
fmicb-09-00449 March 15, 2018 Time: 18:0 # 1

MINI REVIEW
published: 19 March 2018

doi: 10.3389/fmicb.2018.00449

Edited by:
Umberto Bertazzoni,

University of Verona, Italy

Reviewed by:
Luc Willems,

Fonds National de la Recherche
Scientifique, Belgium

Donna M. D’Agostino,
Università degli Studi di Padova, Italy

*Correspondence:
Charles R. M. Bangham

c.bangham@imperial.ac.uk

Specialty section:
This article was submitted to

Virology,
a section of the journal

Frontiers in Microbiology

Received: 22 December 2017
Accepted: 27 February 2018

Published: 19 March 2018

Citation:
Kulkarni A and Bangham CRM

(2018) HTLV-1: Regulating
the Balance Between Proviral Latency

and Reactivation.
Front. Microbiol. 9:449.

doi: 10.3389/fmicb.2018.00449

HTLV-1: Regulating the Balance
Between Proviral Latency and
Reactivation
Anurag Kulkarni and Charles R. M. Bangham*

Section of Virology, Division of Infectious Diseases, Department of Medicine, Imperial College London, London,
United Kingdom

HTLV-1 plus-strand transcription begins with the production of doubly-spliced tax/rex
transcripts, the levels of which are usually undetectable in freshly isolated peripheral
blood mononuclear cells (PBMCs) from HTLV-1-infected individuals. However, the
presence of a sustained chronically active cytotoxic T-cell response to HTLV-1 antigens
in virtually all HTLV-1-infected individuals, regardless of their proviral load, argues against
complete latency of the virus in vivo. There is an immediate burst of plus-strand
transcription when blood from infected individuals is cultured ex vivo. How is the HTLV-1
plus strand silenced in PBMCs? Is it silenced in other anatomical compartments within
the host? What reactivates the latent provirus in fresh PBMCs? While plus-strand
transcription of the provirus appears to be intermittent, the minus-strand hbz transcripts
are present in a majority of cells, albeit at low levels. What regulates the difference
between the 5′- and 3′-LTR promoter activities and thereby the tax-hbz interplay?
Finally, T lymphocytes are a migratory population of cells that encounter variable
environments in different compartments of the body. Could these micro-environment
changes influence the reactivation kinetics of the provirus? In this review we discuss the
questions raised above, focusing on the early events leading to HTLV-1 reactivation from
latency, and suggest future research directions.
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INTRODUCTION

Human T-lymphotropic virus type 1 (HTLV-1), also known as Human T-cell leukemia virus
type 1, is a retrovirus that mainly infects CD4+ T-cells in vivo. In ∼5–10% of the infected
individuals, HTLV-1 infection leads to either an aggressive T-cell malignancy, adult T-cell
leukemia/lymphoma (ATL), or a chronic progressive neuro-inflammatory condition called HTLV-
1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Both these conditions have
limited treatment options, and ATL in particular carries a very poor prognosis.

Initial infection is asymptomatic and occurs through breast milk, blood, or semen of infected
individuals (Bangham and Matsuoka, 2017). HTLV-1 replicates in the host through two distinct
routes: (i) Infectious spread: this mode of spread involves productive replication from the
integrated provirus followed by the transfer of newly produced virions through the virological
synapse (Igakura et al., 2003; Pais-Correia et al., 2010). This is the major route of viral spread
in the initial stages of infection when the proviral load – the percentage of infected PBMCs – is
low (Bangham et al., 2014). Infectious spread results in the formation of distinct T-cell clones,
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each clone carrying a single-copy HTLV-1 provirus integrated
in a unique genomic location within the host genome. (ii)
Mitotic spread: proliferation of HTLV-1-infected host cells
results in passive replication of the integrated HTLV-1 provirus
within their genome. The two daughter cells resulting from
mitosis of an HTLV-1-infected parent cell carry the provirus
in the same genomic integration site. In contrast to infectious
spread, the contribution of this mode to the proviral load
in infected individuals may be small in the early stages of
infection but gradually increases during the chronic stage of
infection (Bangham et al., 2014). Although the proviral load in
each host can fluctuate by a small factor (2- to 5-fold) over
time, the proviral loads can vary between infected individuals
by over 1000-fold (Nagai et al., 1998; Demontis et al., 2013).
Individuals with a higher proviral load are at greater risk of
developing either ATL or HAM/TSP (Matsuzaki et al., 2001;
Iwanaga et al., 2010). An infected individual typically carries
about 104 to 105 different T-cell clones, each with a unique
proviral integration site (Bangham et al., 2014). The extent of
proliferation of HTLV-1-infected T-cell clones, and thus their
respective contribution to an individual’s proviral load, both vary
greatly from one clone to another.

A peculiar characteristic of HTLV-1 is the absence of
detectable cell-free virions in infected individuals (Demontis
et al., 2015). HTLV-1 was previously considered to be latent
in infected individuals because there are no detectable plus-
strand viral structural RNA or protein products in the peripheral
blood mononuclear cells (PBMCs) freshly obtained from HTLV-1
infected individuals. Also, HTLV-1 is genetically stable, with
minimal sequence variation over evolutionary time (Gessain
et al., 1992), suggesting that de novo viral replication, which
generates sequence variation, contributes little to the long-
term persistence of HTLV-1 in vivo. However, a sustained
chronically active CTL response to HTLV-1 can be observed
in virtually all infected individuals (Jacobson et al., 1990;
Bangham, 2009). This observation suggests that the host immune
system routinely encounters viral antigens in vivo. Since the
HTLV-1 plus-strand appears to be latent in peripheral blood,
the implication is that plus-strand expression occurs either in
intermittent bursts, or outside the circulation, or both. Thus it is
necessary to understand the determinants of HTLV-1 latency and
reactivation in vivo (Figure 1) to devise effective preventive and
therapeutic approaches against HTLV-1-associated diseases such
as HAM/TSP and ATL.

Proviral Genomic Integration Site
HTLV-1 cannot be looked at in isolation because it is an
inseparable part of the chromatinized host genomic DNA.
Can we predict the behavior of the integrated provirus in
the context of its flanking host genome? HTLV-1 integration
favors transcriptionally active regions of the host genome
(Melamed et al., 2013). Recently, the host enzyme Protein
Phosphatase 2A (PP2A) was identified as a major host co-factor
for the HTLV-1 integrase, which could influence the selection
of genomic integration sites (Maertens, 2016). Furthermore,
plus-strand transcription is silenced when the viral DNA is
integrated downstream of a host gene promoter in the same-sense

orientation, possibly by transcriptional interference (Melamed
et al., 2013). Similarly, the presence of the SWI/SNF-associated
ATPase BRG-1 (identified by chromatin immunoprecipitation)
upstream of the integrated HTLV-1 provirus is associated
with silencing of plus-strand transcription, but its presence
downstream of the HTLV-1 sequence is associated with proviral
plus-strand expression (Melamed et al., 2013). Recently, it
was reported that integration of HTLV-1 in the vicinity of
cancer driver genes causes either premature interruption of
transcription or antisense-dependent cis-perturbation of these
genes, perhaps contributing to leukemogenesis (Rosewick et al.,
2017).

The discovery of a functional CTCF binding site within the
pX region of the HTLV-1 genome adds a new dimension to
the importance of the flanking genome to proviral transcription
(Satou et al., 2016). CTCF is a critical host protein which binds
to an insulator motif in the DNA and appears to limit the
spread of epigenetic modifications (Merkenschlager and Nora,
2016). Consistent with this function, the CTCF binding region
in HTLV-1 is associated with the presence of a sharp epigenetic
border in several histone and DNA modifications. It is possible
that the epigenetic border formed by CTCF binding within the
HTLV-1 provirus allows unhindered minus-strand transcription
while reversibly inhibiting the plus-strand activity. Another
central function of CTCF is the formation of chromatin loops,
which regulate contacts between enhancers and promoters. It
is thus possible that the CTCF bound to the provirus produces
abnormal chromatin loops, resulting in aberrant cellular gene
expression (Cook et al., 2017). Experiments are now in progress
to test these hypotheses. Ultimately, this aberrant gene expression
may be an important factor in the development of ATL.

The Tax-HBZ Interplay
Gene transcription in HTLV-1 progresses in both the sense and
anti-sense directions, governed by promoters in the identical long
terminal repeats (LTRs) situated at each end of the genome.

Plus-Strand Transcription
This is regulated by the TATA-box-containing inducible
promoter in the 5′-LTR (Miyazato et al., 2016). TATA boxes
are frequently observed in promoters of cellular genes which
are highly regulated and responsive to stress and extracellular
signals (Basehoar et al., 2004; Bahrami and Drablos, 2016).
The 5′-LTR contains three tandem 21-bp imperfect nucleotide
repeats called tax-responsive elements (TREs) which bind to the
ATF/CREB family of proteins to activate HTLV-1 plus-strand
transcription (Armstrong et al., 1993). The transactivator
protein Tax, encoded by the pX region of the HTLV-1 genome
by a double-splicing mechanism, is the most potent activator
of plus-strand transcription and initiates a positive-feedback
loop which induces transcription and promotes replication
(Beimling and Moelling, 1992; Anderson and Dynan, 1994). Tax
enhances the binding of CREB to the TRE, thereby promoting
the transactivation of the proviral plus-strand (Suzuki et al.,
1993). In addition to ATF/CREB family, the 5′-LTR also has
binding sites for several major transcription factors, namely
NF-κB, SRF and Sp1, which play direct or indirect roles in
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FIGURE 1 | Determinants of HTLV-1 plus- and minus-strand transcription. A summary of currently known factors that induce (depicted by ) and inhibit (depicted
by ) plus- and minus-strand transcription of the HTLV-1 provirus. Italicized words denote hypothetical factors. The pink arrowhead marks the position of the CTCF
binding site in the provirus.

activating plus-strand transcription (Armstrong et al., 1993).
In addition to Tax, the HTLV-1 pX region encodes another
regulatory protein, Rex, which regulates the stabilization of
unspliced and singly spliced viral mRNAs, their nuclear export
and subsequent effective translation of the viral proteins
(Nakano and Watanabe, 2012). The other HTLV-1 pX region
plus-strand products play accessory roles in vivo: p30 and
p13 promote infectivity in a rabbit model (Bartoe et al., 2000;
Silverman et al., 2004; Hiraragi et al., 2006), and p30 and p12/p8
enhance persistent infection in macaques (Valeri et al., 2010;
Pise-Masison et al., 2014). p13 increases the production of
reactive oxygen species, selectively killing transformed cells,
and may favor persistence in vivo (Silic-Benussi et al., 2010).
However, these genes are not essential for viral replication or
T-cell immortalization (Derse et al., 1997; Robek et al., 1998),
and may not be required for transmission (Furukawa et al.,
2004).

Minus-Strand Transcription
This is initiated at the 3′-end of the provirus and progresses in the
anti-sense direction (Gaudray et al., 2002). It is governed by the
TATA-less promoter in the 3′-LTR (Yoshida et al., 2008), which
contains three TREs and three Sp1 binding sites (Yoshida et al.,
2008; Ma et al., 2016). sHBZ is the major transcript driven by the
3′-LTR.

The interplay between the plus-strand and minus-strand
transcription is a critical and poorly understood aspect of the
HTLV-1 life cycle. We infer that Tax expression in vivo is
intermittent and highly regulated as it is a very immunogenic
protein (Jacobson et al., 1990; Parker et al., 1992). There is
no detectable plus-strand gene expression in freshly isolated

PBMCs from HTLV-1 infected individuals (Kinoshita et al., 1989;
Rende et al., 2011). HBZ, in contrast, is poorly immunogenic
and is expressed at a very low level; however, the presence
of a detectable cytotoxic T-lymphocyte (CTL) response to
HBZ is associated with a lower proviral load (MacNamara
et al., 2010). This constant, low-level hbz mRNA expression
is thought to be necessary for the persistence of HTLV-1
in vivo: hbz expression can be observed in all HTLV-1-
infected individuals, including those with HAM/TSP and ATL
(Yoshida et al., 2008). Tax and HBZ have strong effects on
a number of cellular processes and signaling cascades (Ma
et al., 2016); the effects of the two proteins frequently act in
opposition. Certain transcription factors including TCF1 and
LEF1 inhibit plus-strand transcription from the 5′-LTR while
simultaneously enhancing minus-strand transcription from the
3′-LTR (Ma et al., 2015). In contrast, the histone deacetylase
inhibitor (HDACi) valproate activates plus-strand transcription
while inhibiting expression of the minus-strand (Lezin et al.,
2007; Belrose et al., 2011; Olindo et al., 2011). It is also
known that Tax activates minus-strand transcription through
binding of the TREs in the 3′-LTR (Landry et al., 2009).
Recently, it was shown by single-molecule RNA-FISH that, at
a single-cell level, both plus- and minus-strand transcription
occurs in bursts, albeit at different times and intensities.
HTLV-1 plus-strand mRNA transcription is enhanced in the
absence of minus-strand transcripts, while high-level plus-
strand transcription promotes transcription from the minus-
strand (Billman et al., 2017), generating a putative negative
feedback inhibition of plus-strand expression. Until now,
it was believed that all HTLV-1-infected cells express hbz
mRNA at all times; however, this study showed that, in
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naturally-infected T-cell clones isolated by limiting dilution
from HTLV-1-infected individuals, not all HTLV-1-infected cells
in each clone are hbz positive (Billman et al., 2017) at a
given time. Many questions remain unanswered. Most hbz
transcripts were found in the nuclei of cells, consistent with
previous observations (Rende et al., 2011) and with the low
level of protein expression of HBZ (Shiohama et al., 2016). HBZ
protein inhibits tax expression by competing for binding of the
transcription co-factor CREB (Gaudray et al., 2002; Lemasson
et al., 2007; Clerc et al., 2008). However, since HBZ protein
is expressed at such a low level in naturally-infected cells, the
importance of this mechanism is uncertain (Shiohama et al.,
2016).

These observations raise important questions: does hbz
RNA also inhibit tax expression? What are the factors that
regulate minus-strand transcriptional bursts? It has been shown
that Sp1 co-operates with JunD to activate minus-strand
transcription, but how and when this happens in the context
of the cell cycle and viral replication are still unknown (Gazon
et al., 2012). Recently, Billman et al. (2017) showed at the
single cell level, in naturally-infected HTLV-1 positive T-cell
clones, that cells in S and G2/M phase of the cell cycle
have elevated tax and hbz mRNA levels, suggesting that the
cell cycle plays a role in regulating HTLV-1 transcription. It
is now becoming clear that the results of population-level
analyses can mask strong single-cell heterogeneity within the
population.

Epigenetic Regulation of HTLV-1
Transcription
Small-molecule inhibitors targeting epigenetic enzymes have
been widely used in HIV latency research. Indeed, reactivation
of the latent HIV-1 provirus occurs in response to HDACi
[e.g., suberanilohydroxamic acid (SAHA)], DNA methylation
inhibitors (e.g., 5-azacytidine) and histone methyltransferase
inhibitors (e.g., the EZH1/2 inhibitor GSK343) (Spina et al.,
2013; Tripathy et al., 2015). Similarly, in the case of HTLV-1,
the HDACi valproate and DNA methyltransferase inhibitor
5-azacytidine have been shown to activate the latent HTLV-1
provirus (Koiwa et al., 2002; Belrose et al., 2011). These
observations suggest that epigenetic modulations in the
promoters, enhancers and gene bodies of the integrated
provirus play an important role in proviral transcription.
Cytosine methylation of the 5′-LTR of HTLV-1 is associated
with silencing of plus-strand transcription; the degree of this
5′-LTR methylation varies from individual to individual, whereas
the 3′-LTR is unmethylated in most individuals (Taniguchi
et al., 2005), consistent with the constitutive activation of the
promoter in the 3′-LTR. However, it is unclear how dynamic
the DNA methylation pattern of the provirus is. It is unlikely
that the highly regulated promoter in the 5′-LTR of HTLV-1
would rely primarily on DNA demethylation for its reactivation.
Data are needed on the extent of DNA methylation during
bursts of gene expression from the plus-strand and minus-
strand, and whether this methylation is a cause or an effect of
promoter activation. Activation of plus-strand transcription
is associated with Tax-mediated recruitment of pCREB and

CBP/p300, resulting in histone acetylation and nucleosomal
remodeling through BRG-1-containing SWI/SNF complexes
(Sharma and Nyborg, 2008; Easley et al., 2010). Similarly,
HTLV-1 plus-strand transcription is associated with a significant
increase in the activatory histone epigenetic modifications
H3K4me3 and H3K36me3 in different regions of the HTLV-1
provirus (Kulkarni et al., 2017). It is likely that, as in host gene
expression, many epigenetic modifications are a cause as well
as consequence of viral reactivation. Most of the epigenetic
studies carried out so far have been in in vitro cellular models
where Tax expression is the primary mechanism of 5′-LTR
activation through a positive feedback loop. However, evidence
from freshly isolated PBMCs from HTLV-1-infected individuals
indicates that there is little or no Tax protein expression
in vivo at steady state. Hence, it is important to examine
the earliest epigenetic changes that occur at the provirus in
freshly isolated PBMCs from HTLV-1-infected individuals to
provide clues to the changes that occur in vivo. It is still unclear
what primarily reactivates plus-strand transcription in ex vivo
PBMCs from HTLV-1-infected individuals. The answer to this
conundrum may elucidate the key question – what regulates
the rapidly reversible silencing of plus-strand transcription
in vivo?

Metabolic Regulation of HTLV-1
Transcription
The metabolic and functional activities of circulating PBMCs
depend directly on their micro-environment. What effects do
metabolic changes have on the integrated HTLV-1 provirus
within these cells? We recently showed that HTLV-1 reactivation
from latency is severely limited in the absence of glucose
in the surrounding medium (Kulkarni et al., 2017). In
support of this conclusion, we found that PBMCs treated
with glycolysis inhibitors – and to a lesser extent with
mitochondrial electron transport chain (ETC) inhibitors – show
a significant impairment in HTLV-1 plus-strand transcription
when they are cultured ex vivo. The importance of glucose
in the HTLV-1 life cycle is emphasized by the fact that the
glucose receptor GLUT-1 is a cellular receptor for HTLV-1
(Manel et al., 2003). Surprisingly, drugs that inhibit or
stimulate the TCA cycle do not alter HTLV-1 transcription
(Kulkarni et al., 2017). Indeed, it is known that different
subsets of T-cells use distinct metabolic pathways to satisfy
their energy requirements (Dimeloe et al., 2017). How glucose
metabolism influences HTLV-1 reactivation from latency is
not known. A plausible explanation is that inhibition of
glycolysis or the mitochondrial ETC reduces the availability
of Acetyl CoA and ATP. Acetyl CoA is an important acetyl
group donor in the process of histone acetylation, which
is associated with transcriptional activation. Similarly, the
SWI/SNF family of chromatin-remodeling complexes such as
BAF and PBAF rely on energy in the form of ATP for
their nucleosomal remodeling function. It has been shown
before that HTLV-1 plus-strand activation is intimately linked
with histone acetylation and chromatin remodeling at the
5′-LTR promoter (Easley et al., 2010; Nyborg et al., 2010).
Another important question that arises from these results is
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the possible impact of high blood glucose levels on HTLV-
1 replication. Do HTLV-1-infected individuals with poorly
controlled diabetes have a higher proviral load of HTLV-1,
resulting in a significantly higher risk of HTLV-1-associated
diseases such as HAM/TSP or ATL? Further work is needed
to clarify the cause and effect relationships between metabolic
activity and proviral activation in HTLV-1-infected primary
CD4+ T-cells.

Anatomical Regulation of HTLV-1
Transcription
Lymphocytes are constantly exposed to highly variable stresses
during circulation through different body compartments. As
mentioned above, HTLV-1 appears to be latent in freshly
isolated PBMCs from the peripheral blood of HTLV-1
infected individuals. The presence of a chronically active
CTL response to HTLV-1 in all infected individuals raises
the possibility that HTLV-1 expression is more frequent in
different compartments like the bone marrow, lymph, and
lymph nodes (Bangham, 2008). Also, Yasunaga et al. (2016)
found that tax transcription in the bone marrow of STLV-1-
infected Japanese macaques was significantly higher than that
in other tissues. One factor that differs significantly between
these compartments is the oxygen tension. While the lymph,
lymph nodes, and bone marrow are highly hypoxic (∼1%
oxygen), PBMCs in peripheral venous blood are exposed to
significantly higher levels of oxygen (∼6–10%) (Tsai et al.,
2004; Hangai-Hoger et al., 2007). We recently reported that,
in primary PBMCs isolated from HTLV-1 infected individuals,
physiological hypoxia (∼1% oxygen) enhances plus-strand
HTLV-1 transcription (Kulkarni et al., 2017). Again, further
work is needed to identify the molecular mechanism of
this effect, and the consequences of this observation on the
establishment and spread of viral infection within and between
individuals.

SUMMARY

The transcriptional regulation of the plus- and minus-strands of
HTLV-1 is affected by a number of virus-specific and host-specific
factors. Advances in single-cell genomics and transcriptomics
have made it possible to study HTLV-1 infection at the single-
cell level. We anticipate that these approaches will shed light
on the effect of cellular heterogeneity on viral replication and
help identify novel mechanisms that were missed by earlier
studies which depended on population-level analyses. Precise
identification of the molecular mechanisms involved in HTLV-1
reactivation from latency would help us design and test novel
therapeutic strategies to reduce the disease burden associated
with this infection.
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