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Abstract

In recent neuroimaging studies, threshold-free cluster enhancement (TFCE) gained

popularity as a sophisticated thresholding method for statistical inference. It was

shown to feature higher sensitivity than the frequently used approach of controlling

the cluster-level family-wise error (cFWE) and it does not require setting a cluster-

forming threshold at voxel level. Here, we examined the applicability of TFCE to a

widely used method for coordinate-based neuroimaging meta-analysis, Activation

Likelihood Estimation (ALE), by means of large-scale simulations. We created over

200,000 artificial meta-analysis datasets by independently varying the total number

of experiments included and the amount of spatial convergence across experiments.

Next, we applied ALE to all datasets and compared the performance of TFCE to both

voxel-level and cluster-level FWE correction approaches. All three multiple-

comparison correction methods yielded valid results, with only about 5% of the sig-

nificant clusters being based on spurious convergence, which corresponds to the

nominal level the methods were controlling for. On average, TFCE's sensitivity was

comparable to that of cFWE correction, but it was slightly worse for a subset of

parameter combinations, even after TFCE parameter optimization. cFWE yielded the

largest significant clusters, closely followed by TFCE, while voxel-level FWE correc-

tion yielded substantially smaller clusters, showcasing its high spatial specificity.

Given that TFCE does not outperform the standard cFWE correction but is computa-

tionally much more expensive, we conclude that employing TFCE for ALE cannot be

recommended to the general user.
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1 | INTRODUCTION

Task-based functional magnetic resonance imaging (fMRI) is a major

approach in modern neuroimaging research. Measuring hemodynamic

responses to experimental tasks allows researchers to map mental

processes and functions to specific brain regions. While this approach

enabled important insights into the functional organization of the

brain, it comes with its own problems and pitfalls, which ultimately

contribute to the current reproducibility crisis in science (Baker, 2016;

Bossier et al., 2020; Turner et al., 2018). For instance, many task-fMRI

studies are underpowered, featuring a large number of dependent

variables and a comparatively low number of participants or observa-

tions. This limits the generalizability of findings, and any effects

reported tend to overestimate the true population effect (Cremers

et al., 2017). Further, there is great experimental flexibility in setting

up studies that are supposed to investigate the same mental function

coupled with analytical flexibility, which refers to the variability in data

analysis workflows employed across the world to preprocess and ana-

lyze datasets. A recent study (Botvinik-Nezer et al., 2020) exemplified

the impact of this latter aspect by showing that no two teams out of a

pool of 70 independent research teams used identical processing

pipelines for analyzing the same dataset with respect to the same

9 ex-ante hypotheses, leading to rather heterogeneous results.

A way to elegantly deal with the problems mentioned above are

meta-analyses, offering a synthesis of findings across paradigms and

processing pipelines and thereby allowing more conclusive inference,

even if the average power level of the included studies was question-

able (Botvinik-Nezer et al., 2020; Cremers et al., 2017; Eickhoff

et al., 2016; Wager et al., 2007). For synthesizing the task-fMRI litera-

ture, coordinate-based meta-analyses (CBMA) are especially useful as

they summarize findings via aggregating peak coordinates reported in

standard stereotaxic space. Although this leads to a rather sparse rep-

resentation of published results, including a lack of information on the

strength of the evidence, it also allows CMBAs to integrate the largest

part of the literature because standardized peak coordinates are

reported in almost all task-fMRI publications.

Activation-Likelihood Estimation (ALE) is one of the most com-

mon methods for CBMA, being used in over 100 published studies

each year since 2011. It is part of the BrainMap software suite

(http://brainmap.org/ale; Laird et al., 2009; Laird et al., 2005) as Gin-

gerALE and available for Python users as part of the NiMARE package

(https://nimare.readthedocs.io). ALE enables the synthesis of findings

across neuroimaging studies by modeling reported activation coordi-

nates (foci) as probability distributions, thereby taking into account

spatial uncertainty inherent to macroscale neuroimaging (Eickhoff

et al., 2009). Originally introduced in 2002 (Turkeltaub et al., 2002),

ALE has since undergone extensive evaluations and improvements in

regard to statistical soundness (Acar et al., 2018; Eickhoff et al., 2009;

Eickhoff et al., 2012; Turkeltaub et al., 2012). In 2016, Eickhoff et al.

used a large-scale simulation set-up to evaluate four different

approaches to multiple comparison correction in an ALE setting. In

accordance with previous neuroimaging literature, they found both

the reporting of uncorrected results and usage of false-discovery rate

correction to be inappropriate (Chumbley & Friston, 2009; Makin &

de Xivry, 2019). Correcting for the family-wise error rate at voxel level

(vFWE) was found to be valid but very conservative, while cluster-

level family-wise error correction (cFWE) showed the best overall per-

formance and was therefore recommended as the approach of choice.

In recent years threshold-free cluster enhancement (TFCE), a new

technique to correct for alpha error inflation from multiple compari-

sons, has been rising in popularity (Han et al., 2019; Lett et al., 2017).

TFCE enhances raw statistic images and aims to emphasize regions

that show extended cluster-like activations, using spatial neighbor-

hood information. It does so by calculating the product of cluster sizes

at a large range of thresholds with the corresponding voxel-level acti-

vation heights and summing the results over all thresholds. In contrast

to cFWE correction, this allows TFCE to work without a single, preset

cluster-forming threshold. Even though both cluster extent and image

height get raised to the power of two free parameters (E and H,

respectively), theoretical analysis, and empirical results have shown

that they can be seen as fixed values (Smith & Nichols, 2009). TFCE

and cFWE also differ in that, by design, only rather large clusters sur-

vive cFWE correction, while TFCE can theoretically yield single signifi-

cant voxels. This can be seen as an advantage for cFWE, allowing for

easier interpretation, but also as a disadvantage, because spatially

restricted but valid effects (e.g., in anatomically small structures) could

be missed. Furthermore, TFCE performs much better when the

assumption of signal stationarity has been violated (Salimi-Khorshidi

et al., 2011; Spisak et al., 2019), which is a very common feature of

neuroimaging where signal and noise levels are not consistent

throughout the cortex. Most importantly, though, TFCE has been

shown to be more sensitive than cFWE in numerous individual stud-

ies, especially when dealing with strong focal signals (Han et al., 2019;

Li et al., 2017; Noble et al., 2020; Smith & Nichols, 2009; Spisak

et al., 2019). These findings strongly suggest using TFCE as a means

to correct for multiple comparisons in ALE settings as well. We, there-

fore, sought to comprehensively evaluate and compare TFCE perfor-

mance to other standard corrections methods, namely vFWE and

cFWE. We used a large-scale simulation approach, similar to the one

employed by Eickhoff et al. (2016), running over �200,000 distinct

ALE analyses based on simulated datasets. We then applied TFCE,

cFWE, and vFWE corrections to improve statistical inference and

assessed the three methods via a multitude of evaluation outcomes,

namely sensitivity, susceptibility to spurious convergence, and the

resulting cluster size.

2 | METHODS

Our simulation study consisted of four sequential steps: (1) creating

artificial datasets based on empirically derived parameters and ran-

dom sampling, (2) performing ALE analysis on each dataset,

(3) applying three different thresholding techniques to the results to

correct for multiple comparisons, and (4) evaluating the perfor-

mance of the thresholding techniques based on various outcome

measures. As a note on terminology, we here will use the terms
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“experiment” and “paper” when referring to a particular experimen-

tal contrast versus an entire published scientific work (possibly

reporting results of multiple experiments), respectively, avoiding the

ambiguous word “study,” which could be used to describe both

concepts.

2.1 | Artificial datasets

The first step to run large-scale ALE simulations was to create artificial

meta-analysis datasets, aiming to represent naturalistic datasets as

well as possible. As in any real meta-analysis, the dataset was filled

with different experiments, but here each experiment's characteristics

and “results” were randomly generated following certain boundary

conditions (Figure 1). Both the experiment's sample size and the num-

ber of foci reported for a given experiment were randomly sampled

from the BrainMap database. This database contains meta-data and

result coordinates of thousands of fMRI experiments and therefore

serves as a good approximation of the distribution of parameter

values encountered when putting together a real-life meta-analysis

dataset. We filtered the BrainMap database to only include normal

mapping experiments conducted in adult samples. Additionally, we

excluded all experiments with less than 8 or more than 50 participants

and those for which more than 20 foci were reported. This left us with

just over 6000 eligible experiments (number of participants per exper-

iment: M = 15.56, SD = 6.31; number of reported foci per experi-

ment: M = 10, SD = 5.15). Note that we only sampled the number of

reported foci per experiment from the database and not the actual

coordinates reported in the database. These were instead uniformly

sampled from a relatively lenient gray-matter mask based on the

ICBM tissue probability maps (>10% probability for gray matter; Evans

et al., 1994).

The random generation of experiments was then used to fill artifi-

cial datasets. We systematically evaluated the effects of sample size

and degree of convergence across datasets on ALE results by varying

two parameters:

F IGURE 1 Simulation of an experiment. Two independent draws from the filtered Brainmap database were used to determine the sample
size and the number of foci reported by the experiment. Next, we sampled the corresponding number of coordinates from a lenient gray-matter
mask. Last, the first coordinate got replaced by the true coordinate multiplied with a displacement factor. This last step only happened if the
experiment was an experiment activating the target location
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1. Number of experiments:

We ran ALE meta-analyses on datasets containing between 15 and

45 experiments, instead of 5–30 as in Eickhoff et al. (2016), because

Eickhoff et al. (2016) showed that when using the current standard

thresholding approach, meta-analyses of less than 17 experiments

are easily underpowered and overly influenced by single experiments.

Additionally, we ran analyses on three substantially greater dataset

sizes (n = 75, 100, or 150) to evaluate the behavior of multiple-

comparison correction techniques in larger-scale ALE analyses.

2. Number of “true activations”
The key question addressed by neuroimaging meta-analyses is how

much agreement there is between studies regarding the activation of

a given brain location. In simulations, of course, this true activation

location is defined in advance and so is the number of simulated

experiments that contain a focus at this ground-truth location. In our

case we chose a voxel in the left motor cortex (�30/�26/58 MNI

space), purely based on later ease of visualization. To create a more

realistic representation of true activation, the reported foci were not

all located precisely at the same coordinate, but rather in the vicinity

of the “true” location, displaced by virtue of a spread distribution

devised and tested by Eickhoff et al. (2016). This spread distribution

was based on the analysis of 15 hand-coded datasets and 105 datasets

automatically extracted from the BrainMap database. Eickhoff

et al. (2016) performed ALE analyses on all datasets, identified peaks

in the resulting Z-maps and checked the distance of contributing foci

to the corresponding peaks. Using this distribution of distances to dis-

place the true activations, we ensured that the simulated data mirrored

“real” data as well as possible. To independently assess the effect of

the size of spread around the “true” location, we ran supplementary

analyses in which the displacement was multiplied by a factor between

0.5 and 1.5 (number of studies = 30; experiments activating the target

location = 2–10). In contrast to Eickhoff et al., we investigated a range

from 0 to 10 experiments activating the target location (instead of 1–

10). By including zero true convergence, we aimed to get a better esti-

mate of the performance of the multiple-comparison correction

methods when confronted with spurious activation only. Including sce-

narios of convergence across more than 10 studies was shown to be

unnecessary by Eickhoff et al., as both cFWE and vFWE corrections

achieved near-perfect detection rates already when 10 studies acti-

vated the simulated target location.

Varying these two parameters gave us a total of 341 combinations

for which we created 500 datasets each to account for the random

sampling in experiment generation. This resulted in 170,500 datasets

being generated for the main analysis. Taken together with all supple-

mentary analyses, which included another 84,400 datasets, we ana-

lyzed a total of 254,400 datasets.

2.2 | ALE and multiple-comparison correction

We ran ALE analyses on all datasets and tested for statistical

significance using voxel- or cluster-level FWE (cluster-forming

threshold p <.001) correction at p <.05 as well as TFCE (E = 2,

H = 0.5) corrected at p <.05. All three methods are based

on permutation testing to determine a threshold value as

follows:

1. An empty version of the current dataset (i.e., featuring a given

number of experiments, each with a given number of subjects and

foci) was filled with random foci sampled from the ICBM gray-

matter mask.

2. ALE was run on it.

3. We saved the highest ALE value (vFWE), the size of the biggest

cluster with a cluster-forming threshold of p <.001 (cFWE), and the

highest TFCE value.

4. Steps 1–3 were repeated 10,000 times.

This gave us a distribution of maximum values under the assump-

tion of spatial independence, from which we selected the value rep-

resenting the 95th percentile as a significance threshold for the

results of the original analysis. This way a family-wise error rate of 5%

was established.

For datasets of n = 30 studies, we performed additional explor-

atory analyses looking at TFCE parameter combinations between

E = [1.8, 2.0, 2.2] and H = [0.3, 0.5, 0.7] to assess the impact of these

settings on statistical inference.

All analyses were run with a new implementation of the ALE

algorithm in Python (https://github.com/LenFrahm/pyALE), the

results of which were confirmed to be identical to those obtained

with the original version implemented in Matlab as used in

Eickhoff et al. (2016). TFCE was independently implemented to

extend the original ALE implementation, according to the descrip-

tion provided by Smith and Nichols (2009) and taking inspiration

from a python-based implementation publicly available on GitHub

(https://github.com/Mouse-Imaging-Centre/minc-stuffs/blob/

master/python/TFCE).

2.3 | Outcome measures

We first compared the thresholding methods based on their sensitiv-

ity, which describes the method's power to find convergence when

more than one study activates the target location. Sensitivity was

quantified by the average rate of significant findings in a 4 mm radius

around the “true location” over the 500 iterations of each parameter

combination and should be high. The opposite outcome measure to

sensitivity is the susceptibility to spurious convergence, which is

measured by the average rate of significant clusters outside of a

4 mm radius around the “true location” over the 500 iterations of

each parameter combination. Such clusters reflect the chance of inci-

dental convergence under the known spatial independence of results,

which should be as low as possible. The next outcome measure was

cluster size, which is quantified by the average size of significant clus-

ters that includes the location of true activation. Lastly, we looked at

computational efficiency, measured by the time it takes for a single
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null permutation to be calculated for each thresholding methods,

averaged over 50 permutations for each of the 30 dataset sizes we

looked at.

3 | RESULTS

3.1 | ALE scores and p-values

We examined the maximum ALE score and p-value in a 4-mm radius

around the chosen true location as a function of the total number of

experiments and the number of experiments activating the target

location (Figure 2). ALE scores increase with more experiments acti-

vating the target location, while p-values decrease. Even though we

analyzed a parameter range that slightly differed from Eickhoff

et al.'s (2016), we observed very similar patterns. Especially in the

larger meta-analysis datasets (30–45 studies) included here, we

observed that the trends for ALE score and p-values described by

Eickhoff et al. held up well.

3.2 | Sensitivity

To find out if there is any added value in using TFCE, as compared to

cFWE or vFWE correction, we examined the sensitivity of each

method. As can be seen in Figure 3, cFWE correction performs best

overall, closely followed by TFCE, whereas vFWE shows notably

lower sensitivity than the other two. Upon closer examination of the

difference between cFWE and TFCE corrections, it becomes clear

that cFWE on average performs better between four and eight experi-

ments activating the target location. The reason for this is that sensi-

tivity is close to zero for n <4 experiments activating the target

location and close to one for n >8 experiments activating the target

location. The only range where methods can outperform each other is

F IGURE 2 Behavior of ALE scores and the corresponding p-values under the different levels of the two simulation parameters (number of
experiments and number of experiments activating the target location) and their 341 combinations. The total number of experiments included in
the ALE analysis is color coded in a spectral sequence from 15 experiments (purple) to 45 experiments (red). (a) Average ALE-score (over
500 iterations) at the ground-truth location. ALE scores increased linearly as a function of the number of experiments activating the target
location but also with the total number of experiments due to the increased chance of (positive) interference by noise foci. (b) Average p-value
over 500 iterations at the ground-truth location. p-values decreased with a higher number of experiments activating the target location. p-values
increased with the total number of experiments because of a right shift of the null-distribution. (c) ALE scores versus p-values at the ground-truth
location for all 170,500 simulations. The more experiments are included in an ALE analysis, the more convergence (higher ALE score) was needed
to obtain the same p-values.
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in the rising part of the sigmoid. When looking at sensitivity for each

dataset in this range individually cFWE and TFCE performed equally

in 94% of datasets, cFWE outperformed in 4.3% of datasets, and

TFCE in the remaining 1.7%.

3.3 | Cluster size

The size of the cluster of voxels considered significant is strongly

influenced by both the total number of experiments and the number

of experiments activating the target location, but in different direc-

tions. We observed smaller significant clusters with a higher total

number of experiments due to stricter significance thresholds

resulting from the permutation test. In contrast, having more experi-

ments activating the target location led to bigger clusters, because of

the higher probability of larger displacement around the true activa-

tion location.

Using cFWE correction yielded the largest significant clusters,

while vFWE correction yielded the smallest, which is in accordance

with the findings of Eickhoff et al. (2016). TFCE performed more similar

to cFWE than to vFWE but still showed noticeably smaller clusters than

did cFWE, especially at lower true activation numbers (Figure 4). Taking

together the results on sensitivity and cluster size, it appears that TFCE

is not more likely to detect smaller clusters but just yields smaller clus-

ters for the given level of convergence, relative to cFWE correction.

3.4 | Susceptibility to spurious convergence

The next measure we compare the three multiple comparison correc-

tion methods on was their susceptibility to spurious convergence. As

can be seen in Figure 5, all three multiple-comparison correction

methods showed an average level of spurious convergence of around

0.05. This is exactly what was expected given the fact that we

F IGURE 3 (a–c) Sensitivity of ALE when applying different multiple-comparison correction methods for statistical inference. The number of
experiments activating the target location is represented on the x-axis, while each total number of experiments has its own curve in the graph
following a spectral color sequence (15—purple; 45—red). The curves show the average sensitivity over the 500 iterations of each parameter
combination. For all three methods, sensitivity increased in an approximately sigmoid fashion as a function of the number of experiments
activating the target location. Additionally, having more experiments in the dataset required having more experiments activating the target
location to achieve the same sensitivity. (d) Zooming in on the difference in sensitivity between cFWE correction and TFCE: The differences
between individual dataset sizes are displayed in gray and the average over all dataset sizes in red. cFWE correction performed better on average,

especially between 4 and 8 experiments activating the target location. There were a few dataset sizes in which TFCE has a slight sensitivity
advantage at 3–4 experiments activating the target location.
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controlled the family-wise error rate to be 5% with all three methods.

As described above, this was done by virtue of calculating a permuta-

tion null-distribution of ALE scores and selecting a threshold for which

only 5% of random simulations feature more extreme values, which

corresponds to the likelihood observed here.

3.5 | Supplementary analyses

To further substantiate our simulation results we ran additional ana-

lyses examining larger datasets, different parameter settings for TFCE,

as well as varying the size of spread around the “true” location. When

applying ALE to datasets of 75, 100, or 150 experiments, respectively,

we observed sensitivity patterns that corresponded to the ones found

in the main analysis: cFWE correction performed slightly better than

TFCE, and vFWE correction performed least well (Figure 6a).

The TFCE parameter testing confirmed previous literature by

showing that the standard parameter setting (H = 2, E = 0.5) per-

formed best in almost every scenario, and the previously rec-

ommended parameter values should therefore be considered optimal

for ALE analyses, too (Figure 6b).

As a last supplementary analysis, we multiplied the displacement

around the “true location” by a factor between 0.5 and 1.5 with 0.1 incre-

ments. Sensitivity of TFCE improved slightly at lower displacements, while

cFWE correction performed comparatively better at higher displacements.

The general sensitivity patterns remained the same as in themain analysis.

F IGURE 4 (a–c) Cluster size of statistically significant areas of convergence that include at least one voxel in a 4-mm radius around the true
location, under the different levels of the two simulation parameters (number of experiments and number of experiments activating the target
location) and their 341 combinations. The number of experiments activating the target location was strongly positively correlated with cluster
size, while the total number of experiments showed a negative correlation. cFWE correction featured the largest clusters closely followed by
TFCE. The clusters declared significant by vFWE correction were exceedingly small in comparison. (d) Zooming in on the difference in cluster
sizes between cFWE and TFCE corrections, it can be observed that the difference became more pronounced with fewer experiments activating
the target location. This is because cFWE correction will always only result in relatively large clusters, while TFCE can potentially yield single
significant voxels. This difference was more pronounced at lower convergence levels.
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3.6 | Computational efficiency

An important aspect in evaluating the usefulness of statistical

methods is assessing how computationally expensive (i.e., time

intensive) they are. TFCE turned out to be the by far computation-

ally most expensive option (Figure 7). Calculating a single TFCE

null permutation took about 1.62 s (SD = 0.118), averaged over

50 repetitions of each dataset size (15–45). Comparing this to

vFWE (M = 0.178 s, SD = 0.069) and cFWE (M = 0.233 s,

SD = 0.070), TFCE took approximately 7–9 times longer for each

permutation. As even a standard ALE analysis will require about

10,000 permutations for a robust estimation of the null distribu-

tion, this could become burdensome for everyday research

practice.

F IGURE 5 The likelihood of additional significant clusters as a function of the number of experiments activating the target location, averaged
across the total number of experiments (blue line). As can be seen, all three multiple-comparison correction methods largely succeeded at
controlling for an alpha error of .05.

F IGURE 6 (a) Sensitivity of ALE in a large-scale meta-analysis setting when applying different multiple comparison correction methods for
statistical inference. The general trend observed in the main simulations holds for large-scale datasets as well. Sensitivity increased as a function
of experiments activating the target location in a sigmoid fashion and the lower the rate of experiments activating the target location is in
comparison to the total number of experiments, the lower sensitivity became. Lower right: Zooming in on the difference between cFWE and
TFCE corrections: Even though TFCE performed slightly better at 7 and 8 experiments activating the target location for datasets including
150 studies, cFWE showed higher sensitivity on average. (b) Sensitivity of ALE corrected with TFCE using different parameter levels for the E and
H exponent looking at a dataset of n = 30 experiments. The standard setting (indicated in red), described in the literature as a fixed setting, is
H = 2 and E = 0.5. We used combinations of H = [1.8, 2.0, 2.2] with E = [0.3, 0.5, 0.7] (indicated in gray) to see if other values would improve
performance. Overall, the standard parameter setting performed best or at least on par with other parameter settings.
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4 | DISCUSSION

This study aimed to compare the performance of TFCE, as a means to

correct for alpha error inflation in multiple statistical comparisons, to

the current standard methods employed in the context of ALE meta-

analyses. To achieve this, we created 170,500 unique datasets com-

prising between 15 and 45 experiments each, of which 0 to 10 experi-

ments featured an activation focus close to a target location chosen

beforehand as the location of ground-truth. Running ALE on these

datasets, we found that on the most important metric, sensitivity,

TFCE performed on average at best equally well as cFWE and most of

the time slightly worse. This performance difference was also found in

larger datasets (75, 100, or 150 experiments) and was not reduced by

varying TFCE parameters. Furthermore, TFCE was found to be highly

computationally expensive, taking up about 70% of the computation

time used for all simulations.

4.1 | TFCE versus cFWE

Evaluating TFCE in an ALE setting, we found TFCE to perform very

well, featuring high sensitivity at an expected level of susceptibility to

spurious convergence. When comparing TFCE to the other

established methods, TFCE was more sensitive than vFWE correction

and very similar to cFWE correction in terms of sensitivity. However,

when looking at the differences between TFCE and cFWE correction

in more detail, it can be seen that on average cFWE correction

showed a higher power to detect the true effect, especially in the

range of four to eight experiments activating the target location. It

has to be noted though that in around 1.5% of datasets TFCE was

able to detect the true effect, while cFWE did not. In certain situa-

tions, it might therefore be beneficial for the researcher to additionally

apply TFCE to check for clusters of activation. The exact conditions

for these situations will need to be explored by future research.

Applied to simulated ALE results, TFCE's performance has fallen

a little bit short of the expectations raised by the current neuroimag-

ing literature. In a methodological comparison by Noble et al. (2020),

examining the sensitivity of cFWE correction and TFCE in resampled

data from the Human Connectome Project (Van Essen et al., 2013),

it was found that TFCE achieved approximately double the sensitiv-

ity of cFWE. This superiority of TFCE was also reported in other

recent methodological papers (Chen et al., 2018; Han et al., 2019).

The reason for the subpar performance of TFCE in the context of

ALE analyses, in comparison to the literature, is not completely clear

but we can offer two hypotheses. One possible explanation is the

fact that due to the Gaussian modeling included in the ALE algo-

rithm, there will be no highly focal signals in the resulting statistical

images, the proper consideration of which is supposed to be a par-

ticular strength that TFCE has over cFWE (Smith & Nichols, 2009).

The other option is that TFCE might not deal well with the sparsity

of input, namely the peak coordinates, which form the basis of

any CBMA.

4.2 | Comparison to previous ALE simulation

In 2016, Eickhoff and colleagues were the first to employ a large-scale

simulation approach to quantify performance of multiple-comparison

correction methods in an ALE setting. The current study showed very

similar ALE behavior patterns and reproduced the relative difference

in performance between cFWE and vFWE corrections. This corrobo-

rates the robustness of the simulations and ALE in general as there

were several differences between this study's design and the one

used in 2016, as detailed below:

1. Here, we used a different range for the number of experiments

included and showed that Eickhoff et al.'s (2016) conclusions also

hold for substantially larger meta-analysis samples. Nevertheless,

future simulations might include even larger sample sizes, as with

more neuroimaging studies being published each year, the size of

typical meta-analysis samples will potentially increase as well.

2. The empirical parameters used in this study were sampled from a

newer, more comprehensive version of the BrainMap database,

and we applied stricter filter criteria for study selection.

3. All simulations were run on a new python-based ALE pipeline

which is a translation of the in-house MATLAB scripts. The replica-

tion of findings additionally serves as a validation of the new

python pipeline.

Taking into account these differences, the consistency of our

results with those reported in Eickhoff et al. (2016) is highly

F IGURE 7 Computation time required for a single null
permutation of each multiple-comparison correction method. Times
measured for 50 datasets per dataset size (15–45), totaling 1550
timepoints. vFWE and cFWE corrections run almost equally fast,
while TFCE takes up to nine times as much time as the other two
methods.
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reassuring, attesting to the robustness of ALE in general and to the

validity of our simulation setting in particular.

4.3 | Transferability to other CBMA techniques

Besides ALE, there are multiple other algorithms used to perform

CBMA, most importantly multi-level kernel density analysis (MKDA;

Kober & Wager, 2010; Nee et al., 2007; Wager et al., 2009) and

signed-difference map analysis (SDM; Palaniyappan et al., 2012;

Radua et al., 2012; Radua et al., 2010). While all of these methods

share core features, the exact implementation of the algorithms dif-

fers quite drastically. Therefore, any conclusions drawn regarding the

behavior of statistical tools within ALE might not hold for the other

methods. This means that TFCE might still confer tangible advantages

when used as a thresholding method in SDM, MKDA, or other CBMA

algorithms, pending proper evaluation.

5 | CONCLUSION

Using a large-scale simulation approach, we evaluated whether TFCE

would be a valuable addition to the current ALE algorithm for CBMA,

serving as a sophisticated method to correct for multiple comparisons

in mass-univariate analyses of neuroimaging data. Based on previous

evaluations, we expected TFCE to confer a higher power to detect

true effects while also improving on some of the methodological

shortcomings of the current standard cFWE correction. However, our

simulation results did not support this expectation, as TFCE's sensitiv-

ity was at best on par with that of the standard cFWE correction.

Given that TFCE (vs. cFWE correction) incurs substantially higher

computational costs, we conclude that, in most cases, ALE analyses

would not benefit from employing TFCE, which therefore cannot be

recommended as a standard approach in this context for the sake of

efficiency.
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