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Abstract: Background: We aimed to explore the role of mitochondrial aldehyde dehydrogenase 2
(ALDH2) in prostate cancer (PCa) patients and provide insights into the tumor immune microenviron-
ment (TME) for those patients undergoing radical radiotherapy. Methods: We performed all analyses
using R version 3.6.3 and its suitable packages. Cytoscape 3.8.2 was used to establish network of
competing endogenous RNAs (ceRNAs). Results: Downregulation of ADLH2 was significantly asso-
ciated with higher risk of BCR-free survival (HR: 0.40, 95%CI: 0.24–0.68, p = 0.001) and metastasis-free
survival (HR: 0.21, 95%CI: 0.09–0.49, p = 0.002). Additionally, ALDH2 repression contributed to
significantly shorter BCR-free survival in the TCGA database (HR: 0.55, 95%CI: 0.33–0.93, p = 0.027).
For immune checkpoints, patients that expressed a higher level of CD96 had a higher risk of BCR than
their counterparts (HR: 1.79, 95%CI: 1.06–3.03, p = 0.032), as well as NRP1 (HR: 2.18, 95%CI: 1.29–3.69,
p = 0.005). In terms of the TME parameters, the spearman analysis showed that ALDH was posi-
tively associated with B cells (r: 0.13), CD8+ T cells (r: 0.19), neutrophils (r: 0.13), and macrophages
(r: 0.17). Patients with higher score of neutrophils (HR: 1.75, 95%CI: 1.03–2.95, p = 0.038), immune
score (HR: 1.92, 95%CI: 1.14–3.25, p = 0.017), stromal score (HR: 2.52, 95%CI: 1.49–4.26, p = 0.001), and
estimate score (HR: 1.81, 95%CI: 1.07–3.06, p = 0.028) had higher risk of BCR than their counterparts.
Our ceRNA network found that PART1 might regulate the expression of ALDH via has-miR-578
and has-miR-6833-3p. Besides, PHA-793887, PI-103, and piperlongumine had better correlations
with ALDH2. Conclusions: We found that ALDH2 might serve as a potential biomarker predicting
biochemical recurrence for PCa patients.

Keywords: mitochondrial aldehyde dehydrogenase 2; prostate cancer; biochemical recurrence; tumor
immune microenvironment; competing endogenous RNA network

1. Background

The global population of people over the age of 65 is growing at an unprecedented rate,
with 1.6 billion expected by 2050 [1]. Prostate cancer (PCa) is the most common urological
malignancy in men with high incidence over the age of 65 years, and belongs to the fifth
leading cause of cancer death among men globally [2]. This disease affects millions of men
worldwide, and the problem will only worsen as the world’s population ages.

Increasing evidence suggests that there are close correlations between health dimen-
sions and aging phenotypes, particularly autophagy, mitochondrial dysfunction, cellular
senescence, and DNA methylation [1,3]. Warburg discovered aerobic glycolysis in tumor
tissue in 1924, and de novo lipid synthesis in neoplastic tissue was discovered in 1953 [4,5].
A large number of studies on fatty acid metabolism contributed to one of the most common
cancer hallmarks in 2011, namely “reprogramming of energy metabolism” [4,6]. Changes
in intracellular and extracellular metabolites that can occur as a result of cancer-related
metabolic reprogramming have a significant impact on gene expression, cellular differenti-
ation, and the tumor microenvironment [7]. Through the generation of building blocks for
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membrane synthesis, the provision of substrates for ATP synthesis, and the regulation of
signaling pathways involved in cell proliferation and survival, fatty acids play an important
role in tumor initiation, development, and disease progression in caners [4].

The study of metabolic abnormalities in tumors has increased dramatically over the
last decade. The complex interactions within the tumor microenvironment and adjacent
stroma frequently influence how cancer cells use lipids [8]. Mitochondrial aldehyde dehy-
drogenase 2 (ALDH2), a gene related to fatty acid metabolism, has been demonstrated to
be highly associated with prognosis and chemoradiotherapy sensitivity of many cancers,
including leukemia, renal cell carcinoma, head and neck cancer, esophageal cancer, bladder
cancer, hepatocellular cancer, pancreatic cancer, and ovarian cancer [9–17]. ALDH2 is made
up of four identical subunits, each with three structural domains: the catalytic domain,
the coenzyme structure nicotinamide adenine dinucleotide (NAD), and the oligomeriza-
tion domain [18]. Fatty acid synthesis requires large amounts of nicotinamide adenine
dinucleotide phosphate (NADP), an essential cofactor for biosynthetic reactions [4]. A
growing body of evidence suggests that NAD (including NAD+ and NADH) and NADP
(including NADP+ and NADPH) are fundamental common mediators of a wide range
of biological processes, including energy metabolism, mitochondrial functions, calcium
homeostasis, antioxidation/oxidative stress generation, gene expression, immunological
functions, aging, and cell death [19]. Overproduction of reactive oxygen species (ROS)
and lipid peroxidation promote the tumorigenesis, and ALDH2 is associated with the
detoxification of reactive aldehydes generated from ROS-mediated lipid peroxidation, such
as 4-hydroxy-2-nonenal (4-HNE), malondialdehyde, and acrolein [18]. Our previous study
indicated ALDH2 might involve in the tumorigenesis and tumor progression of urological
cancers [19]. However, less known empirical research to date has focused on exploring
relationships between ALDH2 dysregulation and the PCa risk. From the perspective of
fatty acid metabolism, we integrated multiple datasets to explore the role of ALDH2 in the
prognosis of PCa and provide insights into the tumor immune microenvironment (TME)
for those patients undergoing radical radiotherapy, which might enlighten the effect of
ALDH2 on tumor stemness and multidrug resistance in the future.

2. Methods
2.1. Data Preparation

Our study has been registered in the ISRCTN registry (No. ISRCTN11560295). Four
datasets (GSE46602 [20], GSE32571 [21], GSE62872 [22], and GSE116918 [23]) including
816 samples were combined and eliminated batch effects, which could be seen in our previ-
ous study [24]. The TCGA database PCa data included 550 samples, and 430 samples with
complete prognostic data were used to validate the GEO prognostic value (Supplementary
Figure S1). From the GEO and TCGA, we extracted messenger RNA (mRNA) and long
non-coding RNA (lncRNA) expression. The fatty acid metabolism gene sets were obtained
from the gene set enrichment analyses (GSEA) website (https://www.gsea-msigdb.org/,
accessed on 11 November 2021) and confirmed in a previous study [25]. The differen-
tially expressed genes (DEGs) related to fatty acid metabolism were obtained through
the intersection of gene sets of fatty acid metabolism, TCGA database and three GEO
datasets (GSE46602 [20], GSE32571 [21], and GSE62872 [22]). The DEGs were regarded
as llogFCl ≥ 0.4 and p. adj. < 0.05. The 248 tumor samples in GSE116918 [23] were
used to identify the prognosis-related genes (Supplementary Figure S2). The primary
outcome was biochemical recurrence (BCR)-free survival, and the secondary outcome was
metastasis-free survival.

2.2. Gene Interaction and Functional Enrichment Analysis

We analyzed the potential genes that might interact with ALDH2 using GeneMania [26].
We screened the long noncoding RNA (lncRNA) associated with BCR-free survival and dif-
ferentially expressed between tumor and normal samples. Subsequently, we constructed a
network of competing endogenous RNAs (ceRNAs) using lncBase [27], and miRDB [28,29].

https://www.gsea-msigdb.org/
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We divided the 248 tumor patients undergoing radical radiotherapy in GSE116918 [23] into
high- and low-expression groups according to the median of ALDH2. We further conducted
the gene set variation analysis (GSVA) with “c2.cp.kegg.v7.4.symbols.gmt” from molecular
signatures database [30]. The minimum and maximum gene set were 5 and 5000, respec-
tively. Subsequently, “wilcox.test” function was used to evaluate the difference of each
pathway between high- and low-expression of ALDH2. The fold change was 1.5, and we
considered p. adj. < 0.01 and false discovery rate < 0.01 as statistical significance.

2.3. TME Analysis and Drug Analysis

We looked at the relationship between ALDH2 and 46 different immune checkpoints,
as well as the difference in expression between BCR and no BCR groups. A prognosis
analysis of differentially expressed checkpoints was also performed. Using the Timer and
Estimate algorithms, a similar analysis was performed for immune parameters [31,32].
We investigated ALDH2 drug sensitivity using GSCALite, which incorporated data from
the cancer therapeutics response portal (CTRP) and the genomics of drug sensitivity in
cancer (GDSC) [33]. ALDH2’s diagnostic ability for drug (cyclophosphamide) and radiation
resistance was evaluated using GSE42913 [34] and GSE53902 [35], respectively.

2.4. Immunohistochemistry Analysis

We confirmed the differential expression of ALDH2 at the protein level through the
immunohistochemistry of a pair of carcinoma and adjacent tissue in our hospital.

2.5. Statistical Analysis

All analyses were carried out using R (version 3.6.3) and the appropriate packages.
The ceRNA network was built using Cytoscape 3.8.2 [36]. If the data did not fit the normal
distribution, we used the Wilcoxon test. ALDH2’s prognostic value was evaluated using
Kaplan–Meier survival analysis and the log-rank test. The statistical significance level was
set to two-sided p 0.05. The following significance levels were assigned: ns, 0.05; *, 0.05;
**, 0.01, and ***, 0.001.

3. Results
3.1. Clinical Values of ALDH2

A total of 9 DEGs were identified through the intersection of DEGs of TCGA database and
GEO datasets, and gene sets of fatty acid metabolism (Figure 1A). Downregulation of ALDH2
was significantly associated with a higher risk of BCR-free survival (HR: 0.40, 95%CI: 0.24–0.68,
p = 0.001; Figure 1B) and metastasis-free survival (HR: 0.21, 95%CI: 0.09–0.49, p = 0.002;
Figure 1C). Besides, ALDH2 repression contributed to significantly shorter BCR-free
survival in the TCGA database (HR: 0.55, 95%CI: 0.33–0.93, p = 0.027; Figure 1D). The
differential expression of ALDH2 in GEO datasets and TCGA database was presented
(Figure 1E–F). At the protein level, ALDH2 expression was consistent with the mRNA
expression, and the expression of ALDH2 was in plasma in carcinoma and adjacent tissue
(Figure 1G). In addition, we observed that ALDH2 was differentially expressed between
tumor and normal samples in most cancers in the TCGA database through the pan-cancer
analysis (Figure 1H). In the GSE116918 [23], we observed a decreasing trend of ALDH2
expression with an upgrade of T stage and Gleason score (Figure 1I,J). BCR patients had
a significant lower expression level of ALDH2 than no BCR patients (Figure 1K). How-
ever, the diagnostic ability of ALDH2 mRNA expression was low in distinguishing BCR
from no BCR patients (AUC: 0.652; Figure 1L). Similar results were observed in terms
of Gleason score and T stage in the TCGA database (Figure 1M–N), and patients with
positive lymphnodes had a significant lower expression level of ALDH2 than patients with
negative lymphnodes (Figure 1O). Moreover, ALDH2 presented a highly diagnostic ability
discriminating drug (AUC: 0.906, 95%CI: 0.743–1.000; Figure 1P) and radiation resistance
(AUC: 0.827, 95%CI: 0.612–1.000; Figure 1Q) from sensitivity.
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Figure 1. The clinical values of ALDH2 in prostate cancer. (A) Venn plot showing through the
intersection of DEGs of TCGA database and GEO datasets, and gene sets of fatty acid metabolism;
(B) Kaplan–Meier curve of ALDH2 for BCR-free survival; (C) Kaplan–Meier curve of ALDH2 for
metastasis-free survival; (D) Kaplan–Meier curve of ALDH2 for BCR-free survival in TCGA database;
(E) volcano plot showing DEGs in TCGA database; (F) volcano plot showing DEGs in GEO datasets;
(G) differential expression of ALDH2 between tumor and normal tissues at protein level; (H) differ-
ential mRNA expression of ALDH2 between tumor and normal sample at pan-cancer level in TCGA
database; (I) comparison between ALDH2 and T stages; (J) comparison between ALDH2 and Gleason
score; (K) comparison between ALDH2 and BCR; (L) ROC curve of ALDH2 discriminating BCR from
no BCR; (M) comparison between ALDH2 and Gleason score in TCGA database; (N) comparison
between ALDH2 and T stages in TCGA database; (O) comparison between ALDH2 and N stages in
TCGA database; (P) ROC curve of discriminating drug resistance from drug sensitivity; and (Q) ROC
curve of discriminating radiation resistance from radiation sensitivity. DEG = differentially expressed
genes; BCR = biochemical recurrence; ROC= receiver operating characteristic curve. ns, 0.05; *, 0.05;
**, 0.01, and ***, 0.001.
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3.2. TME Analysis and Possible Mechanisms of ALDH2

For immune checkpoints, CD96, LAIR1, NRP1, and PDCD1LG2 were significantly
expressed higher in BCR group (Figure 2A), and ALDH2 was significantly related to BTNL2
(r: −0.15), CD200 (r: 0.20), CD200R1 (r: −0.20), CD226 (r: −0.12), CD276 (r: −0.27), CD40LG
(r: −0.13), CD44 (r: 0.32), CD47 (r: 0.30), CD70 (r: −0.19), CD80 (r: −0.15), CTLA4 (r: −0.17),
HHLA2 (r: −0.24), ICOSLG (r: −0.15), KIR3DL1 (r: −0.26), KLRD1 (r: −0.14), LAIR1
(r: −0.14), NRP1 (r: −0.17), TIGIT (r: −0.20), TNFRSF14 (r: −0.18), TNFRSF8 (r: −0.18),
TNFRSF9 (r: −0.18), TNFSF15 (r: 0.22), and TNFSF9 (r: −0.28) (Figure 2B). Patients that
expressed a higher level of CD96 had a higher risk of BCR than their counterparts (HR: 1.79,
95%CI: 1.06–3.03, p = 0.032; Figure 2C), as well as NRP1 (HR: 2.18, 95%CI: 1.29–3.69, p = 0.005;
Figure 2D). In terms of the TME parameters, neutrophils, stromal score, immune score,
and estimate score were scored higher, and tumor purity was scored lower in the BCR
group than the no BCR group (Figure 2E). The spearman analysis showed that ALDH was
positively associated with B cells (r: 0.13), CD8+ T cells (r: 0.19), neutrophils (r: 0.13), and
macrophages (r: 0.17) (Figure 2F). Patients with a higher score of neutrophils (HR: 1.75,
95%CI: 1.03–2.95, p = 0.038), immune score (HR: 1.92, 95%CI: 1.14–3.25, p = 0.017), stromal
score (HR: 2.52, 95%CI: 1.49–4.26, p = 0.001), and estimate score (HR: 1.81, 95%CI: 1.07–3.06,
p = 0.028) had higher risk of BCR than their counterparts (Fi. 2G–J). In addition, pa-
tients with lower tumor purity had a higher risk of BCR than those with higher tumor
purity (HR:0.55, 95%CI: 0.33–0.93, p = 0.028; Figure 2K). Moreover, we observed that several
genes (SIRT3, ENTPD5, GCSH, SLC25A16, TSR1 and FBP1) were predicted to interact with
ALDH2 (Figure 2L).

We found that beta alanine metabolism, limonene and pinene degradation, valine
leucine and isoleucine degradation and propanoate metabolism were upregulated in
the group highly expressing ALDH2 (Figure 3A). We observed that PART1 significantly
expressed higher in tumor group compared to normal group through GSE46602 [20],
GSE32571 [21], and GSE62872 [22] (Figure 3B). In GSE116918 [23], BCR patients had lower
expression of PART1 than no BCR patients (Figure 3C). Patients with lower expression of
PART1 had a higher risk of BCR than those with higher expression of PART1 (HR: 0.46,
95%CI: 0.27–1.77, p = 0.004; Figure 3D). Our ceRNA network found that PART1 might
regulate the expression of ALDH via has-miR-578 and has-miR-6833-3p (Figure 3E). Six
potentially sensitive drugs (AZD7762, CHIR-99021, PHA-793887, PI-103, SNX-2112 and
piperlongumine) were found through the intersection of GDSC and CTRP (Figure 3F),
among which PHA-793887, PI-103, and piperlongumine had better correlations defined as
coefficients larger than 0.1.
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Figure 2. TME analysis and gene interaction with ALDH2. (A) Comparison between BCR and no
BCR groups for the 46 immune checkpoints; (B) bubble plot showing correlations between ALDH2
and immune checkpoints with statistical significance; (C) Kaplan–Meier curve of CD96 for BCR-free
survival; (D) Kaplan–Meier curve of NRP1 for BCR-free survival; (E) comparison between BCR and
no BCR groups for the TME parameters; (F) radar plot showing correlations between ALDH2 and the
TME parameters; (G) Kaplan–Meier curve of neutrophils for BCR-free survival; (H) Kaplan–Meier
curve of immune score for BCR-free survival; (I) Kaplan–Meier curve of stromal score for BCR-free
survival; (J) Kaplan–Meier curve of estimate score for BCR-free survival; (K) Kaplan–Meier curve of
tumor purity for BCR-free survival; and (L) network plot showing genes interacted with ALDH2.
TME = tumor immune microenvironment; BCR = biochemical recurrence.ns, 0.05; *, 0.05.
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Figure 3. Functional enrichment analysis, ceRNA network, and drug analysis. (A) Gene set en-
richment analysis; (B) comparison between tumor and normal groups for PART1; (C) comparison
between BCR and no BCR groups for PART1; (D) Kaplan–Meier curve of PART1 for BCR-free sur-
vival; (E) ceRNA network; and (F) Venn plot showing the commonly sensitive drugs to ALDH2.
ceRNA = competing endogenous RNA; BCR = biochemical recurrence. ns, 0.05; *, 0.05; and ***, 0.001.

4. Discussion

Because of increased life expectancy, the world’s elderly population is rapidly grow-
ing. Cancer and aging are biological processes that are inextricably linked, and the older
population has a higher incidence of PCa than the younger population [2]. Endogenous
metabolic insults and exogenous factors accumulate over time, causing oxidative stress
and DNA damage, and senescent cells accumulate during the aging process and exhibit a



Molecules 2022, 27, 6000 8 of 14

senescence-associated secretory phenotype, facilitating a tumorigenic niche [37]. Mitochon-
dria are the primary source of energy in eukaryotes, and significant amounts of ROS are
produced during oxidative phosphorylation for the production of adenosine triphosphate
at complexes I and III of the electron transport chain [38]. Superoxide anion, hydrogen
peroxide, hydroxyl radicals, singlet oxygen, and lipid peroxyl radicals are examples of
ROS [39]. The majority of superoxide is decomposed by superoxide dismutases, and several
ROS can cause peroxidation of polyunsaturated fatty acids (PUFAs) in cellular membranes,
forming lipid hydroperoxides as primary products, 4-HNE being one of the most bioactive
and well-studied lipid alkenals [40,41]. Additionally, 4-HNE adducts have been implicated
in the development and progression of cancer in studies [42,43]. Furthermore, constitutive
4-HNE levels may protect cancer cells from oxidative damage by activating mitochondrial
uncoupling proteins, which help to reduce excessive ROS production and oxidative damage
in cancer [44]. Furthermore, malondialdehyde has been linked to prostate cancer, breast
cancer, hepatocellular carcinoma, oral cancer, and other cancers [45–48]. Cancer cells can
activate adipocytes to lipolyze their triglyceride stores, delivering secreted fatty acids to
cancer cells for uptake via a variety of fatty acid transporters and as the cancer–stromal in-
teractions worsen, fatty acids secreted into the microenvironment can influence infiltrating
immune cell function and phenotype. Lipid metabolic abnormalities, such as increased fatty
acid oxidation and de novo lipid synthesis, can give the tumor an advantage in resisting
chemotherapeutic and radiation treatments, as well as alleviating cellular stresses involved
in the metastatic cascade [8]. Fatty acid metabolism-related gene, ALDH2 is critical in the
removal of endogenous aldehydes formed during oxidative metabolism [18]. Thus, ALDH2
dysregulation may play a role in cancer carcinogenesis and progression [9–17]. We found
that downregulation of ALDH2 contributed to shorter BCR-free survival in PCa patients,
which was confirmed by the TCGA database, which was consistent with previous studies.
Furthermore, we discovered that patients with lower levels of ALDH2 had a higher risk
of metastasis than their counterparts. We discovered that ALDH2 was closely associated
with many metabolism pathways, including fatty acid metabolism and PCa, in the GSEA
analysis, confirming the importance of ALDH2 in PCa.

We discovered that PCa patients with higher neutrophil levels had shorter BCR-free
survival than those with lower neutrophil levels in this study. We considered two possible
explanations here: (1) neutrophils inhibited tumor growth by directly releasing cytotoxic
mediators [49] and producing cytokines that promote the activation and proliferation of
various immune cells [50], particularly T cells [51]. However, because immune repression
was caused by metabolic competition of cancer cells, the killing effect of the recruited neu-
trophils on tumor cells was weakened, and BCR occurred again; (2) immune dysfunction
may result in an imbalance in the type and number of neutrophils. Neutrophils of type N2
predominate in the number of neutrophils, which can promote cancer cell proliferation,
migration, and invasion [52]. Furthermore, we discovered that the BCR group had higher
stromal, immune, and estimate scores, while the no BCR group had lower tumor purity.
Higher former scores were associated with a higher risk of BCR-free survival, whereas
tumor purity had the opposite effect. In gastric cancer [53], lung adenocarcinoma [54],
renal cell carcinoma [55], and colon cancer [56], stromal and immune scores were used to
stratify prognosis. Estimate score was also linked to clinical endometrial cancer charac-
teristics [57]. We hypothesized that these scores could be used as a prognostic indicator
in PCa. Previous research has found that low tumor purity is associated with a poor
prognosis and an immune-evasion phenotype in gastric cancer [58], and most recognized
prognostic indicators are no longer significantly effective under different conditions of
tumor purity [59], implying that tumor purity may play an important role in PCa treatment
and prognosis assessment. Furthermore, we discovered that the expression of ALDH2 was
positively correlated with CD8 + T cells, B cells, neutrophils, and macrophages. For CD8+
T cells, low ALDH2 expression resulted in acetaldehyde accumulation, which decreased
the expression of PA28 and immune proteasome subunits and further inhibited CD8+ T
cell activation by impairing the JAK/STAT1/IFNg signaling pathway [60]. Accumulation
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of acetaldehyde may also promote T cell inactivation by inhibiting AKT phosphorylation,
glucose transporter 1 mRNA expression, and hypoxia-inducible factor-1a expression [61].
Intriguingly, metabolic competition between cancer cells and immune cells inhibited im-
mune cell function, and metabolic reprogramming was also important in suppressing the
immune attack on tumor cells and resistance to therapies [49]. In addition, we discovered
that ALDH2 had a high diagnostic accuracy in distinguishing drug and radiation resistance
from sensitivity in our study. In terms of immune checkpoints, CD96 and NRP1 were
significantly higher expressed in BCR group and were related to worsen prognosis in PCa
patients. Both CD96 and NRP1 prevented cancer cells against the immune system, blocked
them and could improve immunotherapy and help prevent cancer recurrence [62,63].

We examined and screened potential lncRNAs and corresponding microRNAs (miR-
NAs) that could regulate ALDH2 expression in order to better understand the ALDH2 reg-
ulatory network. We discovered that lncRNA PART1 and has-miR-578, as well as has-miR-
6833-3p, may be important. By binding and sequestering target miRNAs and participating
in mRNA expression regulation, lncRNAs have been shown to act as ceRNAs or molecular
sponges in regulating the concentration and biological functions of miRNAs [64–66]. A
previous study confirmed that the overexpression of lncRNA PART1 promoted cell prolif-
eration, and knockdown of PART1 influenced cell viability and promoted cell apoptosis in
PCa [67]. Currently, there is a lack of studies to prove the regulating effect of PART1 and
those two miRNAs on ALDH2 expression, we speculated that overexpressed PART1 in
PCa could act as a “sponge”, adsorbing and binding has-miR-578 and has-miR-6833-3p,
and ultimately regulating the expression of ALDH2 to promote the development and
progression of PCa. In addition, we observed that several genes (SIRT3, ENTPD5, GCSH,
SLC25A16, TSR1 and FBP1) were predicted to interact with ALDH2 through GeneMa-
nia. SIRT3 promoted PCa progression via inhibiting RIPK3-mediated necroptosis and
innate immune response [68], while SIRT3-mediated deacetylation of ALDH2 increased
enzyme inactivation [69]. FBP1 silencing activated the MAPK pathway, promoting cell
epithelial–mesenchymal transition, invasion, and metastasis in PCa [70]. FBP1 and ALDH2
are both involved in a signaling pathway linked to cancer metabolism [71]. However,
the tumorigenesis through metabolism of SLC family [72] and the anti-angiogenesis of
TSR1 [73] confirmed in other cancers showed potential interactions between each of them
and ALDH2. The expression of PCPH/ENTPD5 increased the invasiveness of human PCa
cells via a protein kinase C delta-dependent mechanism [74], which was also linked to
lipid metabolism. Furthermore, we discovered three drugs, PHA-793887, PI-103, and piper-
longumine, that had stronger correlations with ALDH2. Piperlongumine was suggested
to increase the activity of recombinant ALDH2 and protect it from inactivation by lipid
aldehydes [75]; thus, we speculated that this drug could play a role in the treatment of
prostate cancer in the future.

A previous study discovered that 4-HNE’s angiogenesis function via the SIRT3-HIF-
1-VEGF axis was associated with hypoxia in TME and resulted in cancer development
and immune dysfunction via metabolic reprogramming and metabolic competition [76].
Bipradas Roy et al. [77] later confirmed the finding. As a result, we concluded that ALDH2
may act as an anti-tumorigenesis molecule by not only reducing lipid peroxidation damage,
but also promoting angiogenesis in PCa by regulating the amount of 4-HNE. Ferroptosis
is a type of programmed cell death characterized by the accumulation of iron-dependent
lipid peroxides, in which ROS-induced lipid peroxidation plays an important role [78].
Furthermore, ferroptosis has been linked to the inhibition of the development of multiple
cancers [79]. Lower levels of 4-HNE were found to be more sensitive to ferroptosis in lung
adenocarcinoma [80], so we hypothesized that decreasing 4-HNE via ALDH2 would cause
tumor cells to be more sensitive to ferroptosis in PCa. ALDH2 polymorphisms are also
linked to cancer occurrence and progression [18]. The wild and variant alleles are generally
referred to as ALDH2*1 and ALDH2*2, resulting in three types of ALDH2 gene: wild-type
homozygote (ALDH2*1/*1), heterozygote (ALDH2*1/*2), and variant-type homozygote
(ALDH2*2/*2) [81]. Individual enzyme activity in heterozygote individuals (ALDH2*1/*2)
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was significantly lower (50%) than in the wild type, whereas homozygous mutation enzyme
activity (ALDH2*2/*2) was between 1% and 4% of the ALDH2*1/*1 genotype [18]. Thus
far, epidemiologic evidence for a link between alcohol consumption and the risk of PCa
is lacking. Many studies, meta-analyses, and systematic reviews produced contradictory
results [82–85]. In terms of genes, this condition could be linked to ALDH2 polymorphisms.
As a result, detecting the ALDH2 genotype may aid in screening corresponding PCa
patients and promoting precision medicine.

Our findings confirmed that ALDH2 repression is linked to a poor prognosis in
PCa patients. However, further research into the relationship between ALDH2 and the
immune system, as well as the regulation of ALCH2 from various perspectives, such as the
ceRNA network and transcription factors, is required. Furthermore, the effect of ALDH2
polymorphisms on cancer progression is not insignificant.

5. Conclusions

ALDH2 was discovered to be a potential biomarker for predicting biochemical recur-
rence in PCa patients. Furthermore, the effect of metabolism reprogramming on TME must
be investigated further.
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Abbreviations

PCa prostate cancer
TME tumor immune microenvironment
ceRNA competing endogenous RNA
miRNA microRNA
lncRNA long non-coding RNA
ALDH2 mitochondrial aldehyde dehydrogenase 2
NAD nicotinamide adenine dinucleotide
NADP nicotinamide adenine dinucleotide phosphate
ROS reactive oxygen species
4-HNE 4-hydroxy-2-nonenal
GEO Gene Expression Omnibus
GSEA gene set enrichment analyses
BCR biochemical recurrence
CTRP cancer therapeutics response portal
GDSC genomics of drug sensitivity in cancer
PUFAs polyunsaturated fatty acids
DEG differentially expressed genes
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