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SUMMARY

Vitamin D/vitamin D receptor (VDR) deficiency causes a
high risk of colon cancer, but how VDR is involved in
tumorigenesis through microbiota remains unknown. We
provide insights into the mechanism of VDR dysfunction
leading to dysbiosis and tumorigenesis, indicating a new
target: microbiome and VDR for the prevention of cancer.

BACKGROUND & AIMS: Vitamin D exerts regulatory roles via
vitamin D receptor (VDR) in mucosal immunity, host defense,
and inflammation involving host factors and microbiome. Human
Vdr gene variation shapes the microbiome and VDR deletion
leads to dysbiosis. Low VDR expression and diminished vitamin
D/VDR signaling are observed in colon cancer. Nevertheless,
how intestinal epithelial VDR is involved in tumorigenesis
through gut microbiota remains unknown. We hypothesized that
intestinal VDR protects mice against dysbiosis via modulating
the Janus kinase (JAK)/signal transducer and activator of tran-
scription (STAT) pathway in tumorigenesis.

METHODS: To test our hypothesis, we used an azoxymethane/
dextran sulfate sodium–induced cancer model in intestinal VDR
conditional knockout (VDRDIEC) mice, cell cultures, stem
cell–derived colonoids, and human colon cancer samples.

RESULTS: VDRDIEC mice have higher numbers of tumors, with
the location shifted from the distal to proximal colon. Fecal
microbiota analysis showed that VDR deletion leads to a bacterial
profile shift from normal to susceptible carcinogenesis. We found
enhanced bacterial staining in mouse and human tumors. Mi-
crobial metabolites from VDRDIEC mice showed increased sec-
ondary bile acids, consistent with observations in human CRC. We
further identified that VDR protein bound to the Jak2 promoter,
suggesting that VDR transcriptionally regulated Jak2. The JAK/
STAT pathway is critical in intestinal and microbial homeostasis.
Fecal samples from VDRDIEC mice activate the STAT3 signaling in
human and mouse organoids. Lack of VDR led to hyperfunction of
Jak2 in response to intestinal dysbiosis. A JAK/STAT inhibitor
abolished the microbiome-induced activation of STAT3.

CONCLUSIONS: We provide insights into the mechanism of
VDR dysfunction leading to dysbiosis and tumorigenesis. It in-
dicates a new target: microbiome and VDR for the prevention of
cancer. (Cell Mol Gastroenterol Hepatol 2020;10:729–746;
https://doi.org/10.1016/j.jcmgh.2020.05.010)
Keywords: Cancer; Colonoids; Dysbiosis; Host–Bacterial In-
teractions; Inflammation; Microbiome; Nuclear Receptor; STAT;
VDR; Vitamin D.

urrent research has implicated vitamin D defi-
Cciency as a critical factor in the pathology and
clinical outcome of colon rectal cancer (CRC).1,2 Low
plasma vitamin D is associated with adverse CRC survival
after surgical resection.3,4 Vitamin D receptor (VDR) is a
nuclear receptor that mediates functions of 1,25-
dihydroxyvitamin D (1,25[OH]2D3), the biological active
form of vitamin D.5 Higher VDR expression in tumor
stromal fibroblast is associated with longer survival in a
large cohort of CRC patients.2 The parallel appreciation of
a role for the VDR in cancer biology began approximately
3 decades ago and subsequently a remarkable increase
has occurred in the understanding of its actions in normal
and malignant systems.6

The VDR regulation of gut microbiome in human and
animal studies represents a newly identified and highly
significant activity for VDR.7–9 Human Vdr gene variation
shapes the gut microbiome and Vdr deletion leads to
dysbiosis.8 Our study on VDR and bacteria establishes a
microorganism-induced program of epithelial cell homeo-
stasis and repair in the intestine.10 Dysregulation of
bacterial–host interaction can result in chronic inflam-
matory and overexuberant repair responses, and is asso-
ciated with the development of various human diseases
including cancers.11,12 Even though vitamin D/VDR is an
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active topic in cancer research, the mechanism under-
lying host–microbiome interactions in cancer is incom-
pletely understood. We know little about the
mechanisms for the intestinal epithelial VDR and
microbiome in CRC.

In the current study, we focused on the functions of
VDR in intestinal epithelial cells and the microbiome. We
hypothesized that intestinal VDR protects mice against
dysbiosis via modulating the Janus kinase/signal trans-
ducer and activator of transcription (JAK/STAT) pathway
in tumorigenesis. VDR is required for intestinal epithelium
functions and microbial homeostasis. We tested our hy-
pothesis in an azoxymethane/dextran sulfate sodium
(AOM/DSS)-induced cancer model, using intestinal VDR
conditional knockout VDRDintestinal epithelial cell (IEC) mice,
colonoids, and human samples. Lack of the VDR signaling
pathway led to increased tumors in colon and a shift in
tumor distribution in the intestinal VDR knockout (KO)
mice. We investigated how the absence of intestinal VDR
leads to dysfunction in epithelial cells–microbiome in-
teractions and the mechanism through the JAK/STAT3
signaling. Emerging data have suggested that interference
in the JAK/STAT3 pathway may suppress the growth of
colon cancer.13,14 JAK/STAT inhibitors are clinically used
in patients with inflammatory bowel diseases.15 Thus,
VDR regulation of the JAK/STAT3 pathway indicates a
new target: microbiome and VDR signaling in anti-
inflammation and anticancer. Our study provides insights
into the mechanisms of VDR in maintaining intestinal and
microbial homeostasis and protecting against intestinal
tumorigenesis.

Results
Intestinal Epithelial VDR KO Mice Have Higher
Tumor Numbers and Shifted Tumor Location

We tested our hypothesis in an AOM/DSS-induced
cancer model using intestinal epithelial VDR conditional
knockout VDRDIEC mice (Figure 1A). AOM mice develop
hyperproliferative colonic mucosa, aberrant crypt foci,
and, eventually, carcinomas.16 AOM/DSS provides a
widely used paradigm to study colitis-associated colon
cancer. There was a striking difference in tumor inci-
dence in mice with VDRLoxP and VDRDIEC mice. We found
that the VDRDIEC mice developed more tumors
(Figure 1B and C). The number and size of the tumors
were significantly larger in the VDRDIEC mice compared
with the VDRLoxP mice (Figure 1C and D). Interestingly,
tumor location in the VDRDIEC mice significantly shifted
from the distal to proximal colon, compared with tumors
mainly in the distal colon of VDRLoxP mice (Figure 1B
and E). Furthermore, the pathologic analysis of colon
samples (Figure 1F) indicated a difference in tumor stage
(carcinoma vs adenoma) between VDRDIEC mice and
VDRLoxP AOM/DSS experimental groups. Epithelial
hyperproliferation plays a critical role in the develop-
ment of colon cancer. Our immunohistochemical data of
the proliferative marker proliferating cell nuclear antigen
(PCNA) showed that PCNA in the colon was increased
significantly in VDRDIEC mice compared with VDRLoxP

mice (Figure 1G).

Lack of Intestinal VDR Leads to Dysbiosis and a
Shift of the Bacterial Profile for a Higher Risk of
CRC

VDRDIEC mice are known to have dysbiosis and the
absence of intestinal epithelial VDR confers a transmissible
risk for colitis.7 By using 16S sequencing, we showed
the difference in fecal microbiome between VDRDIEC mice
and VDRLoxP mice (n ¼ 10 each) at the genus level (n ¼ 10)
(Figure 2A). Figure 2B showed the unweighted Unique
Fraction Metric distances of stool samples from VDRLoxP and
VDRDIEC mice on a principal coordinate analysis scale. We
further showed the percentages of the affected genera be-
tween VDRLoxP mice and VDRDIEC mice (Figure 2C). Functional
alterations of the intestinal microbiome were detected by fecal
microbiota Kyoto Encyclopedia of Genes and Genomes anal-
ysis. Lacking VDR leads to a bacterial profile shift from normal
to carcinogenesis susceptibility (Figure 2D), indicating that
cancer risk was significantly higher in the VDRDIEC mice.

VDR Deletion Enhanced Bacteria in the Tumors
of VDRDIEC Mice and Impacted Bile Acid
Metabolism

We then analyzed the relative bacteria abundance in the
tumors. Bacteroides fragilis, a bacterial species enhanced in
colon cancer, showed more staining in the tumors of VDRDIEC

mice compared with the VDRLoxP mice (Figure 3A). Figure 3B
shows that B fragilis, Butyrivibrio fibrisolvens, and Firmicutes
peptostreptococcus were enhanced in tumors in VDRDIEC mice
compared with VDRLoxP mice in tumor tissue. These bacteria
are known to be associated with changes of metabolite (eg,
short-chain fatty acids, bile acids) in CRC.17–19

We quantitively profiled metabolites derived from
host–microbial co-metabolism in fecal samples using the
unbiased method. We found the changes in primary bile acid
metabolism and secondary bile acid metabolism in VDRDIEC

mice. The fold change ratios of the identified bile acid spe-
cies were significantly higher in the VDRDIEC group than
those in the control group (Figure 3C and D). These changes
are consistent with the recent observations in human CRC
that bile acid metabolism is among the top biomarkers of
patients.20

Increased Inflammation in VDRDIEC Mice
We further hypothesized that the altered intestinal

epithelial and microbial functions lead to chronic inflam-
mation, thus exacerbating colon cancer progression. We
assessed several lymphocyte markers in normal colon and
colonic tumors. Levels of CD68, CD3, and CD11b signifi-
cantly increased in tumors, especially in VDRDIEC mice
(Figure 4A). We also detected the cytokines in serum sam-
ples from VDRLoxP and VDRDIEC mice with or without tumor.
We found that the level of fibroblast growth factor basic and
monocyte chemoattractant protein-1 in the tumor tissue of
VDRLoxP mice were higher than that of VDRDIEC mice
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(Figure 4B). In the gastrointestinal tract, tissue barrier
integrity is particularly important. Serum samples from
VDRLoxP and VDRDIEC mice were used to measure bacterial
endotoxin with Limulus amebocyte lysate chromogenic end
point assays. We found more bacterial endotoxin lipopoly-
saccharide (LPS) in VDRDIEC mice than in VDRLoxP mice,
especially in tumor groups (Figure 4C). Lipocalin-2 (Lcn-2)
is used as a marker of intestinal inflammation.21 We found
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that the expression level of fecal Lcn-2 was significantly
higher in tumor tissue of VDRDIEC mice than that of VDRLoxP

mice (Figure 4D).

VDR Deletion Leads to Hyperfunction of the
Jak2/STAT3 Signaling in Tumor Tissue

The JAK/STAT3 pathway is known to suppress the
growth of colon cancer.13 After AOM/DSS treatment in
VDRDIEC mice, we observed up-regulation of total Jak2 and
STAT3 protein expression in colon cancer tissue using im-
munostaining (Figure 5A). Furthermore, Western blot
confirmed that the total protein levels of Jak2 and STAT3
were enhanced in tumors of AOM/DSS-treated VDRDIEC

mice (Figure 5B). However, VDR deletion changed the
expression of total STAT1 and STAT5 in the colon tumor
tissue. Interestingly, without any treatment, VDR deletion
led to reduced total STAT3 and Jak2 in the basal levels of
cells at the protein level and the messenger RNA level
(Figure 5C and D). Furthermore, we identified VDR protein
bound to the Jak2 promoter (TGAACTTCTGAGAATTCA) by
chromatin immunoprecipitation (ChIP) assay (Figure 5E).
Taken together, our observations show that the absence of
intestinal epithelial VDR leads to the hyperfunction of JAK/
STAT3 signaling in inflammation. We also examined the
protein expressions of activated phosphorylated Stat3/
phosphorylated Jak2 in normal tissue and tumors. We
found that the expression levels of phosphorylated Stat3
and phosphorylated Jak2 were higher in the tumors in
AOM/DSS–induced VDRDIEC mice compared with those in
VDRLoxp mice (Figure 5F).
Gut Microbiome From VDRDIEC Mice Actives
JAK/STAT Signaling in Colonoids

By using the stem cell–derived colonoid systems
(Figure 6A), we further investigated the influence of intes-
tinal VDR during the activation of JAK/STAT signaling.
PCNA, a proliferation marker, and proliferation regulator b-
catenin, were increased in the VDRDIEC feces-treated group
followed by activation of Stat3 (human colonoids in
Figure 6B). The similar hyper-regulation of STAT3 also was
observed in the mouse colonoids treated with microbiome
from VDRDIEC mice (Figure 6C). We then treated the orga-
noid with stattic, a STAT3 inhibitor. The total Stat3 was
decreased compared with the no-stattic–treated mouse
Figure 1. (See previous page). Intestinal epithelial cell VDR K
the AOM/DSS-induced colon cancer model. AOM (10 mg/kg
administered to mice in drinking water. Seven days of DSS was
of DSS were administered before killing. At week 15, mice were
different groups. Tumors are indicated by red arrows. (C) Tumor
and VDRDIEC mice. Data are expressed as means ± SD. n ¼ 25–
VDRLoxP and VDRDIEC mice, therefore controls are not included
induced colon cancer model: VDRLoxP and VDRDIEC mice. Data
variance test. (E) The distance of each tumor to the anus was me
analysis of variance test. (F) Representative H&E staining of Sw
Images are from a single experiment and are representative of
control mucosa/per intestinal glands or in the tumor tissue/high
mice was significantly higher than that in the VDRLoxP mice. Data
per group. Data are expressed as means ± SD. n ¼ 5, Student
colonoids (Figure 6D). However, the expressions of Stat3
and b-catenin in the VDRDIEC group still were higher than in
the VDRLoxP group (Figure 6D). We observed the similar
effect of stattic in inhibiting the microbiome activation of
Jak2/STAT3 signaling in mouse colonoids (Figure 6E).
Interestingly, stattic treatment also reduced the prolifera-
tion regulator b-catenin and the proliferation marker PCNA
in colonoids.

Reduced VDR and Enhanced Bacteria in Human
Colon Cancer Tissue

VDR expression was decreased in the AOM/DSS–induced
colon cancer model (Figure 7A). We continued to explore
VDR expression in human colorectal colon samples. Our
data showed that increased total Jak2 and STAT3 were
associated with a reduction of intestinal VDR in human CRC
intestines (Figure 7B), suggesting that JAK/STAT3 is up-
regulated in human CRC with protective VDR. Interest-
ingly, we identified bacteria in human colorectal colon
samples. Fluorescent in situ hybridization data showed B
fragilis in tumors from patients with CRC (Figure 7C).

Discussion
In the current study, we have shown that VDR deficiency

in intestine leads to a bacterial profile shift from normal to
susceptible carcinogenesis. VDRDIEC mice have higher tumor
numbers with their tumor location shifted from the distal to
proximal colon. Enhanced bacterial staining was found in
tumors. Microbial metabolites from VDRDIEC mice showed
increased secondary bile acids, which is consistent with
observations in human CRC. Furthermore, our study pro-
vides the mechanism of VDR dysfunction leading to dys-
biosis and tumorigenesis through the hyperfunctioning Jak2.
Fecal samples from VDRDIEC mice enhance the expression of
STAT3 in human and mouse organoids. A JAK/STAT inhib-
itor abolished the microbiome-induced activation of STAT3.
Our study fills the gaps by showing mechanisms that are
important to normal intestinal homeostasis and to chronic
inflammation and dysbiosis, thus suggesting new thera-
peutic targets for restoring VDR functions in colitis-
associated colon cancer (Figure 7D, working model).

Epidemiologic and experimental studies have indicated a
protective action of vitamin D against colorectal cancer.22–27

Vitamin D3 exerts its chemopreventive activity by
O mice developed more tumors. (A) Schematic overview of
) was injected on day 0. On day 7, 2% DSS solution was
followed by 3 weeks of drinking water. An additional 2 cycles
killed. (B) Colonic tumors in situ. Representative colons from
numbers in AOM/DSS-induced colon cancer model: VDRLoxP

30, 1-way analysis of variance test. No tumors in controls for
for comparisons. (D) Maximum tumor size in the AOM/DSS-
are expressed as means ± SD. n ¼ 25–30, 1-way analysis of
asured. Data are expressed as means ± SD. n ¼ 25–30, 1-way
iss rolls of representative colons from the indicated groups.
10 mice per group. (G) Quantitation of PCNA-positive cells in
-power field. PCNA expression in the tumor tissue of VDRDIEC

are from a single experiment and are representative of 5 mice
t test. *P < .05.



Figure 2. Dysbiosis leads to high cancer risk in VDRDIEC mice. (A) Composition of the bacterial community at the genus
level in stool samples from separate cages of VDRLoxP mice (n ¼ 10) and VDRDIEC (n ¼ 10) mice. (B) Unweighted Unique
Fraction Metric distances of stool samples from VDRLoxP and VDRDIEC mice on a principal coordinate analysis scale. (C) The
percentages of the affected genera were compared between VDRLoxP mice and VDRDIEC mice. Data are expressed as means ±
SD. n ¼ 10, Welch 2-sample t test. (D) Functional alterations of the intestinal microbiome related to VDR status. Data are
expressed as means ± SD. n ¼ 10, Student t-test. *P < .05. KEGG, Kyoto Encyclopedia of Genes and Genomes.
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interrupting crosstalk between tumor epithelial cells and
the tumor microenvironment in a VDR-dependent
manner.23 Moreover, there is increasing interest regarding
the use of vitamin D compounds for disease prevention and
therapy.28 If we do not understand the mechanism of the
receptor of vitamin D, vitamin D taken by people may not be
used effectively and efficiently. Hence, our current study fills
the gap by characterizing the precise role for intestinal
epithelial VDR in colon cancer models.

Endogenous enteric bacteria play a crucial role in the
pathogenesis of colon cancer.29 Dysregulation of
bacterial–host interactions can result in chronic inflamma-
tory and the development of cancer.30,31 Multiple mecha-
nisms of VDR affecting cancers have been found, focusing on
the host factors (eg, b-catenin pathway and inflammation).32

However, very little is known about the physiological effects
and molecular mechanisms responsible for intestinal
epithelial VDR regulation of the microbiome community.
Our study on VDR regulation of gut bacteria has shown a
microorganism-induced program of epithelial cell homeo-
stasis and repair in the intestine.10,33 An abundance of
Parabacteroides was affected by VDR signaling in both hu-
man and mouse samples.8 However, the specific relationship
between the function of intestinal VDR and microbiome in
tumorigenesis is not understood.34 Here, we found that VDR
directly regulates host–bacterial interactions via JAK/STAT
pathways and its downstream genes.

Microbial metabolites from VDRDIEC mice showed bile
acid dysregulation and increased secondary bile acids,
which is consistent with the observed microbiome markers
in human CRC.11,12 Loss of VDR is known to disquiet the bile
acid homeostasis.35,36 Our recent study37 used intestinal
epithelium-specific VDR knock out (VDRDIEC) mice and
myeloid cell–specific VDR KO (VDRDlyz) mice to assess
whether the microbiome-associated metabolic changes
linked with conditional loss of VDR in a particular tissue.
Among different secondary bile acids, lithocholate and
deoxycholate were increased owing to loss of VDR in
VDRDIEC and in VDRDlyz mice. We believe that host factors
(eg, VDR status in specific tissues) modulate microbial me-
tabolites and the microbiome, thus contributing to the high
risk of digestive diseases.

We used colonoids and mice lacking intestinal VDR
expression to confirm the physiological relevance and molec-
ular mechanism in epithelial–microbiome interactions.
Research of intestinal VDR provides a framework to under-
stand how the intestinal epithelial cells in the gut inadver-
tently may promote the development of cancer as an extension
Figure 3. (See previous page). Lacking intestinal VDR leads
fragilis in tumor tissue of VDRDIEC mice was found by fluorescent
are representative of 5 mice per group. Data are expressed as m
and F peptostreptococcus were enhanced in tumors in VDRDIE

means ± SD. n ¼ 6, 1-way analysis of variance test. (C) The fol
acid in the VDRDIEC group was significantly lower compared wit
Welch 2-sample t test, metabolite ratio < 1.00; P < .05). (D) The
bile acid in the VDRDIEC group was significantly higher compared
17, Welch 2-sample t test, metabolite ratio � 1.00; P < .05). *P <
rDNA, ribosomal DNA.
of its normal role in defense and repair. These insights are
important for understanding health as well as disease.

We noted a consistent link between low vitamin D/VDR
signaling and high intestinal inflammation. Our previous
studies suggested that cells lacking VDR are in a pre-
inflammatory state,10,38,39 and overexpression of VDR sub-
stantially reduced inflammation in VDR-/- cells.38 VDR also is
identified as a suppressor of IFN-a–induced signaling
through the JAK/STAT pathway.40 The JAK/STAT pathway
plays a critical role in intestinal and microbial homeostasis.41

The JAK/STAT inhibitors have been tested recently as novel
biological therapeutic strategies in inflammatory bowel dis-
eases.15 Because low-dose proinflammatory cytokines are
sufficient to induce bacterial endocytosis by epithelial cells,
subclinical or low-grade changes below the threshold may tip
the balance of tolerance toward full-blown inflammation
owing to subsequent intracellular microbial sensing and
paracellular permeability damage. VDR expression increases
epithelial integrity and attenuates inflammation. Thus, it is
not surprising that the mucosal inflammation associated with
VDR down-regulation in intestine contributes to the initiation
and progression of colon cancer.

The current study is focused on studying the tissue-
specific roles of VDR in intestinal epithelial cells in block-
ing intestinal inflammation and cancer development. In
addition to intestinal epithelial cells, VDR also is expressed
in several other cell types, including immune cells.42 We
found that loss of myeloid VDR results in impaired Paneth
cell differentiation and weakened host defense to patho-
gens.43 We investigated metabolites from mice with tissue-
specific deletion of VDR in intestinal epithelial cells or
myeloid cells.37 Conditional VDR deletion severely changed
metabolites specifically produced from carbohydrate, pro-
tein, lipid, and bile acid metabolism.37 In the future, we will
study VDR in immune cells during cancer development.
Conclusions
We provide a definitive characterization of the intestinal

epithelial VDR in regulating diversity of the microbiome and
colon cancer. It opens a new direction in the understanding
of the microbial-VDR interactions in inflammation and
cancer. It indicates a new target: microbiome and VDR for
the prevention of cancer. VDR expression was decreased in
the colon cancer mice after AOM/DSS treatment, which is
consistent with the clinical observation in colitis-associated
colon cancer patients.44 In the future, we also could
consider restoring the protective role of intestinal epithelia
to dysbiosis and a shift of the bacterial profile. (A) More B
in situ hybridization. Images are from a single experiment and
eans ± SD. n ¼ 5, Student t test. (B) B fragilis, B fibrisolvens,

C mice compared with VDRLoxP mice. Data are expressed as
d change ratios of the average concentrations of primary bile
h that in the control group (VDRLoxP, n ¼ 16; VDRDIEC, n ¼ 17,
fold change ratios of the average concentrations of secondary
with that in the control group (VDRLoxP, n ¼ 16; VDRDIEC, n ¼
.05. DAPI, 40,6-diamidino-2-phenylindole; FC, fecal coliforms;



Figure 4. Altered intestinal epithelial
and microbial functions may lead to
chronic inflammation. (A) Several
lymphocyte markers were detected in
colon tissue by immunofluorescence
staining. Levels of CD68, CD3, and
CD11b was increased significantly in
tumors, especially in VDRDIEC mice.
Data are expressed as means ± SD.
n ¼ 6, 1-way analysis of variance test.
(B) Serum samples were collected from
VDRLoxP and VDRDIEC mice with or
without tumor, and then cytokines were
detected by the Luminex detection
system. Data are expressed as means
± SD. n ¼ 5–10, 1-way analysis of
variance test. (C) Serum LPS was
significantly higher in the VDRDIEC mice.
Data are expressed as means ± SD.
n ¼ 6, 1-way analysis of variance test.
(D) Fecal lipocalin-2 was increased in
the VDRDIEC mice with tumors. Data are
expressed as means ± SD. n ¼ 6, 1-
way analysis of variance test. *P <
.05. FGF, fibroblast growth factor; KC,
Keratinocyte Chemoattractant; MCP-1,
monocyte chemoattractant protein-1.
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VDR using VDR activators or probiotics in CRC. Under-
standing of the abnormal interactions between the host and
microbiome will aid in developing novel strategies for
managing chronic inflammatory diseases and cancers.

Materials and Methods
Human Tissue Samples

This study was performed in accordance with approval from
the University of Rochester Ethics Committee (RSRB00037178).
Colorectal tissue samples were obtained from 10 CRC
patients with neoplasia and 10 patients without neoplasia (ages,
49–74 y). Human endoscopy samples from the University of
Illinois at Chicago (UIC) hospital were collected for human
organoid culture (Institutional Review Board: 2017-0384).

Animals
VDRLoxP mice were originally reported by Dr Geert Car-

meliet.45 VDRDIEC mice were obtained by crossing VDRLoxP

mice with villin-cre mice (004586; Jackson Laboratory), as
we previously reported.7 Experiments were performed on 2-
to 3-month-old male and female mice. Mice were provided
with water ad libitum and maintained on a 12-hour dark/
light cycle. The animal work was approved by the University
of Rochester (when the author’s [J.S.] laboratory was at the
University of Rochester), the Rush University Animal Re-
sources committee, and the UIC Office of Animal Care.

Induction of Colon Cancer by AOM/DSS in Mice
Mice were treated with 10 mg/kg of AOM (Sigma-

Aldrich, Milwaukee, WI) by intraperitoneal injection as
previously described.46 After a 7-day recovery period, mice
received 3 cycles of 2% DSS in the drinking water. The
initial sample size was 30 mice in the control group with no
treatment and 30 mice in each experimental group. Tumor
counts and measurements were performed in a blinded
fashion under a stereo-dissecting microscope (SMZ1000;
Nikon, Melville, NY). Microscopic analysis was performed
for severity of inflammation and dysplasia on H&E-stained
Swiss-rolled colons by a gastrointestinal pathologist blinded
to treatment conditions. Mice were killed under anesthesia.

Cell Culture
HCT116cellsweregrowninhigh-glucoseDulbecco’smodified

Eagle medium (SH30243.01; Hyclone, Erie, PA) containing 10%
(v/v) fetal bovine serum (900-108; GEMINI, West Sacramento,
CA), 50 mg/mL streptomycin, and 50 U/mL penicillin (30-002CI;
Mediatech, Inc, Manassas, VA), as previously described.47,48
Figure 5. (See previous page). VDR deletion leads to dysfunct
Stat3 were increased in tumor tissue of VDRDIEC mice compared wit
Images are from a single experiment and are representative of 6 mic
VDR deletion increased the total Jak2 and Stat3 in colon tumor tissu
colon. Data are expressed as means ± SD. n ¼ 3, 1-way analysis
protein levels in colon. Data are expressed as means ± SD. n ¼ 5
messenger RNA (mRNA) levels in colon without any treatment. Data
Vitamin D response element binds to the Jak2 promoter. ChIP–PCR
Jak2. PCR was performed including input and negative controls. n¼
p-Jak2 were higher in the tumors in AOM/DSS-induced mice, com
Colonoid Cultures and Treatment With Mice
Feces

C57BL/6J mice colonoids were prepared and maintained
as previously described.49,50 Mini gut medium (advanced
Dulbecco’s modified Eagle medium/F12 supplemented with
HEPES, L-glutamine, N2, and B27) was added to the culture,
along with R-spondin, Noggin, epidermal growth factor, and
Wnt-3a. On day 7 after passage, colonoids were colonized by
indicated mice feces for 2 hours, washed, and then incu-
bated for 2 hours in mini gut medium with gentamicin (500
mg/mL).

Human organoids were developed using endoscopy
samples in the UIC hospital. Crypts were released from co-
lon tissue by incubation for 30minutes at 4�C in phosphate-
buffered saline containing 2mmol/L EDTA. Isolated crypts
were counted and pelleted. A total of 500 crypts were mixed
with 50mL Matrigel (BD Biosciences, San Jose, CA) and
plated in 24-well plates.51 The colonoids were maintained in
Human IntestiCult Organoid Growth Medium (STEMCELL
Technologies, Inc, Vancouver, BC).

Fresh feces were collected from 5 healthy VDRLoxP or
VDRDIEC mice (8 weeks) and then well mixed. A total of 100 mg
feces was homogenized in 6 mL Hanks Balanced Salt Solution
and centrifuged for 30 seconds at 300 rpm, at 4�C, to pellet the
particulate matter. Organoids were treated with 250 mL feces
supernatant for 2 hours, the organoids were washed 3 times
with Hanks Balanced Salt Solution, and then the cells were
incubated in regular organoid culture medium for 2 hours.52

Western Blot Analysis and Antibodies
Mouse colonic epithelial cells were collected by

scraping the tissue from the colon of the mouse, including
the proximal and distal regions.47,53 The cells were soni-
cated in lysis buffer (10 mmol/L Tris, pH 7.4, 150 mmol/L
NaCl, 1 mmol/L EDTA, 1 mmol/L ethylene glycol-bis(b-
aminoethyl ether)-N,N,N0,N0-tetraacetic acid, pH 8.0, 1% Triton
X-100, Sigma, St. Louis, MO) with 0.2 mmol/L sodium ortho-
vanadate and protease inhibitor cocktail. The protein concen-
tration was measured using the Bio-Rad reagent (Bio-Rad,
Hercules, CA). Cultured cells were rinsed twice with ice-cold
Hank’s balanced salt solution, lysed in protein loading buffer
(50 mmol/L Tris, pH 6.8, 100 mmol/L dithiothreitol, 2% so-
dium dodecyl sulfate [SDS], 0.1% bromophenol blue, 10%
glycerol), and then sonicated. Equal amounts of protein were
separated by SDS–polyacrylamide gel electrophoresis, trans-
ferred to nitrocellulose, and immunoblotted with primary
antibodies. The following antibodies were used: anti-STAT3
(9132; Cell Signaling Technology, Danvers, MA), anti-Jak2
ion of Jak2/Stat3 signaling in the tumor tissue. (A) Jak2 and
h tumor tissue of VDRLoxP mice by immunofluorescence staining.
e per group. Red boxes are higher magnification of select area. (B)
e, but not the expression levels of total Stat1 and Stat5 protein in
of variance test. (C) VDR deletion decreased Jak2 and Stat3 at
, Student t test. (D) VDR deletion decreased Jak2 and Stat3 at
are expressed as mean ± SD. n ¼ 5, Welch 2-sample t test. (E)
amplification showed binding of VDR to the promoter regions of
3 separate experiments. (F) The expression levels of p-Stat3 and
pared with those in the VDRLoxp mice. *P < .05. T, tumor.
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(3230; Cell Signaling Technology), anti-VDR (SC-13133; Santa
Cruz Biotechnology, Dallas, TX), anti-villin (SC-7672; Santa
Cruz Biotechnology), anti–p-b-catenin (9566; Cell Signaling
Technology), anti–b-catenin (610154; BD Biosciences), anti-
PCNA (SC-25280; Santa Cruz Biotechnology), anti-LC3B
(2775; Cell Signaling Technology), or anti–b-actin (A5316;
Sigma-Aldrich) antibodies and were visualized by ECL (32106;
Thermo Fisher Scientific, Waltham, MA). Membranes that were
probed with more than 1 antibody were stripped before
reprobing.

Immunofluorescence
Colonic tissues were freshly isolated and embedded in

paraffin wax after fixation with 10% neutral buffered
formalin. Immunofluorescence was performed on paraffin-
embedded sections (4 mm), after preparation of the slides
as described previously,48 followed by incubation for 1 hour
in blocking solution (2% bovine serum albumin and 1%
goat serum in Hank’s balanced salt solution) to reduce
nonspecific background. The tissue samples were incubated
overnight with primary antibodies at 4�C. The following
antibodies were used: anti-CD3, anti-CD11B, and anti-CD68
(Santa Cruz Biotechnology). Slides were washed 3 times for
5 minutes each at room temperature in wash buffer. Sam-
ples then were incubated with secondary antibodies (goat
anti-rabbit, 1:200, Alexa Fluor 488; Molecular Probes,
Eugene, OR) for 1 hour at room temperature. Tissues were
mounted with the SlowFade Antifade Kit (s2828; Life
Technologies, Grand Island, NY), followed by a coverslip,
and the edges were sealed to prevent drying. Specimens
were examined with a Zeiss laser scanning microscope LSM
710 (Carl Zeiss, Inc, Oberkochen, Germany).

Fluorescence In Situ Hybridization
Fluorescent in situ hybridization54 was performed using

antisense single-stranded DNA probes targeting the
bacterial 16S ribosomal RNA. The Bfra602 probe (5’-
GAGCCGCAAACTTTCACAA-3’) was used for the B fragilis
group.55 Before performing the fluorescent in situ hybridi-
zation assay, 5-mm tissue sections were baked overnight at
55�C. Tissue sections were deparaffinized in xylene, dehy-
drated with 100% ethanol, air dried, incubated in 0.2 mol/L
HCl for 20 minutes, and heated in 1 mmol/L sodium thio-
cyanate at 80�C for 10 minutes. Samples were pepsin-
digested (4% pepsin in 0.01 N HCl) for 20 minutes at
37�C), slides were washed in wash buffer (0.3 mol/L NaCl,
0.03 mol/L sodium citrate, pH 7, and 0.1% SDS), fixed in 10%
buffered formalin for 15 minutes, washed and dried, and
hybridized with the probes at 5 ng/mL concentration each for
Figure 6. (See previous page). Gut microbiota from VDRDIEC

organoids. (A) Human colonoids were prepared and treated w
expression of Jak2 and Stat3 in human colonoids and (C) mo
catenin were increased in the VDRDIEC feces-treated group. Da
variance test. (D) Human and (E) mouse organoids were pretreate
for 2 hours. The expression of Jak2 and was increased after stat
was decreased compared with the no-stattic group. Data are e
test. *P < .05, **P < .01, and ***P < .001 compared with the c
5 minutes at 96�C in hybridization buffer (0.9 mol/L NaCl,
30% formamide, 20 mmol/L Tris-HCl, pH 7.4), and 0.01%
SDS and incubated at 37�C overnight. Slides were washed 4
times for 5 minutes each at 45�C in wash buffer. For visu-
alization of the epithelial cell nuclei, the slides were coun-
terstained with 4’, 6’-diamidino-2-phenylindole/antifade
solution. Slides were examined with a Zeiss laser scanning
microscope LSM 710 (Carl Zeiss, Inc). Fluorescence staining
was scored by a well-trained pathologist. Staining scores
initially were quantified according to staining intensity (0, no
staining; 1, minimal staining; 2, slight staining; 3, moderate
staining; and 4, marked staining intensity). We randomly
selected 3 spots for each mouse sample.
Mouse Cytokines
Mouse blood samples were collected by cardiac puncture

and placed in tubes containing EDTA (10 mg/mL). Mouse
cytokines were measured using a mouse cytokine 10-Plex
Panel kit (Invitrogen, Carlsbad, CA) according to the man-
ufacturer’s instructions. Briefly, beads of defined spectral
properties were conjugated to protein-specific capture an-
tibodies and added along with samples (including standards
of known protein concentration, control samples, and test
samples) into the wells of a filter-bottom microplate, where
proteins bound to the capture antibodies over the course of
a 2-hour incubation. After washing the beads, protein-
specific biotinylated detector antibodies were added and
incubated with the beads for 1 hour. After removal of excess
biotinylated detector antibodies, the streptavidin-
conjugated fluorescent protein R-phycoerythrin was added
and allowed to incubate for 30 minutes. After washing to
remove unbound streptavidin–R-phycoerythrin, the beads
were analyzed with the Luminex detection system (CS1000
Autoplex Analyzer; PerkinElmer, Waltham, MA).
Real-Time Quantitative Polymerase Chain
Reaction

Total RNA was extracted from epithelial cell mono-
layers or mouse colonic epithelial cells using TRIzol
reagent (15596026; Thermo Fisher Scientific). The RNA
integrity was verified by gel electrophoresis. RNA reverse-
transcription was performed using the iScript comple-
mentary DNA synthesis kit (1708891; Bio-Rad Labora-
tories) according to the manufacturer’s directions. The
reverse-transcription complementary DNA reaction prod-
ucts were subjected to quantitative real-time polymerase
chain reaction (PCR) using the MyiQ single-color real-time
PCR detection system (Bio-Rad Laboratories) and the iTaq
mice activates JAK/STAT signaling in human and mouse
ith feces from VDRloxP or VDRDIEC mice for 2 hours. (B) The
use colonoids was detected by Western blot. PCNA and b-
ta are expressed as means ± SD. n ¼ 3, 1-way analysis of
d with 20 mmol/L of stattic for 2 hours, then treated with feces
tic treatment, especially in the VDRDIEC group. The total Stat3
xpressed as means ± SD. n ¼ 3, 2-way analysis of variance
ontrol group.



Figure 7. Enhanced bacteria, reduced VDR, and increased Jak2 and STAT3 expression was observed in human CRC
patients and the AOM/DSS-induced colon cancer model. (A) Intestinal VDR expression was decreased in the AOM/DSS-
induced colon cancer model. Images are from a single experiment and are representative of 6 mice per group. Red boxes are
used to show the higher magnification of selected area (B) Intestinal VDR, Jak2, and STAT3 staining in human CRC samples.
Compared with normal intestines, CRC patient intestines had a statistically significantly lower VDR and higher Jak2/STAT3
expression. Images are representative of experiments that we performed in triplicate; normal, n ¼ 10; colorectal cancer, n ¼
10. (C) B fragilis was found in human CRC samples compared with normal tissue. Images are representative of experiments
that we performed in triplicate. Normal, n ¼ 10; colorectal cancer, n ¼ 10. (D) A working model of VDR protects against
dysbiosis and tumorigenesis via the JAK/STAT pathway in intestine. Lack of intestinal epithelial VDR causes dysbiosis and
hyper-regulation of JAK/STAT3, thus leading to the overgrowth of tumors in colon.
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Universal SYBR green supermix (1725121; Bio-Rad Lab-
oratories) according to the manufacturer’s directions. All
expression levels were normalized to b-actin levels of the
same sample. The percentage expression was calculated
as the ratio of the normalized value of each sample to that
of the corresponding untreated control cells. All real-time
PCR reactions were performed in triplicate. Primer se-
quences were designed using Primer-BLAST (Bethesda,
MD) or were obtained from the Primer Bank (Cambridge,
MA) primer pairs listed in Table 1.



Table 1.Real-Time PCR Primers

Primer name Sequence

hJAK2F 5’-TCTGGGGAGTATGTTGCAGAA-3’

hJAK2R 5’-AGACATGGTTGGGTGGATACC-3’

hActinF 5’-AGAGCAAGAGAGGCATCCTC-3’

hActinR 5’-CTCAAACATGATCTGGGTCA-3’

mJAK2F 5’-AGACTTCCAGAACCAGAACAAAG-3’

mJAK2R 5’-TCACAGTTTCTTCTGCCTAGCTA-3’

mStat3F 5’-CAGCAGCTTGACACACGGTA-3’

mStat3R 5’-AAACACCAAAGTGGCATGTGA-3’

mActinF 5’-GTGACGTTGACATCCGTAAAGA-3’

mActinR 5’-GCCGGACTCATCGTACTCC-3’

h, human; F, forward; m, mouse; R, reverse.
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Real-Time PCR Measurement of Bacterial DNA
Mice feces sample DNA was extracted using the stool

DNA Kit (Omega Bio-tek, Norcross, GA) according to the
manufacturer’s instructions. 16S ribosomal DNA PCR re-
actions were used the MyiQ single-color real-time PCR
detection system (Bio-Rad Laboratories) and iTaq Uni-
versal SYBR green supermix (1725121; Bio-Rad Laboratories)
according to the manufacturer’s directions. Primers specific to
18S ribosomal RNA were used as an endogenous control to
normalize loading between samples.56 The relative amount of
16S ribosomal DNA in each sample was estimated using the
Delta-Delta cycle threshold. Primer sequences were designed
using Primer-BLAST or were obtained from the Primer Bank
primer pairs listed in Table 2.
ChIP Assay
Binding of VDR to the Jak2 promoter was investigated

using the ChIP assay as described previously.39 Briefly,
HCT116 cells were treated with 1% formaldehyde for 10
minutes at 37�C. Cells were washed twice in ice-cold,
phosphate-buffered saline containing protease inhibitor
Table 2.Bacterial 16S Ribosomal DNA Real-Time PCR Primers

Primer name

B fragilis 16s forward

B fragilis 16s reverse

B fibrisolvens 16s forward

B fibrisolvens 16s reverse

F peptostreptococus 16s forward

F peptostreptococus 16s reverse

E coli 16s forward

E coli 16s reverse

Univ bacteria 16s forward

Univ bacteria 16s reverse

Univ, universal.
cocktail tablets (Roche, Indianapolis, IN). Cells were scraped
into conical tubes, pelleted, and lysed in SDS lysis buffer.
The lysate was sonicated to shear DNA into fragments of
200–1000 bp (4 cycles of 10-s sonication, 10-s pausing,
Branson Sonifier 250, Buffalo Grove, IL). The chromatin
samples were precleared with salmon sperm DNA–bovine
serum albumin-sepharose beads, then incubated overnight
at 4�C with VDR antibody (Santa Cruz Biotechnology). Im-
mune complexes were precipitated with salmon sperm
DNA–bovine serum albumin-sepharose beads. DNA was
prepared by treatment with proteinase K, extraction with
phenol and chloroform, and ethanol precipitation. By
searching the mouse ATG16L1 gene, we found a similar
sequence to the VDRE sequence (G/A)G(G/T)TCA. We then
designed primers for ChIP. PCR was performed using the
following promoter-specific primers: Jak2 forward, 5’-
TGAATCCCAGGACACATTT-3’; reverse, 5’-GGTAAGCCACT-
GAAGGTT-3’.
Histology of Intestine
Intestines were harvested, fixed in 10% formalin (pH

7.4), processed, and paraffin-embedded. Sections (5 mm)
were stained with H&E. For immunostaining, antigens were
retrieved by 10-minute boiling in 10 mmol/L citrate (pH
6.0). The slides were stained with antibodies as previously
described.48 Blinded histologic inflammatory scores were
performed by a validated scoring system by a trained
pathologist.57
LPS Detection
LPS in serum samples was measured with limulus

amebocyte lysate chromogenic end point assays (HIT302;
Hycult Biotech, Plymouth Meeting, PA) according to the
manufacturer’s indications. The samples were diluted 1:4
with endotoxin-free water and then heated at 75�C for 5
minutes on a warm plate to denature the protein before the
reaction. A standard curve was generated and used to
calculate the concentrations, which were expressed as EU/
mL, in the blood samples.
Sequence

5’-GGCGCACGGGTGAGTAACA-3’

5’-CAATATTCCTCACTGCTGC-3’

5’-CTAACACATGCAAGTCGAACG-3’

5’-CCGTGTCTCAGTCCCAATG-3’

5’-CATTGGGACTGAGACAC-3’

5’-AATCCGGATAACGCTTGC-3’

5’-CCTACGGGAGGCAGCAGT-3’

5’-CGTTTACGGCGTGGACTAC-3’

5’-TCCTACGGGAGGCAGCAGT-3’

5’-GGACTACCAGGGTATCTAATCCTGTT-3’
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Quantification of Fecal and Serum Lcn-2 by
Enzyme-Linked Immunosorbent Assay

Freshly collected fecal samples were reconstituted in
phosphate-buffered saline containing 0.1% Tween 20 (100
mg/mL) and vortexed for 20 minutes to get a homogenous
fecal suspension. These samples then were centrifuged for
10 minutes at 12,000 rpm and 4�C. Clear supernatants
were collected. Lcn-2 levels were estimated in the super-
natants using the Duoset murine Lcn-2 enzyme-linked
immunosorbent assay kit (R&D Systems, Minneapolis, MN),
as described in our previous study.58

Mucosa Microbial and Fecal 454 Pyrosequencing
The tubes for microbial sampling were autoclaved and

then irradiated with UV light to destroy the environmental
bacterial DNA. The mice then were anesthetized and
dissected. Fecal matter was isolated freshly from the gut and
placed into the specially prepared tubes, as described in our
previously published reports.59,60 The samples were kept at
a low temperature with dry ice and mailed to the Research
and Testing Laboratory (Lubbock, TX) for 454 pyrose-
quencing. The V4–V6 region of the samples was amplified at
the Research and Testing Laboratory for pyrosequencing
using a forward and reverse fusion primer. The sequences
were denoised and subjected to quality checking. Taxo-
nomic identifications were assigned by queries against the
National Center for Biotechnology Information.

Sample Preparation for Metabolites
Fecal samples were prepared using the automated

MicroLab STAR system from the Hamilton Company. Several
recovery standards were added before the first step in the
extraction process for quality check purposes. To remove
protein, small molecules bound to protein or trapped in the
precipitated protein matrix were dissociated, and to recover
chemically diverse metabolites, proteins were precipitated
with methanol under vigorous shaking for 2 minutes (Glen
Mills GenoGrinder 2000), followed by centrifugation. The
resulting extract was divided into 5 fractions: 2 for analysis
by 2 separate reverse-phase/ultra high-performance liquid
chromatography–tandem mass spectroscopy (UPLC-MS/MS)
methods with positive ion mode electrospray ionization (ESI),
1 for analysis by reverse-phase/UPLC-MS/MS with negative
ion mode ESI, 1 for analysis by Hydrophilic Interaction Liquid
Chromatography/UPLC-MS/MS with negative ion mode ESI,
and 1 sample was reserved for backup. Samples were placed
briefly on a TurboVap (Zymark) to remove the organic solvent.
The sample extracts were stored overnight under nitrogen
before preparation for analysis.

Metabolite Analysis
For the metabolite experiments, 33 mice were divided

into VDRDIEC (N ¼ 17) and control VDRLoxP (N ¼ 16) groups.
All mice were housed in specific pathogen-free environ-
ments under a controlled condition of 12-hour light/dark
cycles at 20�C–22�C and 45%± 5% humidity, with free ac-
cess to food and ultrapure water. At 16 weeks of age, the
fecal contents of each mouse were collected carefully in
separate Eppendorf tubes, labeled with a unique identifi-
cation number, and stored at �80�C until shipped. Samples
were transported to Metabolon, Inc (Morrisville, NC) in dry
ice by overnight shipment for analysis.

After receipt, samples were assigned a unique identifier
by the laboratory information management system and
immediately stored at -80�C until processed. Samples were
prepared using the automated MicroLab STAR system from
Hamilton Company. First proteins and other associated
small molecules were precipitated, and then diverse me-
tabolites were recovered by grinding and centrifugation.
The resulting extract was analyzed by 2 separate reverse-
phase/UPLC-MS/MS methods with positive ion mode ESI,
or with negative ion mode ESI, and 1 by Hydrophilic Inter-
action Liquid Chromatography/UPLC-MS/MS with negative
ion mode ESI. Several types of controls were analyzed along
with the experimental samples to ensure accurate and
consistent identification. UPLC-MS/MS was used as an
analyzer. Metabolon’s hardware and software were used to
extract the raw data, followed by the identification of peaks
and quality checks. These systems are built on a web-service
platform using Microsoft’s NET technologies.
Microbiome Data Analysis
Differences in microbial communities between VDRLoxP

and VDRDIEC groups were analyzed as in previous
studies.59,60 Briefly, principal coordinates analysis of un-
weighted Unique Fraction Metric distances plots were
plotted using quantitative insights into microbial ecology
(QIIME).61 To determine differences in microbiota compo-
sition between the animal groups, the analysis of similarities
function in the statistical software package PRIMER 6
(PRIMER-E, Ltd, Lutton, UK) was used on the unweighted
Unique Fraction Metric distance matrixes.62
Statistical Analysis
Metabolite data were expressed as a fold change ratio, all

other data are expressed as the means ± SD. All statistical
tests were 2-sided. P values less than .05 were considered
statistically significant. For metabolite data, after log trans-
formation and imputation of missing values, if any, with the
minimum observed value for each compound, analysis of
variance contrasts and the Welch 2-sample t test were used
to identify biochemicals that differed significantly between
experimental groups. For other data analyses, the differ-
ences between samples were analyzed using the Student t
test for 2-group comparisons, and 1-way analysis of vari-
ance for comparisons of more than 2 groups, respectively.

Sequence files and metadata for all samples used in this
study have been deposited in https://www.ncbi.nlm.nih.
gov/bioproject/593562; submission ID: SUB6615727; Bio-
Project ID: PRJNA593562.
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