and LST using
remotely-sensed data after accounting for and removing variability attributable to other lake characteristics
(elevation, latitude, lake surface area, lake perimeter, mean depth, salinity, median temperature; see methods).

geographical characteristics. To do this, we used boosted regression trees to determine which of eight lake char-
acteristics (elevation, latitude, lake surface area, lake perimeter, mean depth, salinity, median temperature, and
median chl-a) best explained variability in lake-wide average correlations between chl-a and LST.

We found that lakes with relatively low median chl-a tended to have more negative correlations between chl-a
and LST whereas lakes with relatively high median chl-a tend to have more positive correlations (Fig. 3). This
pattern was also true for the North American Great Lakes using in situ data collected by the EPA (Fig. 3). Thus,
lake warming tended to amplify lake-to-lake variability in phytoplankton biomass whereby phytoplankton-poor
lakes were poorer in warm years and phytoplankton-rich lakes were richer in warm years. Lake median chl-a had
the highest “relative influence” on the correlation between LST and chl-a (29%) in the boosted regression trees,
where “relative influence” is a function of the frequency with which a variable was selected for inclusion in each
iterated regression tree and the improvement to the model that resulted from its inclusion.

Our results are consistent with previous work which suggests that the effect of warming on the trophic trans-
fer efficiency of phytoplankton biomass to higher trophic levels depends on lake trophic state® ¢ 7. We use the
term “trophic state” to refer to the continuous gradient between phytoplankton poor-lakes (chl-a < ~3 ug/L)
and phytoplankton-rich lakes (chl-a > ~20 ug/L). In phytoplankton-rich lakes, lake warming strongly favours
phytoplankton species such as cyanobacteria which are less efficiently consumed by grazers® '® 1%, The result-
ing reductions in trophic transfer efficiency from phytoplankton to their consumers may lead to an accumula-
tion of phytoplankton biomass in warm years in phytoplankton-rich lakes?®. However, community shifts toward
less edible phytoplankton species are weaker in phytoplankton-poor lakes because cyanobacteria abundance in
phytoplankton-poor lakes depends more on nutrient availability than on temperature alone'®2%2!,

Our results also support previous work which suggests that phytoplankton responses to warming depend
on trophic state due to the constraints of lake trophic structure. Phytoplankton-rich lakes tend to have strong
populations of zooplanktivorous fishes leading to “grazer-release” on phytoplankton®2>. Warming is expected
to increase consumption rates, which would strengthen “grazer release” and promote higher phytoplankton bio-
mass?*~2. In contrast, where piscivores are present, chl-a may be low because of high grazing rates by primary
consumers*~2. Consequently, warming induced enhancement of consumption rates would have the opposite
effect of further reducing phytoplankton biomass in phytoplankton-poor lakes®2%?’. Thus, variability in the effect
of warming on top-down limitation of phytoplankton biomass may partially explain why the correlations between
chl-a and LST depended on lake trophic state (Fig. 3).

The effects of warming on lake nutrient budgets will also depend on lake trophic state!’. Negative correlations
between chl-a and LST may be most common in phytoplankton-poor lakes because surface warming enhances
thermal stratification which can trap nutrients below the photic zone where they are unavailable to surface phy-
toplankton®. This effect is most pronounced in phytoplankton-poor lakes because internal nutrient loading via
vertical mixing is often the primary source of nutrients to phytoplankton there?®-*. In contrast, external nutrient
inputs and their subsequent recycling tend to dominate nutrient budgets in phytoplankton-rich lakes?® 2% 3!,
External nutrient inputs may increase with warming driven by climate-mediated shifts in rainfall and land use®® 2,
which would elicit more positive correlations between chl-a and LST in phytoplankton-rich lakes. However, these
effects are likely to be region-specific®® and whether climate-mediated shifts in rainfall and land use will increase
or decrease phytoplankton biomass at the global scale remains uncertain®.

Overall, we found that warming amplifies lake trophic states, but some lakes diverged from this pattern
(Fig. 3). These lakes may be most affected by mechanisms linking chl-a and LST which act regardless of lake
trophic state. For instance, positive correlations between chl-a and LST may arise from the expansion of the
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growing season irrespective of lake trophic state. Lake surface warming can expand the duration of thermal
stratification which prevents phytoplankton from sinking to the aphotic zone where phytoplankton are light
limited™®. By alleviating light limitation, warming expands the growing season, thereby increasing phytoplankton
biomass. Such cases would elicit positive correlations between chl-a and LST on interannual timescales regardless
of lake trophic state. Metabolic deficits are expected to act on all lakes which could elicit negative relationships
between chl-a and LST. However, the deviations from that prediction observed here suggest the need to incorpo-
rate resource availability, species composition, and trophic interactions into metabolic theory so that it may better
predict global lake responses to climate change®. In summary, the relationship between chl-a and LST reflects a
combination of indirect and direct effects, only some of which would be expected to vary along the lake trophic
state gradient.

Our results are corroborated by in situ data and paleo-proxies from the North American Great Lakes (see
Supplementary Figures 1-4 and Supplementary Table 2) and the African Great Lakes® ** which show long-term
trends in phytoplankton biomass which match those in our study. The patterns we saw across lakes are also par-
alleled in the global oceans. Negative relationships between chl-a and sea surface temperature (SST) are common
in the phytoplankton-poor regions of the tropical oceans®. Whereas the interannual correlation between chl-a
and SST is more positive in the polar, relatively phytoplankton-rich regions of the marine environment®’. As we
have demonstrated for the world’s large lakes, these are not paradoxical responses because the indirect effects of
temperature on phytoplankton in different contexts explain why opposite responses to warming can occur within
the same ecosystem type.

We present these results with several caveats. While most lake-wide correlations in our results were signifi-
cant, most interannual associations between chl-a and LST were weak (Figs 1-3). This reflects what we already
know—that temperature is important, but only one of many factors influencing phytoplankton biomass. Time
lags between temperature changes and its effects on phytoplankton biomass may also weaken the correlations
between LST and chl-a which reflect only temporally coincident effects. We used the correlation coefficients
calculated here as indicators of the directionality of surface phytoplankton biomass responses to temperature, but
they conceal the magnitude of those responses. To determine the magnitude of phytoplankton biomass responses
to temperature will require improved calibration procedures for globally distributed individual lakes which are
not currently available®. The simple band algorithms used here to convert lake colour data to chlorophyll-a con-
centration have been updated and improved in recent years*, but have not been calibrated for individual lakes.
The optical properties of inland waters can make it difficult to use simple band algorithms to distinguish between
chlorophyll-a and other dissolved and particulate substances (e.g. coloured dissolved organic matter)*”*!. The
development and validation of algorithms for optically complex waters could be substantially improved through
rigorous validation against in situ data across the full spectrum of inland water types. However, research groups
currently have access to in situ data from only a limited range of lakes. Regardless, our validation against in situ
data from the North American Great Lakes suggests that our results may be robust to deviations between satellite
and in situ data (see Supplementary Figures 1-4 and Supplementary Table 2).

Another important caveat is that our results reflect patterns at the surfaces of lakes during ice-free and
cloud-free periods only. The relationship between chl-a and LST may vary with depth, ice cover, and cloud cover
in ways that diverge from patterns shown here. While we have considered phytoplankton biomass as a response
to temperature throughout our manuscript, phytoplankton sizes and abundances can also influence water tem-
perature through its effect on light penetration in the water column*2. The relationships between chl-a and LST
found in specific lakes could be confounded by the influence of an independent variable (i.e. wind, water level,
species invasions) which could elicit spurious correlations. Thus, we urge caution in interpreting the correlation
coefficient in any specific lake as a strict warming effect. However, these independent drivers of both temperature
and chl-a are likely to be lake-specific, thus we doubt that they would consistently bias our results comparing
across many globally distributed lakes.

Our results may apply broadly to the global population of lakes despite our results being based on a subset of
only the largest lakes, because lake surface area did not have a strong influence on its correlation between chl-a
and LST. The relative influence of surface area in the boosted regression trees was only 9% which is less than the
null expectation given eight variables in the model (12.5%). However, according to the boosted regression trees,
smaller lakes did have slightly more positive correlation coefficients between chl-a and LST than larger lakes.
Extrapolating this trend to smaller lakes would indicate that chl-a and LST may be more positively correlated on
average for the complete global population of lakes. Future work using lake colour data from satellites with finer
spatial resolution (e.g. Sentinel-3A) should enable direct tests of how warming affects phytoplankton biomass in
smaller lakes. Merged chl-a data products which combine measurements from multiple sensors may also enhance
the spatial and temporal coverage for smaller lakes, enabling the inclusion of more lakes in future studies. Our
computational approach also required more data per lake than other less computationally intensive approaches
would have required. Simpler approaches using linear models instead of boosted regression trees could increase
the number of lakes with sufficient data for model fitting.

Changes in phytoplankton biomass that result from lake warming are likely to affect lake carbon cycles’,
lake warming rates®, lake ecology** %, and lake-derived benefits to humans?*. Higher phytoplankton biomass
in phytoplankton-rich lakes may exacerbate problems associated with anthropogenic lake nutrient enrichment,
such as the expansion of anoxic zones, harmful algal blooms, fish die-offs, and reduced water clarity. Managers
may need to reduce anthropogenic nutrient loads that were acceptable in the past to maintain ecosystem func-
tions in phytoplankton-rich lakes as they warm*”>*%. In contrast, the reduction of phytoplankton biomass in
phytoplankton-poor lakes with warming presents its own potential management challenges such as reduced fish-
eries productivity®*. For instance, fish production in Lake Tanganyika has already been substantially diminished
as a result of climate-mediated reductions in phytoplankton biomass and production®. In some cases, managers
may want to fertilize lakes to sustain fish production®®, but managers must prudently weigh the changing costs
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and ecological risks of those actions. Thus, the amplification of lake trophic states with warming may require
adaptive lake management efforts at the local level to prevent loss of lake benefits to humans. Otherwise, human
livelihoods are likely to be affected across gradients in lake trophic state at the global scale.

Methods

Data extraction. Daily estimates of lake surface temperature were obtained from the blended, level-4
data product of the Group for High Resolution Sea Surface Temperature (GHRSST) version 4.1*°. GHRSST
data at 1 km resolution are based upon night time skin and sub-skin surface temperature observations from
the NASA Advanced Microwave Scanning Radiometer-EOS (AMSRE), the Moderate Resolution Imaging
Spectroradiometer (MODIS) on the NASA Aqua and Terra platforms, the US Navy microwave WindSat radi-
ometer, Advanced Very High Resolution Radiometer (AVHRR) on several National Oceanic and Atmospheric
Administration (NOAA) satellites, and in situ SST observations from NOAA. Daily estimates of lake surface chl-a
were obtained at 4km resolution from the MODIS Aqua mission dataset processed to Level-3 data by the Ocean
Biology Processing Group® of NASA. Chl-a data are generated using the OCI band ratio algorithm based on the
method of Hu ef al.*. Chl-a and LST data covered the time period from July 2002 to November 2016.

To ease the computational intensity of this work, we used 0.1-degree median-filtering followed by data sub-
setting to a spatial resolution of 0.1-degrees for all analyses. We also used a 5-day median filter followed by data
subsetting to a temporal resolution of 5 days for all analyses. Lake sections were identified using the level 1 Global
Lakes and Wetlands Database (GLWD-1) comprising the 3067 largest lakes and 654 largest reservoirs worldwide
including basic attribute data (surface area, perimeter, elevation, etc.)°!. Satellite data were available from only a
subset of these water bodies because many lakes were too small to be included or were persistently obstructed by
clouds or ice.

Modelling approach. To estimate the average lake-wide correlation coefficient between chl-a and LST (),
we first calculated correlation coefficients separately for every latitude-longitude-day of the year combination in
our dataset. To do this, we subdivided all observations in the 15-year time series by its pixel (resolution of 0.1
degrees). We further subdivided the data from each pixel by the day of the year on which the data were meas-
ured. As a result, each subdivision was composed of up to 15 observations of chl-a and LST—one observation for
each of the 15 years in the time series. For subdivisions with at least eight coincident observations of chl-a and
LST (following minimum sample size recommendations from published literature®?), we used non-parametric
Kendall’s rank correlation to determine the interannual relationship between chl-a and LST (312,963 correlation
coeflicients in total). We used non-parametric Kendall’s rank correlations to assess the relationship between LST
and chl-a to avoid spurious correlation coefficients in cases where the relationship between in situ and satellite
data are nonlinear or where the linear slope was not equal to one.

We calculated each lake’s average lake-wide correlation coefficient between chl-a and LST (r,,) using the
correlation coefficients calculated for every latitude-longitude-day of the year combination (r;). However, the r;’s
were not randomly distributed over space and season. So, to avoid biasing r,,, toward the season or location in
space with the most r;s, we used boosted regression trees to factor out those biases. To do this, we fit boosted
regression trees separately for each lake which modelled the observed ;s as a function of latitude, longitude, and
day of the year with a total of n observations (r;s). Boosted regression trees were used because they allow for non-
linear relationships between independent and dependent variables and high levels of interactions among inde-
pendent variables (e.g. the effect of season could depend nonlinearly on latitude and longitude simultaneously).
To reduce the computation intensity of this work, models were fit to a random subset of = 10,000 observations
for lakes which had more than 10,000 r;’s (n= 10,000 for 11 lakes, see Supplementary Table 1). We used each lake’s
boosted regression trees to generate n modelled r;’s (%’s), using a randomly selected latitude-longitude combina-
tion and a randomly selected day of the year from the lists of unique latitude-longitude combinations and unique
days of the year with at least one observed correlation coefficient. To each 7i, we added a randomly selected resid-
ual (e;) from the distribution of residuals from the boosted regression trees without replacement. r,;, was calcu-
lated as the mean (i + ¢;) for each lake. We used non-parametric Wilcox tests to test whether r;,;, was
significantly different from zero.

To determine which lake characteristics were most strongly associated with 7,,,, we used boosted regression
trees with elevation, latitude, lake surface area, lake perimeter, mean depth, salinity, median temperature, and
median chl-a as predictors of 7,,,. Boosted regression trees were used here as well because they allow for non-
linear relationships between independent and dependent variables and high levels of interactions among inde-
pendent variables. Except for salinity, the predictor variables used were from the attribute table of the GLWD-1
database. Salinity information was gathered from published literature and was represented in the model as a cate-
gorical variable (fresh or saline) following definitions from published literature®. We had an incomplete predictor
matrix with some missing data (see Supplementary Information), but boosted regression trees can accommodate
partially missing data without dropping observations from the model. We weighted each r,,;, in the model by the
significance of its p-value (observation weight = 1-p value) so that less significant correlations had less influence
on the model outcome. To visualize the effect of median chl-a alone on the correlation between chl-a and LST, we
removed variability attributable to all other predictor variables (black line in Fig. 3).

All boosted regression trees were fit with a model complexity value which matched the number of predictors
in each model. The learning rates for the boosted regression trees in our study were optimized such that the final
models included at least 1,000 trees but not more than 10,000 trees following recommendations from published
literature>*. Lakes from the GLWD dataset for which there were not sufficient data to fit boosted regression trees
with a learning rate of at least 0.0001 were eliminated from our analyses. All boosted regression trees> were fit
using the ‘dismo’ package in the R environment for statistical computing®.
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Data Validation. We validated the chl-a and LST data using in situ data collected by the Environmental
Protection Agency (EPA) from the North American Great Lakes. In situ data used here were collected in the
North American Great Lakes primarily during two annual field campaigns in early and late summer from 2002-
2016. We merged the EPA’ in situ data with the nearest coincident satellite data and directly compared them
using standard major axis regression (SMA). We found that for all lakes, in situ chl-a and LST were significantly
correlated to satellite-based chl-a and LST (Pearson correlation, p < 0.01). R? from the SMA for the relationship
between in situ and satellite chl-a and LST were 0.78 and 0.99, respectively. The median absolute error for chl-a
and LST were 0.26 mg m™® and 0.44 °C, respectively. The slopes in the SMAs for chl-a varied from 0.66 (Lake Erie)
to 1.23 (Lake Ontario) across the North American Great Lakes due to differences in their optical conditions (geo-
graphical, atmospheric, and aquatic). The slopes in the SMAs comparing remotely-sensed to in situ LST varied
from 0.98 (Lake Ontario) to 1.06 (Lake Superior) across the North American Great Lakes (See Supplementary
Table 1 for full statistics table).

We also validated the lake-wide median chl-a and the lake-wide correlation coeflicients between chl-a and
LST using the in situ EPA data from the North American Great Lakes. Median lake chl-a from in situ and remote
sensing data were highly correlated (Pearson correlation, r =0.98, p < 0.01) with an SMA slope not significantly
different from 1 (n=5, slope =0.89, 95% CI= +/— 0.17,). Lake-wide correlations between chl-a and LST were
also highly correlated (Pearson correlation, n=>5r=0.89, p=0.02) with an SMA slope not significantly differ-
ent from 1 (slope=1.117 95%, confidence interval = +/— 0.49,). These results show that even if the relation-
ship between in situ and remotely sensed chl-a is at times weak (see Lake Superior in Supplementary Table 1),
the lake-wide correlation coefficients are a robust indicator of the directionality of chl-a responses to LST (See
Supplementary Table 1 for full statistics table). All figures were made using the R computing environment® using
the package, ‘ggplot2’*®.

Data Availability.  All satellite-derived LST and chl-a datasets analysed during the current study are publicly
available through NASA’s Physical Oceanography Distributed Active Archive Center (https://podaac.jpl.nasa.
gov/). In situ temperature and chl-a data analysed in the current study are available through the United States
Environmental Protection Agency (EPA) Central Data Exchange (https://cdx.epa.gov/). Lake polygons and char-
acteristics are available through the Global Lakes and Wetlands Database (https://www.worldwildlife.org/pages/
global-lakes-and-wetlands-database).

References
1. Allen, A. P, Gillooly, J. F. & Brown, J. H. Linking the global carbon cycle to individual metabolism. Funct. Ecol. 19, 202-213 (2005).
2. Yvon-Durocher, G., Montoya, J. M., Trimmer, M. & Woodward, G. Warming alters the size spectrum and shifts the distribution of
biomass in freshwater ecosystems. Glob. Chang. Biol 17, 1681-1694 (2011).
3. Daufresne, M., Lengfellner, K. & Sommer, U. Global warming benefits the small in aquatic ecosystems. Proc. Natl. Acad. Sci. USA.
106, 12788-93 (2009).
4. Sommer, U. & Lengfellner, K. Climate change and the timing, magnitude, and composition of the phytoplankton spring bloom.
Glob. Chang. Biol 14, 1199-1208 (2008).
5. Smol, J. P. et al. Climate-driven regime shifts in the biological communities of arctic lakes. Proc. Natl. Acad. Sci. USA. 102, 4397-402
(2005).
6. Cohen, A.S. A.S. et al. Climate warming reduces fish production and benthic habitat in Lake Tanganyika, one of the most biodiverse
freshwater ecosystems. Proc. Natl. Acad. Sci. USA 113, 9563-9568 (2016).
7. Tranvik, L. ]. et al. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceanogr. 54, 2298-2314 (2009).
8. Jeppesen, E. & Jensen, J. P. Trophic structure, species richness and biodiversity in Danish lakes: changes along a phosphorus gradient.
Freshw. Biol 45, 201-218 (2000).
9. O’Connor, M. I. M., Piehler, M. E. M., Leech, D. M. D., Anton, A. & Bruno, J. . Warming and resource availability shift food web
structure and metabolism. PLoS Biol. 7, 1000178 (2009).
10. Winder, M. & Sommer, U. Phytoplankton response to a changing climate. Hydrobiologia 698, 5-16 (2012).
11. Cael, B. B., Heathcote, A. J. & Seekell, D. A. The volume and mean depth of Earth’s lakes. Geophys. Res. Lett. 44,209-218 (2017).
12. Martens, K. Speciation in ancient lakes. Trends Ecol. Evol. 12, 177-182 (1997).
13. Allan, J. D. et al. Using cultural ecosystem services to inform restoration priorities in the Laurentian Great Lakes. Front. Ecol.
Environ. 13, 418-424 (2015).
14. Loiselle, S. et al. Decadal trends and common dynamics of the bio-optical and thermal characteristics of the African Great Lakes.
PL0oS One 9, €93656 (2014).
15. Brown, J. H,, Gillooly, J. E, Allen, A. P, Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771-1789
(2004).
16. Tadonléké, R. D. Evidence of warming effects on phytoplankton productivity rates and their dependence on eutrophication status.
Limnol. Oceanogr. 55, 973-982 (2010).
17. Huber, V., Adrian, R. & Gerten, D. Phytoplankton response to climate warming modified by trophic state. Limnol. Oceanogr. 53,
1-13 (2008).
18. Rigosi, A., Carey, C. & Ibelings, B. The interaction between climate warming and eutrophication to promote cyanobacteria is
dependent on trophic state and varies among taxa. Limnol. Oceanogr. 59, 99-114 (2014).
19. Kosten, S. et al. Warmer climates boost cyanobacterial dominance in shallow lakes. Glob. Chang. Biol 18, 118-126 (2012).
20. Jeppesen, E. et al. Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential
adaptations. J. Environ. Qual 38, 1930-41 (2009).
21. Wagner, C. & Adrian, R. Consequences of changes in thermal regime for plankton diversity and trait composition in a polymictic
lake: A matter of temporal scale. Freshw. Biol 56, 1949-1961 (2011).
22. Lewandowska, A. M. et al. Effects of sea surface warming on marine plankton. Ecol. Lett. 17, 614-623 (2014).
23. Jeppesen, E. et al. The Impact of Nutrient State and Lake Depth on Top-down Control in the Pelagic Zone of Lakes: A Study of 466
Lakes from the Temperate Zone to the Arctic. Ecosystems 6, 313-325 (2003).
24. Hansson, L.-A. et al. Food-chain length alters community responses to global change in aquatic systems. Nat. Clim. Chang 2, 1-6
(2012).
25. Persson, L. et al. Trophic Interactions in Temperate Lake Ecosystems: A Test of Food Chain Theory. Am. Nat. 140, 59-84 (1992).
26. Kratina, P., Greig, H. S., Thompson, P. L., Carvalho-Pereira, T. S. A. & Shurin, J. B. Warming modifies trophic cascades and
eutrophication in experimental freshwater communities. Ecology 93, 1421-1430 (2012).

SCIENTIFICREPORTS |7: 10762 | DOI:10.1038/s41598-017-11167-3 6


http://1
http://1
http://1
https://podaac.jpl.nasa.gov/
https://podaac.jpl.nasa.gov/
https://cdx.epa.gov/
https://www.worldwildlife.org/pages/global-lakes-and-wetlands-database
https://www.worldwildlife.org/pages/global-lakes-and-wetlands-database

www.nature.com/scientificreports/

27. Kraemer, B. M. et al. Global patterns in lake ecosystem responses to warming based on the temperature dependence of metabolism.
Glob. Chang. Biol 23, 1881-1890 (2016).

28. Smith, V,, Tilman, G. & Nekola, J. Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial
ecosystems. Environ. Pollut. 100, 179-196 (1999).

29. Langenberg, V. T. V., Nyamushahu, S., Roijackers, R. & Koelmans, A. A. External Nutrient Sources for Lake Tanganyika. J. Great
Lakes Res. 29, 169-180 (2003).

30. Sarmento, H., Amado, A. & Descy, J., Climate change. in tropical fresh waters (comment on the paper ‘Plankton dynamics under
different climatic conditions in space and time’ by de Senerpont Domis et al.,). Freshw. Biol 58, 2208-2210 (2013).

31. Burger, D. E, Hamilton, D. P. & Pilditch, C. A. Modelling the relative importance of internal and external nutrient loads on water
column nutrient concentrations and phytoplankton biomass in a shallow polymictic lake. Ecol. Modell 211, 411-423 (2008).

32. Domis, L. D. S. et al. Plankton dynamics under different climatic conditions in space and time. Freshw. Biol 58, 463-482 (2013).

33. Doney, S. C. et al. Climate change impacts on marine ecosystems. Ann. Rev. Mar. Sci 4, 11-37 (2012).

34. Cross, W. E, Hood, J. M., Benstead, J. P,, Huryn, A. D. & Nelson, D. Interactions between temperature and nutrients across levels of
ecological organization. Glob. Chang. Biol 21, 1025-40 (2015).

35. Hecky, R. E., Mugidde, R., Ramlal, P. S., Talbot, M. R. & Kling, G. W. Multiple stressors cause rapid ecosystem change in Lake
Victoria. Freshw. Biol 55, 19-42 (2010).

36. Behrenfeld, M. J. et al. Climate-driven trends in contemporary ocean productivity. Nature 444, 752-755 (2006).

37. Doney, S. Oceanography: Plankton in a warmer world. Nature 444, 695-696 (2006).

38. Dornhofer, K. & Oppelt, N. Remote sensing for lake research and monitoring-Recent advances. Ecol. Indic. 64, 105-122 (2016).

39. Hu, C,, Lee, Z. & Franz, B. Chlorophyll-a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance
difference. J. Geophys. Res. Ocean. 117, (2012).

40. Palmer, S. C. J., Kutser, T. & Hunter, P. D. Remote sensing of inland waters: Challenges, progress and future directions. Remote
Sensing of Environment 157, 1-8 (2015).

41. Mouw, C. B. et al. Aquatic color radiometry remote sensing of coastal and inland waters: Challenges and recommendations for
future satellite missions. Remote Sensing of Environment 160, 15-30 (2015).

42. Mazumder, A., Taylor, W. D., McQueen, D. J. & Lean, D. R. Effects of fish and plankton and lake temperature and mixing depth.
Science (80-.) 247, 312-315 (1990).

43. Rose, K., Winslow, L. & Read, J. Climate-induced warming of lakes can be either amplified or suppressed by trends in water clarity.
Limnol. Oceanogr. Lett 1, 44-53 (2016).

44. Smith, V. Eutrophication of freshwater and coastal marine ecosystems a global problem. Environ. Sci. Pollut. Res. 10, 126-139 (2003).

45. Stockner, J., Rydin, E. & Hyenstrand, P. Cultural oligotrophication: causes and consequences for fisheries resources. Fisheries 25,
7-14 (2000).

46. Walsh, J. J. R., Carpenter, S. R. S. & Vander Zanden, M. J. Invasive species triggers a massive loss of ecosystem services through a
trophic cascade. Proc. Natl. Acad. Sci. USA 113, 4081-5 (2016).

47. Scheffer, M., Barrett, S., Carpenter, S. & Folke, C. Creating a safe operating space for iconic ecosystems. Science. 347, 1317-1319
(2015).

48. Urrutia-Cordero, P, Ekvall, M. K. & Hansson, L.-A. Local food web management increases resilience and buffers against global
change effects on freshwaters. Sci. Rep 6, 29542 (2016).

49. JPL MUR MEaSURE:s Project. GHRSST Level 4 MUR Global Foundation Sea Surface Temperature Analysis (v4.1) (PO.DAAC, 2015).

50. NASA Goddard Space Flight Center. Ocean Ecology Laboratory, Ocean Biology Processing Group (2016). Available at: oceancolor.
gsfc.nasa.gov. (Accessed: 11th January 2016)

51. Lehner, B. & Déll, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 296, 1-22 (2004).

52. Bonett, D. & Wright, T. Sample size requirements for estimating Pearson, Kendall and Spearman correlations. Psychometrika 65,
23-28 (2000).

53. Eugster, H. & Hardie, L. in Lakes (ed. Lerman, A.) 237-293 (1978).

54. Elith, J., Leathwick, J. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802-813 (2008).

55. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (2017).

56. Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag New York, 2009).

Acknowledgements

We thank the Leibniz IGB International Postdoctoral Fellowship for supporting this work. We also express our
gratitude to EPA, OBPG, GLWD, and the GHRSST for providing open access to the data used here. This work
benefited from authors' participation in the Global Lake Ecological Observatory Network (GLEON).

Author Contributions
B.M.K. designed the study, performed the analyses, and wrote the manuscript. R.A. and T.M. provided feedback
on the study design and manuscript which led to substantial improvements.

Additional Information
Supplementary information accompanies this paper at doi:10.1038/s41598-017-11167-3

Competing Interests: The authors declare that they have no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017

SCIENTIFICREPORTS |7: 10762 | DOI:10.1038/s41598-017-11167-3 7


http://dx.doi.org/10.1038/s41598-017-11167-3
http://creativecommons.org/licenses/by/4.0/

	Reconciling the opposing effects of warming on phytoplankton biomass in 188 large lakes

	Results and Discussion

	Methods

	Data extraction. 
	Modelling approach. 
	Data Validation. 
	Data Availability. 

	Acknowledgements

	Figure 1 Stacked bar density distribution of lake-wide, interannual, Kendall’s rank correlation coefficients between chl-a and LST for 188 of the world’s largest lakes.
	Figure 2 Regional variability in the lake-wide, interannual, Kendall’s rank correlation coefficients between chl-a and LST for 188 of the world’s largest lakes.
	Figure 3 Each coloured dot represents one lake’s average lake-wide correlation coefficient between chl-a and LST, as in Fig.




