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Impact of germline and somatic missense variations on drug
binding sites
C Yan1,5, N Pattabiraman2,5, J Goecks3, P Lam1, A Nayak1, Y Pan1, J Torcivia-Rodriguez1, A Voskanian1, Q Wan1 and R Mazumder1,4

Advancements in next-generation sequencing (NGS) technologies are generating a vast amount of data. This exacerbates the
current challenge of translating NGS data into actionable clinical interpretations. We have comprehensively combined germline and
somatic nonsynonymous single-nucleotide variations (nsSNVs) that affect drug binding sites in order to investigate their
prevalence. The integrated data thus generated in conjunction with exome or whole-genome sequencing can be used to identify
patients who may not respond to a specific drug because of alterations in drug binding efficacy due to nsSNVs in the target
protein’s gene. To identify the nsSNVs that may affect drug binding, protein–drug complex structures were retrieved from Protein
Data Bank (PDB) followed by identification of amino acids in the protein–drug binding sites using an occluded surface method.
Then, the germline and somatic mutations were mapped to these amino acids to identify which of these alter protein–drug binding
sites. Using this method we identified 12 993 amino acid–drug binding sites across 253 unique proteins bound to 235 unique
drugs. The integration of amino acid–drug binding sites data with both germline and somatic nsSNVs data sets revealed 3133
nsSNVs affecting amino acid–drug binding sites. In addition, a comprehensive drug target discovery was conducted based on
protein structure similarity and conservation of amino acid–drug binding sites. Using this method, 81 paralogs were identified that
could serve as alternative drug targets. In addition, non-human mammalian proteins bound to drugs were used to identify 142
homologs in humans that can potentially bind to drugs. In the current protein–drug pairs that contain somatic mutations within
their binding site, we identified 85 proteins with significant differential gene expression changes associated with specific cancer
types. Information on protein–drug binding predicted drug target proteins and prevalence of both somatic and germline nsSNVs
that disrupt these binding sites can provide valuable knowledge for personalized medicine treatment. A web portal is available
where nsSNVs from individual patient can be checked by scanning against DrugVar to determine whether any of the SNVs affect
the binding of any drug in the database.
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INTRODUCTION
With the development of massively parallel sequencing, also
known as next-generation sequencing (NGS), a vast amount of
NGS data are being generated with greater throughput and
decreased cost compared with its predecessor technology, Sanger
sequencing.1–4 The identification of single-nucleotide variations
(SNVs) is one of the most common tasks in NGS data analysis.5

Although most SNVs are found in the intergenic region, many can
also be found at more crucial locations such as within protein
coding regions. For example, missense SNVs (msSNVs) may play a
more direct role in causing or exacerbating disease by changing
the protein structure or by other mechanisms.6,7 Pharmacogenetic
and pharmacogenomic studies have shown that SNVs can affect
how a patient responds to administered drug treatments.8–11 The
most direct example is where msSNVs exists within the coding
region of a gene coding for target protein and these SNVs alter
the amino acid of binding site of the drug, resulting in changes in
drug binding affinity and consequent therapeutic effect of the
drug.12–14 In addition to msSNVs affecting the binding site, there
are several other factors that can cause differences in drug
responses including gene expression, drug metabolism and

environmental factors.15 In this study we focus on the effects of
msSNVs that affect protein–drug binding sites.
The Protein Data Bank (PDB),16 a three-dimensional structure

database, contains structure data of proteins complexed with
small molecules such as substrates, cofactors, inhibitors and drugs
and is widely used in drug discovery research.17–19 Secondary
databases, such as DGIdb, CREDO20 and FireDB,21 use data from
PDB and provide value-added information through further
analysis. The above databases do not provide comprehensive
somatic mutation or polymorphism mapping; neither do they
provide protein–drug interaction-centric information. Research
has shown that individual’s genetic makeup can contribute to
differential drug response.8,22–24 PharmGKB mines information
from this type of research publications,25 and at the time of
writing this paper it contained over 5000 variant annotations in
more than 900 proteins related to over 600 drugs.
This paper describes identification and integration of amino

acid–drug binding sites from PDB and nonsynonymous single-
nucleotide variations (nsSNVs) compiled from various sources to
create a comprehensive data set called DrugVar. This data set can
be used to scan exome or whole-genome sequencing data from
patients to see whether a patient has a missense mutation that

1Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC, USA; 2MolBox LLC, Silver Spring, MD, USA; 3The Computational Biology
Institute, George Washington University, Ashburn, VA, USA and 4McCormick Genomic and Proteomic Center, George Washington University, Washington, DC, USA.
Correspondence: Dr R Mazumder, Department of Biochemistry and Molecular Medicine, George Washington University, 2300 Eye Street NW, Washington, DC 20037, USA.
E-mail: mazumder@gwu.edu
5These authors contributed equally to this work.
Received 17 June 2015; revised 2 November 2015; accepted 13 November 2015; published online 26 January 2016

The Pharmacogenomics Journal (2017) 17, 128–136

www.nature.com/tpj

http://dx.doi.org/10.1038/tpj.2015.97
mailto:mazumder@gwu.edu
http://www.nature.com/tpj


affects any protein–drug binding site, and also how prevalent this
SNV is in tumors or whether they exist as polymorphism in the
population.

MATERIALS AND METHODS
Amino acid–drug binding data set
Amino acid–drug complex structure data was obtained from PDB
database.26 The Anatomical Therapeutic Chemical Classification (ATC), a
hierarchical representation of drugs, was used for identifying cancer and
noncancer-related drugs.26 Data were manually curated in order to
separate drugs from other small molecules. PDB amino acid sequence
positions were mapped to UniProtKB accessions27 followed by pairwise
alignment. For each atom of the amino acid residues in the drug binding
pocket, occluded surface (buried) area by the drug in its binding pocket
was computed using the program OS28 and a list of drug-interacting
residues was generated based on ranking the occlusion percentage. All
PDB IDs associated with the same protein and all protein–drug pairs were
considered.

nsSNV data set and data integration
A comprehensive non-redundant data set of both germline and somatic
nonsynonymous nsSNVs was generated using data from The Cancer
Genome Atlas (TCGA; http://cancergenome.nih.gov/), International Cancer
Genome Consortium (ICGC),29 IntOGen,30 CSR,31 cancer cell lines from
NCI-60 panel,32 dbSNP33 and UniProtKB/Swiss-Prot.34 The integration was
performed using methods described earlier.35 The final data set contains
1 705 286 somatic nsSNVs and 1 132 832 germline nsSNVs. Drug IDs were
retrieved from DrugBank and literature to allow linking to detailed
pharmacology and pharmaceutical knowledge and drug target
information.36–38 Figure 1 shows the workflow used to generate the
protein–drug interaction data set.

Analysis
A statistical significance analysis was conducted to investigate the
distribution of binding sites between amino acids and drugs. Significance
of observed versus expected of amino acids in drug binding sites was
calculated using the Binomial statistic described by Mi and Thomas39 and
applied in our previous studies.40 Protein Functional Class Enrichment
analysis was performed using the PANTHER Classification System.41

Identification of homologs as alternative drug targets
For paralog identification, each protein in the data set was used to BLAST42

against the human proteome to identify paralogs43,44 that might also bind

the drug. The binding sites in the paralogs were checked using pairwise
alignment to ensure they are conserved. Homology modeling of these
paralogs was carried out using MODELLER.45 These homology models of
paralogs were energy minimized using the AMBER force field in Molecular
Operating Environmen (MOE) (Version 2014.06) package developed by the
Chemical Computing Group, Montreal, Canada (www.chemcomp.com). For
additional homolog identification, all proteins of non-human mammalian
origin–drug complex were retrieved from the PDB database. Similar
workflow as mentioned above was applied on these data for identification
of human homologs that may serve as drug targets.

Structural and mutational modeling
Visualization of the amino acids in the binding site for the amino acid–drug
complexes was carried out using UCSF CHIMERA.46 To understand the
effect of mutations on a drug binding to a protein target, the X-ray
structure of carbonic anhydrase 2 (CA2) bound to the drug Lacosamide
(PDB ID: 3IEO)47 was chosen. The wild-type amino acid–drug and the
mutated amino acid–drug complexes were energy minimized using the
AMBER force field in MOE and binding energies computed.

Neighboring mutations and gene expression analysis
Even if there are no amino acid variations in protein–drug binding sites,
the variations existing in a binding site’s neighboring region may
structurally block the protein–drug binding. Therefore, for each protein–
drug binding site, mutations within its upstream and downstream region
were identified. The total number of variations within the expanded
protein–drug binding region was calculated. In addition, as the gene
expression level is another factor that may influence drug efficacy, cancer-
related gene expression data were retrieved from BioXpress.48 It analyzes
and normalizes raw count data of paired sample (tumor and normal) from
TCGA using DEseq R package (http://bioconductor.org/packages/release/
bioc/html/DESeq.html), a method that is regarded as one of the most
robust RNA-seq normalization methods.49 If a protein–drug pair contained
one or more amino acid variations in its binding site and if the variations
were somatic mutations associated with a specific cancer type, the
corresponding tumor versus healthy tissue differential gene expression
was evaluated to rank promising validation targets.

RESULTS AND DISCUSSION
Out of 1 12 722 structures available in the PDB database, 20 385
PDB structures are associated with 1712 nonstandard polymeric
components. After further filtering of crystallization stabilizers and
proteins of non-human origin, a total number of 827 PDB
structures were identified with drug bound to them. These PDB
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Figure 1. Workflow for mapping nonsynonymous single-nucleotide variations (nsSNVs) on protein–drug binding sites. ATC, anatomical
therapeutic chemical classification; PDB, protein data bank.
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structures were mapped to 253 UniProtKB proteins binding to 235
unique drugs with 12 993 binding sites (Supplementary Table S1).
Out of 253 proteins in the amino acid–drug binding data set, 210
proteins had 1618 drug binding site altering variations
(Supplementary Tables S2 and S3). Figure 2 shows the distribution
of binding sites and binding sites affected by SNVs across 253
drug target proteins. For each drug target protein, the blue bar
indicates the ratio between number of drug binding sites and
target protein length, whereas the red bar shows the ratio
between number of binding site affecting SNVs and binding sites.
In 253 identified drug target proteins, on average 4.8% of the
amino acids are identified as drug binding sites and 14.8% of
these drug binding sites have variation mapped to them. The
number of binding sites for each protein is largely influenced by
the number of ‘binding pockets’ it contains and the structure of
‘binding pocket’. In all, 1162 binding sites are affected because of
germline variations and 456 binding sites are affected by somatic
mutations. The number of identified drugs and their target
proteins is relatively small compared with the total number of FDA
(Food and Drug Administration)-approved drugs (1602) because
of the limitations of X-ray crystallography technology. With the
advent of large-scale structural genomics projects, we expect to
see increased coverage in the coming years. In addition, binding
sites based on electrospray ionization mass spectrometry50 and
mutation studies51 can be used to model additional sites.
It is interesting to note that 83% of the identified drug target

proteins contain mutations on their binding sites. Out of the large
amount of identified mutations, 0.12% of germline mutation and
0.035% of somatic mutations are mapped to drug binding sites in
our study. Amino acid–drug binding sites and nsSNV sites are
available from the DrugVar portal and a snapshot of the web
interface is shown in Figure 3. All drugs were classified into 14
groups based on ATC (Table 1).

Antineoplastic drug binding sites and somatic mutation impact
Out of 12 993 drug binding sites, 1408 protein binding sites were
found to be associated with 25 antineoplastic drugs (inhibiting or
preventing the growth and spread of tumors or malignant cells;
ATC Code: L01). Some of them act by disrupting the metabolism of
DNA synthesis components. For example, folic acid analogs, such
as methotrexate and raltitrexed, inhibit key enzymes that are
necessary for synthesis of thymidylate, an essential component
of DNA.52,53 Similarly, purine analogs, such as cladribine, and

pyrimidine analogs, such as gemcitabine, inhibit cancer cell
growth by disrupting DNA synthesis, whereas nilotinib binds to
the catalytic site of BCR-Abl, a protein kinase that only appears in
cancer cells of chronic myelogenous leukemia patients, and
inhibits the tumor growth.
We further examined 25 unique antineoplastic agent drugs and

35 unique target proteins. Figure 4 shows a Circos plot54

representing the protein–drug binding relationship. Imatinib, a
tyrosine kinase inhibitor used in the treatment of multiple cancers
has been shown through solved three-dimensional structures to
bind to as many as eight proteins (gene symbols: ABL1, ABL2,
DDR1, KIT, LCK, MAPK14, NQO2 and SYK).55–60 As one of the most
well-known targeted therapy drugs for cancer treatment, imatinib
inhibits the BCR-Abl kinase to cut off the energy source for cancer
proliferation, thereby inhibiting the tumor growth.55,61 It is also
known that imatinib can also inhibit mast/stem cell growth factor
receptor Kit (KIT)56 to stop tumor growth. However, the effect of
imatinib on other proteins in Figure 4 still remains largely
unexplored even though structures are available. Sunitinib can
bind to six proteins (CDK2, KDR, KIT, PHKG2, ITK and MAPK14). It
inhibits cellular signaling by targeting tyrosine kinase including
platelet-derived growth factor receptor-β, vascular endothelial
growth factor receptor 1, KIT and vascular endothelial growth
factor receptor 2.62-65 However, further studies are needed for the
physiological outcome of its binding to rest of the proteins.
For the antineoplastic drug target proteins, 608 out of 3133

variations were found on binding sites between 25 antineoplastic
drugs and their 36 target proteins. Out of these, 178 are somatic
mutations and 429 are germline variations. Gefitinib is primarily
used in treatment of non-small-cell lung cancer.66 In the DrugVar
data set, six lung cancer-associated somatic mutations exist within
binding sites between epidermal growth factor receptor (EGFR)
and gefitinib on amino acid positions 744, 766, 790, 792, 844 and
855. In addition, a total number of seven germline mutations exist
within binding sites between EGFR epidermal growth factor
receptor and gefitinib on amino acid positions 719, 726, 743, 788,
796, 800 and 854. It is possible that these mutations on EGFR may
weaken binding efficacy of gefitinib to its target protein in lung
cancer patients.

Drugs that bind to multiple proteins and proteins with multiple
msSNVs. It is reasonable to assume that the more proteins a drug
binds to, the more diverse its effects might be. Imatinib has eight
target proteins (ABL1, LCK, KIT, NQO2, ABL2, SYK, DDR1 and
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Figure 2. Distribution of binding sites and binding sites affecting single-nucleotide variations (SNVs) across 253 drug target proteins. The blue
bar indicates the ratio between number of drug binding sites and target protein length, whereas the red bar shows the ratio between number
of binding sites affecting SNVs and binding sites.
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MAPK14) in the DrugVar database. Out of them, 7 proteins have a
total of 58 amino acid mutations in their binding sites with
imatinib. As one of the primary target proteins, KIT is inhibited by
imatinib67 and contains 11 possible variations in its imatinib
binding sites. These mutations may affect the drug binding affinity
and make imatinib less effective under regular dose intake.
Tyrosine-protein kinase ABL1 (ABL1) is another imatinib targeted
protein and contains 29 variations on binding sites. Out of 29
mutations, 19 are germline mutations and 8 are somatic mutations

associated with diffuse large B-cell lymphoma. We report here
many such amino acid variations in drug binding sites of proteins.
The biological outcomes of these variations have not yet
been elucidated. Such examples include epithelial discoidin
domain-containing receptor 1 (DDR1) that is suggested to be a
pharmacologically available target for cancer treatment,60,68

tyrosine-protein kinase Lck (LCK), tyrosine-protein kinase SYK
(SYK), mitogen-activated protein kinase 14 (MAPK14) and abelson
tyrosine-protein kinase 2 (ABL2).
To better understand the binding of the drugs, the binding

pocket of one of the drugs was further analyzed. Figure 5a shows
the superposition of X-ray crystal structures of imatinib binding to
its eight target proteins. The drug binds in the active site cleft of
the kinase catalytic domain that is represented by ribbon
structures. Figure 5b shows the side chains identified as binding
site of amino acids with imatinib. They are marked by a green
color in the pocket of target proteins. The structural differences
could help to modify imatinib to improve the selectivity for a
given protein target. Figure 5c shows the amino acids that are
reported as mutations for each target protein in the amino
acid–drug binding sites. The drug is located in the active site cleft
of the kinases, each of which is shown in different color for clarity.
Our study also emphasizes the importance of proteins that bind

to specific drugs while still containing a large number of
mutations on their binding sites. EGFR is a well-known protein
target for antineoplastic drugs.69 Some drugs, such as lapatinib
and erlotinib,70,71 have been designed specifically as antagonists
of EGFR to prevent its activation that is required for tumor
proliferation.71,72 We identified 25 mutations within EGFR binding
sites with lapatinib, suggesting that lapatinib might vary in
effectiveness based on the genomic profile of the patient.

Non-antineoplastic drug binding sites and germline mutation
impact
There are 11 124 amino acid–drug binding sites associated with
200 non-antineoplastic drugs. These 200 non-antineoplastic drugs
can be further categorized into 13 subclasses. Table 1 shows the

Figure 3. DrugVar website browser interface. Users can perform searches using Protein Data Bank (PDB) IDs, gene names, UniProtKB
accessions and drug names or identifiers.

Table 1. Statistical summary of data set based on the anatomical
therapeutic chemical (ATC) classification system

ATC classification Number of
protein

Number of
drug

Cancer drugs
Antineoplastic agents 36 25

Noncancer drugs
Alimentary tract and metabolism 56 36
Blood and blood-forming organs 28 9
Cardiovascular system 43 33
Dermatologicals 23 15
Genitourinary system and sex
hormones

28 17

Systemic hormonal preparations,
excluding sex hormones and insulins

8 4

Antiinfectives for systemic use 11 13
Musculoskeletal system 18 22
Nervous system 26 26
Antiparasitic products, insecticides
and repellents

8 9

Respiratory system 13 5
Sensory organs 9 7
Antidotea 28 4

aAntidote is a subclass of ‘Various’ (ATC Code: V).
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number of proteins and drugs associated with each group
categorized by ATC Classification System. Out of a total of 3133
amino acid variations, 2704 were found on 200 non-antineoplastic
drug target proteins.
There are seven proteins in this data set that have at least seven

drugs that can bind to them. The proteins are androgen receptor
(AR), deoxycytidine kinase (DCK), aldo-keto reductase family 1
member C3 (AKR1C3), aldo-keto reductase family 1 member C2
(AKR1C2), transthyretin (TTR), CA2 and serum albumin (ALB). Most
of them play important roles in drug transportation and in

metabolic pathways. For example, ALB, a major plasma protein
that functions as drug transporter, has 18 drug–protein complex
structures available in PDB and contains 97 amino acid variation
sites within the binding sites for these drugs. Similarly, TTR,
another major drug transporter, also has 11 drug–protein complex
structures available in PDB and contains 39 amino acid variations.
As a drug that binds to the plasma protein will remain in
circulation and only serve as a reservoir before it is unbound from
plasma protein, the binding affinity between the drug and plasma
protein directly influences the biological half-life of the drug. In

Figure 4. Circos plot representing the binding connections between 25 antineoplastic agents and their target proteins. Proteins are presented
with gene names. Ribbon colors are assigned for visualization purposes and the ribbon width indicates the number of target proteins.

imatinibimatinib imatinib

Figure 5. Structural view of protein–drug interactions. (a) Superposition (c-alpha atoms) of imatinib binding to eight target protein X-ray
structures (ABL1, LCK, KIT, NQO2, ABL2, SYK, DDR1 and MAPK14). The superimposed protein structures are colored. The blue to red color
represents low to high conservation. The ligand is shown bound to protein pockets. (b) Imatinib binding to the same target proteins as shown
in (a). Only the side chains of binding sites are shown. (c) Imatinib binding to its target proteins. The side chains of proteins are imatinib
binding sites that are mutated.
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addition, many proteins that are involved in drug metabolic
pathways can bind to multiple drugs and several structures are
available. Cytochrome P450 3A4 (CYP3A4), the major enzyme that
modifies and detoxifies drugs by oxidation reaction in the liver,
has 5 drug-bound protein structures in PDB and contains 28
variations within drug binding sites. Figure 6a shows the binding
of different drugs (bromocriptine, erythromycin, metyrapone,
ritonavir, progesterone) and CYP3A4. The drugs are shown in
magenta color in the protein pocket bound to the amino acid
residues that are shown in cyan and blue color. The blue colors
mean the amino acids are altered because of nsSNV. The heme of
CYP3A4 is marked in yellow. Panels on the top of Figure 6a show
that bromocriptine and erythromycin chemically bind to heme,
whereas panels on the bottom show that metyrapone, ritonavir
and progesterone occupy the pocket without directly binding to
heme. AKR1C2 and AKR1C3, the major enzymes to detoxify
drugs by conjugation reaction, have 10 and 8 target proteins
available in PDB and contain 15 and 20 mutations within protein
binding sites, respectively. For these key proteins, we believe that
the identified mutations on the drug binding sites are one of the
determinants for drug binding affinity and, consequently, the drug
efficacy and toxicity. As an example, Figure 6b shows the
superposition of energy minimized structures for the wild-type

(WT) CA2 bound to lacosamide (PDB: 3IEO) and the mutated
models (N67K, Q92P and F131L) bound to the same drug. Only the
WT (orange color) and mutated residues (cyan color) with the bound
drugs (yellow: WT and green color: mutant) are shown. Because of
the mutations, the drug has to shift from the WT location to another
location in the binding pocket that causes an unfavorable binding
energy by 4 kcal compared with the WT binding. Using the
mutational profile, it is possible to understand the difference
between a drug bound to WT and the mutant protein. Therefore,
the identification of their mutational profile contributes to their
pharmacogenetic and pharmacogenomic characterizations.
In terms of orthlogs of non-antineoplastic drug target proteins,

133 orthologs have been identified with 43 drugs involved.

Identification of paralogs and additional homologs for alternative
drug target discovery
Within the 36 proteins that bind to 25 antineoplastic drugs, 5
proteins have at least one paralog that have the full binding site
conserved. Carbonic anhydrase 5A (CA5A), carbonic anhydrase
5B (CA5B), carbonic anhydrase 7 (CA7) and carbonic anhydrase 13
(CA13) were identified as four paralogs of CA2 that is a target
protein of hydroxyurea, an antineoplastic agent. Figure 7 shows
a model of CA2 and its paralogs CA13 and CA7 binding to
hydroxyurea (magenta color). The three-dimensional structure
shows the consistent binding between side chains of CA2, CA13,
CA7 and hydroxyurea and suggests the potential binding affinity
between CA5B, CA5A and hydroxyurea. In the DrugBank database,
the only listed target for hydroxyurea is ribonucleodise-diphosphate
reductase large subunit (RRM1).73 In PharmaGKB, the only available
target protein of hydroxyurea is mitogen-activated protein
kinase kinase kinase 5 (MAP3K5). Therefore, the data we provide
here are complimentary to what is available on DrugBank,
PharmaGKB and other resources.
In terms of 221 non-antineoplastic drug target proteins, we

identified at least one paralog for 42 of them that have the
drug binding site conserved. CA2 is also a target for non-
antineoplastic drugs. It is part of the CA family and exists along
with several of its family members ubiquitously across various
tissues.74 It is a well-known target for diuretic and glaucoma drugs,
such as ethoxzolamide, acetazolamide and methazolamide.75

However, its existence in vascular tissue also causes hypertension
as a side effect by a number of drugs. Our study shows that CA2
has paralogs CA13, CA5A, CA5B and CA7 that have conserved

bromocriptine
erythromycin

metyrapone ritonavir
progesterone

N67K

Q92P 

F131L

Figure 6. Structural representation of protein–drug binding sites.
(a) Cytochrome P450 3A4 bound to bromocriptine, erythromycin,
metyrapone, ritonavir and progesterone, respectively. The drugs are
shown in magenta color in the protein pocket bound to amino acid
residues that are shown in cyan except the mutated amino acids
marked in blue. The yellow color is the heme of Cytochrome P450
3A4 (CYP3A4). (b) Superposition of energy minimized structures for
the wild-type carbonic anhydrase 2 (CA2) bound to lacosamide
(PDB: 3IEO) and the mutated models (N67K, Q92P and F131L) bound
to the same drug. PDB, protein data bank.

hydroxyurea

Figure 7. Superposition of X-ray crystal structures of carbonic
anhydrase 2 (CA2) and its paralogs (CA13, CA7) bound to
hydroxyurea. The ribbon structure of CA2 and its paralogs is shown
in pink color. The hydroxyurea in the protein pocket is shown in
magenta color bound to amino acid residues that are conserved
across CA2 and its paralogs.
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drug binding sites. Search for druggable paralogs may lead
to structurally modified alternative drugs that target its more
tissue-selective paralogs and show similar pharmacological effect
but less side effect. Roflumilast, another example, shows anti-
inflammatory and anti-modulatory effects in the pulmonary
system by selectively inhibiting phosphodiesterase-4.76 Amino
acid–drug binding data retrieved from PDB show the binding
between cAMP-specific 3',5'-cyclic phosphodiesterase 4D (PDE4D)
and Roflumilast. Our paralogs survey shows that paralogs PDE4A,
PDE4B and PDE4C are potential alternative target proteins.
For additional homolog discovery, a total number of 142 human

homologs of non-human mammalian proteins were identified as
potential drug targets (Supplementary Table S4). Among them, 19
are targeted by antineoplastic drugs and the rest of 123 human
homologs are targeted by non-antineoplastic drugs.

Protein–drug binding affinity ranking
To further estimate the SNVs that may structurally affect protein–
drug binding, we mapped msSNVs affecting within two and five
amino acids upstream and downstream region of all the binding
sites for each protein–drug pair. The results of 407 protein–drug
pairs are shown in Supplementary Table S5. Generally, the number
of binding site affecting SNVs increases proportionally as the
binding region extends from two amino acids to five amino acids.
Table 2 shows the top 10 protein–drug pairs and their somatic

mutations and germline mutations within 2 and 5 amino acids
upstream and downstream of binding sites. For germline mutation
in Table 2, EGFR and tyrosine-protein kinase ABL1 appear to be
two cancer drug target proteins with large number of somatic
mutations within the drug binding region. The high variability of
these two proteins shows potential risk in therapeutics when they
are targeted for cancer treatment.
In addition to SNVs, gene expression changes in specific cancer

types can also affect therapeutic effect.15 In the current protein–
drug pairs that contain somatic mutations within their binding site,
we identified 85 differential gene expression changes associated
with specific cancer types (see Supplementary Table S6).48 Table 3
shows differential gene expression profiles for antineoplastic drug
targets in specific cancer types. For example, KIT is significantly
underexpressed in lung squamous cell carcinoma and colon
adenocarcinoma. When sunitinib is used with normal dose in
targeted therapy in cancer treatment, the therapeutic effect could
be diminished because of the lower expression of target protein
and somatic mutations within the binding sites between sunitinib
and its target protein.

DrugVar access
DrugVar (http://hive.biochemistry.gwu.edu/tools/drugvar) scan
allows users to upload a comma/tab-delimited annotation files
such as those produced by ANNOVAR77 variation annotation

Table 2. Top 10 protein–drug pairs with highest number of somatic mutations and germline mutations within two and five amino acids upstream
and downstream of binding sites

Somatic mutations Germline mutations

UniProtKB Ac Drug name 2-Score 5-Score UniProtKB Ac Drug name 2-Score 5-Score

P00533 Lapatinib 122 191 P69905 L-Methionine 35 62
P00533 Erlotinib 104 171 P19652 Disopyramide 14 16
P00533 Gefitinib 97 153 P10635 Thioridazine 14 18
P15056 Sorafenib 67 108 P00519 Nilotinib 11 15
P00533 Afatinib 37 62 P00519 Imatinib 11 15
P00519 Nilotinib 33 49 P08263 Ethacrynic acid 11 13
P00519 Imatinib 32 49 P00519 Dasatinib 10 22
P00519 Dasatinib 28 44 P02768 Levothyroxine 10 24
P02768 Levothyroxine 24 44 P60022 Glycine 10 20
P00519 Bosutinib 23 44 P00533 Lapatinib 9 13

Table 3. Differential gene expression profiles for antineoplastic drug targets in specific cancer types

UniProtKB Fold change Adjusted

Ac Position Ref Var Drug name P-value Expression Cancer type

P02768 170 H Y Teniposide 9.78 1.4E− 09 Up DOID:3907/lung squamous cell carcinoma
P10721 603 V D Sunitinib − 5.8 1.2E− 03 Down DOID:3907/lung squamous cell carcinoma
P10721 603 V D Sunitinib − 5.8 1.2E− 03 Down DOID:3907/ lung squamous cell carcinoma
P10721 623 K N Sunitinib − 4.66 1.0E− 03 Down DOID:234/colon adenocarcinoma
P10721 623 K N Sunitinib − 4.66 1.0E− 03 Down DOID:234/ colon adenocarcinoma
Q08881 499 S F Sunitinib 4.1 3.1E− 05 Up DOID:3459 / breast carcinoma
P02768 170 H Y Etoposide 9.78 1.4E− 09 Up DOID:3907/lung squamous cell carcinoma
Q15303 799 M L Lapatinib − 10.52 1.4E− 11 Down DOID:4467/renal clear cell carcinoma
P14207 119 R H Pemetrexed − 4.06 5.8E− 05 Down DOID:234/colon adenocarcinoma
P14207 119 R H Pemetrexed − 4.06 5.8E− 05 Down DOID:234/ colon adenocarcinoma
P00918 96 H Q Hydroxyurea − 7.54 3.4E− 05 Down DOID:234/colon adenocarcinoma
P10721 603 V D Imatinib − 5.8 1.2E− 03 Down DOID:3907/lung squamous cell carcinoma
P10721 623 K N Imatinib − 4.66 1.0E− 03 Down DOID:234/colon adenocarcinoma
P07949 756 A V Vandetanib − 8.25 8.4E− 04 Down DOID:234/colon adenocarcinoma

Adjusted P-value is calculated using procedure of Benjamini and Hochberg.
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pipeline and see whether any of the variations can alter any of the
drug binding sites. The interface also supports both protein-based
(UniProtKB accession, PDB ID) and drug-based (DrugBank ID, CAS
ID, CID ID) searches.
There are many more drug–protein interactions than what is

available in structural databases such as PDB. It is expected that
over time, because of structural genomics initiatives, more
structural data will be available. We will update DrugVar at least
once every year to capture all such new data.
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