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Abstract
Multiple myeloma (MM) is a heterogeneous malignancy of plasma cells. Despite improvement in the prognosis of MM patients

after the introduction of many new drugs in the past decades, MM remains incurable since most patients become treatment‐
resistant. Cyclin‐dependent kinase 6 (CDK6) is activated in many types of cancer and has been associated with drug resistance in

MM. However, its association with disease stage, genetic alterations, and outcome has not been systematically investigated in

large cohorts. Here, we analyzed CDK6 expression using immunohistochemistry in 203 formalin‐fixed paraffin‐
embedded samples of 146 patients and four healthy individuals. We found that 61.5% of all MM specimens express CDK6 at

various levels. CDK6 expression increased with the progression of disease with a median of 0% of CDK6‐positive plasma cells in

monoclonal gammopathy of undetermined significance (MGUS) (n = 10) to 30% in newly diagnosed MM (n = 78) and up to 70% in

relapsed cases (n = 55). The highest median CDK6 was observed in extramedullary myeloma (n = 12), a highly aggressive man-

ifestation of MM. Longitudinal analyses revealed that CDK6 is significantly increased in lenalidomide‐treated patients but not in

those who did not receive lenalidomide. Furthermore, we observed that patients who underwent lenalidomide‐comprising

induction therapy had significantly shorter progression‐free survival when their samples were CDK6 positive. These data support

that CDK6 protein expression is a marker for aggressive and drug‐resistant disease and describes a potential drug target in MM.

INTRODUCTION

Multiple myeloma is a genetically and clinically heterogeneous ma-
lignancy caused by impaired apoptosis and uncontrolled proliferation
of the postgerminal center B‐cell‐derived plasma cell.1 The in-
troduction of new drugs, including proteasome inhibitors, im-
munomodulatory drugs (IMiDs) such as lenalidomide, and monoclonal
antibodies in intensive or nonintensive treatment regimens, has
greatly improved the prognosis for multiple myeloma over the last
two decades.2 Nevertheless, multiple myeloma is still considered in-
curable because even patients with deep responses eventually re-
lapse due to pre‐existing or acquired drug resistance.3 Current
predictors for a short duration of response and overall survival are
serological parameters, such as the International Prognostic Scoring
System (ISS) stage III and high lactate dehydrogenase levels, high‐risk
cytogenetic abnormalities t(4;14), del17p, and amplification of 1q21,

gene mutations in TP53, high‐risk gene expression profiles, and ex-
tramedullary manifestations.4–7 Extramedullary myeloma is an ag-
gressive and particularly treatment‐resistant manifestation of multiple
myeloma that is rare at initial diagnosis but is found more frequently
in highly pretreated patients.8

Progression‐free survival and overall survival under intensive
treatment regimens in patients with high‐risk features is considerably
shorter than in patients with standard risk and salvage treatments are
less effective.3 In addition, most patients currently considered to be
at standard risk eventually relapse due to acquired drug resistance,
highlighting the need for better treatment strategies.

Uncontrolled proliferation by deregulated cell cycle control is a
hallmark of cancer, including multiple myeloma.9 Initiating genetic
events lead to upregulation of D‐type cyclin signaling, either via hy-
perdiploidy or via direct (t(11;14) [CCND1], t(6;14) [CCND3]) or in-
direct (t(4;14) [MMSET/FGFR3], t(14;16) [c‐MAF], t(14;20) [MAFB])
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translocations involving the immunoglobulin heavy‐chain enhancer.10,11

To synergize cell cycle disruption, myeloma cells variably acquire further
genetic alterations at the subclonal levels that may be already present at
initial stages but increase during disease progression.12–15 They include
chromosome deletions leading to loss of tumor suppressor genes like
TP53, RB1, or CDKN2C and secondary translocations resulting in upre-
gulation of c‐MYC like the translocation t(8;14).16–18

The cell cycle is orchestrated by a balanced interaction of pro-
moting factors, such as cyclins and cyclin‐dependent kinases (CDKs),
and negative factors like cyclin‐dependent kinase inhibitors (CKIs). A
critical checkpoint is the restriction point before the G1/S phase
transition, since cyclin D and CDK4/6 eventually phosphorylate pRb,
leading to E2F transcription factor‐dependent cell cycle progression.
Disturbed homeostasis of this checkpoint is crucial for the develop-
ment of hematologic malignancies, including alterations of cyclins,
CDKs, CKIs, p53, and pRB.19,20

CDK6 has been found activated in a broad spectrum of solid and
hematologic malignancies, such as breast cancer, malignant melano-
ma, glioblastoma, and B and T cell lymphomas.21–24 CDK4/6 in-
hibitors are approved for advanced hormone receptor‐positive breast
carcinoma in combination with endocrine‐based therapy.25

The mutually exclusive pairing of cyclin D2 with CDK6 and cyclin
D1 with CDK4 has shown to be critical for cell cycle dysregulation
and multiple myeloma progression.26 Ely and colleagues27–29 argued
that this is mediated by phosphorylation and thus inactivation of
retinoblastoma, a key cell cycle regulator disturbed in most cancers.
The CDK4/6 inhibitor palbociclib showed effective cell cycle arrest
and growth suppression of myeloma cells and xenografts as mono-
therapy or in combination with bortezomib. This led to a clinical phase

1/2 trial including relapsed and refractory myeloma patients who
received palbociclib and bortezomib.30 The study showed good re-
sponse rates with stable disease in 44% of patients. A recent study by
Ng et al.31 demonstrated, using quantitative proteomic analyses, that
CDK6, but not CDK4, is upregulated in relapsed and IMiD‐resistant
multiple myeloma. CDK6 governs a protein resistance signature that
includes proteins involved in DNA damage repair, cell cycle, and
metabolic pathways. Inhibition of CDK6 resulted in the resensitiza-
tion of multiple myeloma cells to IMiD treatment. Surprisingly, this
effect remained unaffected in the absence of pRb, pointing to cell
cycle‐independent functions of CDK6. However, little is known about
the clinical implications of CDK6 expression in multiple myeloma
to date.

Therefore, we sought to evaluate CDK6 expression and its cor-
relation to clinical and genetic parameters in a large cohort of multiple
myeloma patients. We applied immunohistochemistry as an estab-
lished and reliable method for in situ protein detection, as previous
studies had found that protein levels diverge from RNA expression
levels in several cancers.31–33

METHODS

Study cohort

We included 203 formalin‐fixed paraffin‐embedded (FFPE) tissue
blocks from 146 patients and four healthy individuals in this study
(Figure 1). All patients provided informed consent, which was ap-
proved by the ethics commission of Ulm University (136/20). Samples

F IGURE 1 Illustration of the study cohort and all analyzed samples according to disease and disease status.
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included bone marrow biopsies (n = 166) and surgical resection spe-
cimens (n = 37). Cytoplasmic immunoglobulin‐fluorescence in situ
hybridization (cIg‐FISH) was performed for the detection of structural
genetic variants and translocations, according to standardized pro-
tocols using commercially available probes in routine diagnostics, and
was available for most patients (Abbott Molecular; MetaSystems).34

One FFPE sample was available for 102 patients, while 44 pa-
tients had two or more samples. The tissue samples were obtained at
varying time points. To ensure comparability, we categorized them
according to disease status (Figure 1).

We further analyzed 37 patients with other B‐cell malignancies
classified according to the World Health Organization 5th edition
from the tissue bank of Ulm University Hospital as control. We in-
cluded four B‐cell chronic lymphatic leukemias, five diffuse large
B‐cell lymphomas, four follicular lymphomas, three classical Hodgkin
lymphomas, four mantle cell lymphomas, and 17 lymphoplasmacytic
lymphomas.

Immunohistochemistry

FFPE tissue was cut into 4‐µm‐thick sections by a microtome (RM
2255; Leica Biosystems) and stored in a −20°C freezer. Slides
were deparaffinized in a xylene bath and rehydrated by sequential
washing steps in ethanol with gradually decreasing concentra-
tions. Antigen retrieval was carried out by heating in citrate buffer
(pH = 6.0) in a microwave (ER‐5420; Toshiba) at 800W for 25 min.
Specific antigen binding was ensured by incubation of the primary
(anti‐CDK6; Life Span, Biosciences, mouse monoclonal (8H4), di-
lution 1:50) and secondary antibodies for half an hour at room
temperature. Detection of antibodies was performed by treat-
ment with an alkaline phosphatase/RED detection system (Dako,
Agilent Technologies). The pictures were taken in a bright field
using a Zeiss Axiophot microscope with an included CCD camera
(JVC Digital Camera KY‐F75U) connected to the Diskus Viewer
software (v.5.0; Carl H. Hilgers). The evaluation was conducted by
two different independent pathologists, who were not informed
about the clinical parameters. The staining intensity, percentage
of positive cells, and subcellular expression pattern were assessed
in each sample, with the staining intensity being categorized as
absent, medium, or strong.

We used serial sections of Ki‐67, CD38, and CD138 stainings (anti‐
Ki‐67; Dako, mouse monoclonal (MIB‐1), dilution 1:200; anti‐CD38: Ab-
cam, rabbit monoclonal (SP149), ab183326, dilution 1:100; anti‐CD138:
Dako, mouse monoclonal (MI15), dilution 1:200) for evaluating the pro-
liferation and bone marrow infiltration rates and for visualizing and loca-
lizing plasma cells. For samples with a low bone marrow infiltration rate,
we established a double‐staining method for sequential co‐staining of
CDK6 and CD38 (n=87) (see above; dilution 1:50). To prevent further
cross‐reaction of the second secondary antibody with the first primary
antibody, we performed antigen denaturation of the first targeted antigen
by treatment on a hot plate (RCT basic, IKA) at 90°C for 10min.

RESULTS

CDK6 expression correlates with advanced disease
stage

We performed immunohistochemical stainings of the FFPE tissue of a
cohort of multiple myeloma patients at different disease stages. We
determined the amount of CDK6‐stained plasma cells in relation to all

plasma cells, the staining intensity, and the subcellular localization in
each sample. Plasma cells were detected by serial sections stained for
CD38 and CD138 or by a double‐staining method (n = 87) for CD38
and CDK6 (Figure 2A).

CDK6‐positive plasma cells were detected in 124 of all 199
(62.3%) samples from patients with a plasma cell disorder.
In comparison, CDK6 was generally not detected or
expressed at very low levels in normal plasma cells in the
bone marrow of individuals without hematologic malignancy
(Figure 2A).

Analyzing clinicopathological and demographic variables showed
a balanced distribution of most parameters in the CDK6‐positive
versus CDK6‐negative subgroups (Table 1). However, we observed
significant differences regarding disease progression and aggressive-
ness (Table 1).

The median amount of positive plasma cells gradually in-
creased with the disease stage (Figure 2A–C: healthy control,
MGUS, initial diagnosis, extramedullary; p = 0.0003;
Kruskal–Wallis test). No CDK6‐positive plasma cells were de-
tected in the bone marrow of healthy controls. Only two out of 10
MGUS samples had CDK6‐positive plasma cells, with amounts of
positive plasma cells of 5% and 15% out of all plasma cells. The
staining intensity was considered to be medium in both. Of the
treatment‐naïve multiple myeloma patients, 64.1% (50 of n = 78)
had a positive CDK6 signal. The median amount of CDK6‐positive
plasma cells compared to all plasma cells was 30% (range:
0%–100%). Of those patients, 35 patients had a medium signal
and 15 patients had a strong signal. Samples obtained from ex-
tramedullary sites showed the highest CDK6 expression, with 10
out of 12 positive cases (83.3%) and a median amount of 72.5%
(range: 0%–100%) CDK6‐expressing plasma cells. Of these, four
samples showed a strong staining intensity, and 10 samples a
medium staining intensity.

Specimens of relapsed patients were positive for CDK6 in
72.7% of cases (40 of n = 55), while the median amount of positive
plasma cells amounted to 70% (range: 0%–100%). Twenty‐five of
the 40 CDK6‐positive relapsed cases showed a medium signal,
whereas 15 had a strong signal. Patients who did not have a
biochemical or clinical relapse, but whose samples still had light‐
chain‐restricted plasma cells were categorized as residual disease.
In this subgroup, six out of 20 patients had a medium CDK6‐
positive sample and one patient had a strongly staining CDK6‐
positive sample. Samples without light‐chain restriction were
considered as remission. We found CDK6 expression in 11 of 30
samples with a median amount of CDK6‐positive plasma cells of
0% (range: 0%–80%).

With regard to the subcellular expression of CDK6, cytoplasmatic
CDK6 staining was more common than nuclear CDK6 staining. There
were no samples with exclusive nuclear staining. Hence, nuclear
staining was only detected as an additional feature in combination
with cytoplasmatic staining. A nuclear signal tended to be more fre-
quent in abundant cytoplasmatic‐positive samples. Likewise, a nuclear
CDK6 signal was more common in relapsed samples than in newly
diagnosed samples (Table 1: 38.2% vs. 17.9%; p = 0.0157; Fisher's
exact test).

When comparing the median amount of cytoplasmatic CDK6‐
positive plasma cells, there was an increase from initial diagnosis to
relapse. However, the difference was not statistically significant
(Figure 3A: median 30% vs. 70%; p = 0.162; Mann–Whitney test).
Considering only the nuclear CDK6 signal resulted in a significantly
higher median amount of CDK6‐positive plasma cells at relapse
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(A)
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F IGURE 2 Immunohistochemical stainings reveal differential cyclin‐dependent kinase 6 (CDK6) protein expression in myeloma. (A) Representative samples of

healthy controls, monoclonal gammopathy of undetermined significance (MGUS) patients, myeloma patients at initial diagnosis, and extramedullary myeloma stained

for CD38 and CDK6 by a double‐staining method or by single‐staining of serial sections. Higher magnification allows evaluation of the cytoplasmatic versus nuclear

CDK6 signal at a single‐cell level. CDK6 protein expression was approached by measuring the staining intensity and amount of positive plasma cells compared to all

plasma cells in each sample. Scale bars = 100 µm; inlet scale bars = 25 µm. (B, C) Violin plot illustrates the cytoplasmatic (B) and nuclear (C) amount of CDK6‐positive
plasma cells in each sample, compared between the abovementioned subgroups. Circles indicate individual data points; bars show the median amount. Circles of

representative patients from (A) are labeled. Differences were analyzed using the Mann–Whitney test. *p < 0.05; **p < 0.01; ***p < 0.0001.
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compared to the initial diagnosis (Figure 3A: p = 0.002; Mann–Whitney
test). The plasma cells of patients in remission or with residual disease
had significantly lower cytoplasmatic CDK6 expression compared to
patients at initial diagnosis (Figure 3A: p = 0.0003 and p = 0.013;
Mann–Whitney test).

In summary, these data demonstrate that CDK6 expression corre-
lates with more active disease. CDK6 expression was also found in ma-
lignant cells in the bone marrow and lymphatic tissue of other B‐cell
malignancies (Supporting Information S1: Figure 1), including B‐cell
chronic lymphatic leukemia (four of four cases, median 65% of malig-
nant cells, range: 5%–90%), diffuse large B‐cell lymphoma (five of five
cases, median 80% of malignant cells, range: 5%–100%), follicular
lymphoma grades 2 and 3 (four of four cases, median 100% of
malignant cells), classical Hodgkin lymphoma (three of three cases,
median 80% of malignant cells, range: 60%–80%), mantle cell

lymphoma (four of four cases, median 100% of malignant cells), and
lymphoplasmacytic lymphoma (10 of 17 cases, median 20% of
malignant cells, range: 0%–100%). The median amount of CDK6‐
positive plasma cells was not significantly different between the
two plasma cell disorders at initial diagnosis (20% in lympho-
plasmacytic lymphoma vs. 30% in multiple myeloma; p = 0.547,
Mann–Whitney test).

CDK6 protein expression is linked to deletion 13q but
not to genetic high‐risk constellations

We next investigated CDK6 expression at initial diagnosis (n=78) in cy-
togenetic subtypes of multiple myeloma assessed by FISH in routine di-
agnostics (Figure 4A). Data were available for part of the cohort as
follows: standard‐risk aberrations, such as amp(9q34) (55%; 22 of n=40),
del(13q14) (53.5%; 23 of n=43), t(11;14) (20.7%; six of n=29), and amp
(1q21) (38.1%; 16 of n=42); and high‐risk aberrations, such as del(17p)
(11.9%; five of n=42) and t(4;14) (15.4%; six of n=39).

The median amount of CDK6‐positive plasma cells was 40% in amp
(9q34) (range: 0%–100%), 50% in del(13q14) (range: 0%–100%), 5% in t
(11;14) (range: 0%–100%), 75% in amp(1q21) (range: 0%–100%), 50% in
del(17p) (range: 0%–100%), and 37.5% in t(4;14) (range: 0%–100%). In our
cohort, there was no significant difference in CDK6 protein expression
between patients with standard‐risk versus high‐risk constellations
(Figure 4B: median 50% vs. 27.5%; p=0.980; Mann–Whitney test).

Regarding the single aberrations, there was a statistically
significant higher median CDK6 percentage in cases with
aberration del(13q) compared to 13q normal (Figure 4C: median 50%
vs. 0%; p = 0.049; Mann–Whitney test). Furthermore, there were no
associations with other cytogenetic events as is exemplarily shown by
t(11;14) (Figure 4D: 10% vs. 5%; p = 0.889; Mann–Whitney test).

Heterozygous deletion of 13q is one of the most common ge-
netic events in myeloma and leads to monoallelic loss
of tumor suppressor RB1.35,36 At first glance, the opposed incidence
of CDK6 and del(13q) seems contradictory. However, high CDK6
could be a sign of increased functional inactivation of the remaining
pRb by phosphorylation. Consequently, CDK6 overexpression in del
(13q) could be an explanation for the paradox of RB1 being only
heterozygously deleted in most cases.13,37–39

Implications of CDK6 on cell cycle and proliferation

Given the role of CDK6 in cell cycle progression, we then analyzed its
relationship to proliferation markers (Figure 4E,F). No correlation was
seen between the percentage of CDK6‐positive cells and the per-
centage of Ki‐67‐positive cells (Figure 4E: r2 = 0.006, p = 0.634, sim-
ple linear regression). Double‐immunofluorescence of single cases
showed that not all CDK6‐expressing cells are cycled, as shown by
Ki‐67 expression (Figure 4G). However, we saw a high
correlation between the percentage of CDK6‐positive cells and the
bone marrow plasma cell infiltration rate (Figure 4F: r2 = 0.142,
p < 0.0001, simple linear regression), further demonstrating that
CDK6 expression is associated with more advanced disease.

The kinase activity of CDK6 depends on the presence of differ-
ent cyclins. The majority of myeloma cases show upregulation of D‐
type cyclins.9 However, we observed a tendency toward higher
CDK6 expression in the group of cyclin D1‐negative samples, as-
sessed by immunohistochemistry (Supporting Information S1:
Figure 2B: median 20% vs. 5%; p = 0.086; Mann–Whitney test).
Translocation t(11;14) accounts for approximately 20% of newly
diagnosed multiple myeloma and leads to upregulation of cyclin D1.

TABLE 1 Demographic and disease characteristics.

Variable
CDK6‐positive
cytoplasmatic

CDK6‐negative
cytoplasmatic p Value

Age

Median (range) 61 (31–79) 56 (33–79) n.s.

Follow‐up

Median (range) 3.25 (0.1–9.5) 4.7 (0.4–14.9) n.s.

Bone marrow
infiltration rate

Median (range) 60 (6.0–99.0) 30 (1.0–70.0) 0.0002

Gender

Men, n (%) 29 (60.4) 19 (39.6) n.s.

Women, n (%) 21 (70.0) 9 (30.0)

Light chain

Kappa, n (%) 36 (63.2) 21 (36.8) n.s.

Lambda, n (%) 14 (66.7) 7 (33.3)

Location

Medullary, n (%) 110 (60.1) 73 (39.9) n.s.

Extramedullary, n (%) 10 (83.3) 2 (16.7)

Disease status

Healthy control,
n (%)

0 (0.0) 4 (100.0)

MGUS, n (%) 2 (20.0) 8 (80.0)

Initial diagnosis, n (%) 50 (64.1) 28 (35.9)

Relapse, n (%) 40 (72.7) 15 (27.3)

Residue, n (%) 7 (35.0) 13 (65.0)

Remission, n (%) 11 (36.7) 19 (63.3) 0.0001

Variable
CDK6‐positive
nuclear

CDK6‐negative
nuclear p Value

Location

Medullary, n (%) 34 (18.6) 149 (81.4) 0.0184

Extramedullary, n (%) 6 (50.0) 6 (50.0)

Disease status

Initial diagnosis, n (%) 14 (17.9) 64 (82.1) 0.0157

Relapse, n (%) 21 (38.2) 34 (61.8)

Abbreviations: CDK, cyclin‐dependent kinase; MGUS, monoclonal gammopathy of
undetermined significance; n.s., not significant (at p < 0.05).
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(B)

(D)

(C)

F IGURE 3 Elevation of cyclin‐dependent kinase 6 (CDK6) protein expression under therapy depends on the applied drugs. (A) Comparison of the amount of

CDK6‐positive plasma cells between unpaired multiple myeloma samples subdivided by disease status. Differences were evaluated by using the Mann–Whitney test.

*p < 0.05; **p < 0.01. n.s. for nonsignificant at p < 0.05. (B–D) Analysis of the amount of CDK6‐positive plasma cells between paired pretreatment versus

posttreatment samples revealed therapy‐specific effects. (B) Comparison of the amount of CDK6‐positive plasma cells before and after treatment with lenalidomide

(orange) and bortezomib (blue) using Wilcoxon's test. *p < 0.05. n.s. for nonsignificant at p < 0.05. (C) Waterfall plot illustrates the therapy‐dependent change of CDK6

expression. (D) Representative immunohistochemical stainings for CDK6 before and after lenalidomide versus bortezomib treatment. Serial sections stained for CD38

show complete bone marrow infiltration by plasma cells, confirming that all depicted cells are plasma cells. BTZ, bortezomib; LEN, lenalidomide. Scale bars = 100 µm.
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In line with this, we found cyclin D1 expression in all patients with t
(11;14). In contrast, five out of 17 patients without t(11;14) also
showed cyclin D1‐positive MM cells.

Longitudinal analysis of CDK6 protein expression

In the overall cohort, there was a trend toward higher cytoplas-
matic CDK6 and a significantly higher nuclear CDK6 detection in

relapsed cases compared to newly diagnosed cases (Figure 3A:
median 30% vs. 70%; p = 0.162; median 0% vs. 0%; p = 0.002;
Mann–Whitney test). To observe intra‐ and interpatient changes,
we next examined the protein expression in a longitudinal cohort
of patients with paired pretreatment and posttreatment samples.
Twenty patients with a specimen at initial diagnosis and a speci-
men at the time of relapse or residual disease were included.
Altogether, there was a tendency toward an increase in CDK6

(A) (B)

(C) (D) (G)

(E) (F)

F IGURE 4 High cyclin‐dependent kinase 6 (CDK6) protein expression is independent of high‐risk cytogenetics or proliferation. (A) Comparison of the amount of CDK6‐
positive plasma cells in relation to all plasma cells between different cytogenetic aberrations. (B) Cumulating them to standard‐ and high‐risk cytogenetic aberrations and

comparing them using the Mann–Whitney test showed no significant difference at p < 0.05. (C, D) Analysis of the CDK6 amount in patients with del(13q14) (B) and

t(11;14) (C) compared to its respective wild‐type using the Mann–Whitney test. *p < 0.05. n.s. for nonsignificant at p < 0.05. (E, F) Correlation of the amount of

CDK6‐positive plasma cells to the amount of Ki‐67‐positive plasma cells (E) and to bone marrow infiltration rate by plasma cells (F) using simple linear regression. (G)

Representative immunofluorescence samples show that abundant CDK6‐positive plasma cells do not express the proliferation marker Ki‐67. Scale bars = 100 µm.

HemaSphere | 7 of 11



protein expression that was not statistically significant (median
7.5% vs. 15%; p = 0.398; Wilcoxon's test). To determine the
impact of different therapeutics on CDK6 evolution under and
after treatment, we stratified patients by treatment with or
without lenalidomide (Figure 3B,C). The group treated with
lenalidomide‐containing regimens developed significantly higher
CDK6 expression during treatment (Figure 3B: median 5% vs.
20%; p = 0.045; Wilcoxon's test). In contrast, the patients treated
with other regimens did not have significantly different CDK6
levels at relapse (Figure 3B: p = 0.375; Wilcoxon's test). Figure 3D
shows representative samples of each group.

Extramedullary myeloma exhibits abundant CDK6
expression

Stratification not only by disease status but also by origin of the
analyzed tissue had an impact on the CDK6 expression level. In
the overall cohort, we observed that, in particular, the samples
from extramedullary tissue had substantially higher CDK6
amounts. Biopsies or surgical specimens from solitary plasmacy-
tomas showed the highest CDK6 protein expression among the
whole cohort (median amount of positive plasma cells: 87.5%;
range: 80–100; n = 4). A larger group of multiple myeloma pa-
tients with extramedullary manifestations in addition to bone
marrow presented an equally high median cytoplasmatic CDK6
amount (Figure 2A,B: 72.5%; range 0–100; n = 12). Two of the 12
patients already presented with extramedullary manifestations at
initial diagnosis, while these manifestations appeared in the other
10 patients at relapse. The median amount differed between
those two groups (50% vs. 82.5%). Compared to medullary mye-
loma, extramedullary myeloma samples had a significantly higher
median amount of nuclear CDK6‐positive plasma cells compared
to medullary myeloma (Figure 2C: 35% vs. 0%; p = 0.007
Mann–Whitney test).

Impact of CDK6 expression on outcome

To determine whether CDK6 expression could serve as a prognostic
marker in multiple myeloma, we analyzed the impact of CDK6 ex-
pression on the clinical outcome. Here, we distinguished between
patients who had received intensive treatment with high‐dose che-
motherapy followed by autologous stem cell transplantation (ASCT)
and nonintensive treatment regimens. Further, we compared patients
who had received lenalidomide as part of their therapy regimen with
those who had not.

We divided those cohorts by the presence or absence of
CDK6‐positive plasma cells. The samples were considered posi-
tive if there were at least 5% positive plasma cells in relation to all
plasma cells. This resulted in a tendency toward a shorter
progression‐free survival of patients with CDK6‐positive bone
marrow samples in the overall cohort (Supporting Information S1:
Figure 3A: median survival 4 vs. 3.2 years; p = 0.196, log‐rank
test). The same trend was observed when we restricted the
analysis to patients who were intensively treated with high‐dose
chemotherapy followed by ASCT (Figure 5A: median survival 8.4
vs. 4.2 years; p = 0.162, log‐rank test).

We detected a correlation of CDK6 expression with outcomes
for patients treated with lenalidomide‐comprising induction therapy.
In these patients, we observed a significantly shorter progression‐
free survival in patients with CDK6‐positive samples compared to
patients with CDK6‐negative samples (Figure 5B: median survival

2.6 vs. 8.4 years; p = 0.029, log‐rank test). Regarding overall survival,
CDK6 protein expression showed no impact in the overall cohort.
However, we observed a tendency toward shorter survival of
CDK6‐positive cases in the lenalidomide‐treated cohort (Supporting
Information S1: Figure 3B: median survival 6.2 vs. 11.9 years;
p = 0.37, log‐rank test).

We further analyzed progression‐free survival in relapsed
cases. We considered only patient samples obtained at the time of
their first relapse after high‐dose chemotherapy and ASCT. This
cohort was split up into a CDK6 percentage under and
above 60%. Kaplan–Meier survival analysis revealed a strong
trend for shorter median survival in cases with high CDK6 ex-
pression (Figure 5D: median survival 3.4 vs. 0.4 years; p = 0.057;
log‐rank test).

Moreover, we noticed a significantly shorter overall survival in
patients who had more than 20% Ki‐67 positive plasma cells
(Supporting Information S1: Figure 3D: median survival 1.8 years
vs. median not reached; p = 0.0008; log‐rank test).

DISCUSSION

We applied immunohistochemistry to determine CDK6 expres-
sion on the protein level in a large cohort of multiple myeloma
patients covering a broad spectrum of different tissues and dis-
ease stages. The detection of immunohistochemical signals of
single plasma cells in bone marrow tissue was challenging, as
myeloma typically exhibits random infiltration patterns; we
overcame this problem by double‐staining CDK6 and CD38 for
cases with a low bone marrow infiltration rate. The advantage of
immunohistochemistry is the preservation of tissue architecture,
allowing the CDK6 signal to be pinpointed at the single‐cell level.
We found that nuclear staining is less frequent than cytoplasmatic
staining and that nuclear staining only appears in addition to cy-
toplasmatic staining. This is consistent with a study by Kohrt
et al.40 stating that subcellular localization of CDK6 is linked to
function. The majority of CDK6 is localized in the cytoplasm,
while only the nuclear proportion of CDK6 acts as a kinase for
pRb.41 Explanations for this paradox are possible mechanisms of
cell cycle regulation by cytoplasmatic sequestration and addi-
tional poorly described cytoplasmatic functions of CDK6.42–44

We found that myeloma disease progression is accompanied by
elevated CDK6 expression levels. Specimens of relapsed multiple
myeloma exhibited stronger signals and higher amounts of CDK6
compared to newly diagnosed multiple myeloma. Even higher CDK6
expression levels were seen in the extramedullary manifestations of
multiple myeloma and solitary plasmacytoma, a distinct entity of
plasma cell neoplasia. CDK6 protein expression was not linked to
high‐risk cytogenetic aberrations. However, we observed a higher
expression in cases with del13q comprising RB1. CDK6 was not as-
sociated with the Ki‐67 index, showing that CDK6 is not a simple
surrogate marker for proliferation.

Our findings are in line with previous findings of Ely et al.26

stating that CDK6 expression is linked to advanced multiple myeloma.
The authors describe a mutually exclusive interaction of CDK4/6

with cyclin D1/2 leading to pRb‐driven cell cycle progression. How-
ever, the clinical implications of CDK6 expression were not in-
vestigated in this study.

We compared CDK6 protein expression among different clini-
cally defined subgroups and identified significant differences. We
found that CDK6 increased under therapeutic pressure depending on
the treatment regimens. We observed that patients treated with
lenalidomide‐including regimens had a significant increase in CDK6
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expression from the initial diagnosis to relapse, indicating the in-
volvement of CDK6 in IMiD resistance. This is consistent with a re-
cent study applying proteomic analyses to quantify protein in serial
samples of a smaller cohort of five patients.31 Tandem mass tag‐
based quantitative analyses of paired pre‐ and postlenalidomide‐
treated samples identified CDK6 among the top six upregulated
proteins in over 6000 analyzed proteins. CDK6 upregulation was
verified in a lenalidomide‐resistant myeloma cell culture, and inhibi-
tion of CDK6 by palbociclib or degradation by proteolysis targeting
chimeras (PROTAC) led to a resensitization of myeloma cells to le-
nalidomide treatment. This effect was remarkably not affected by
RB1 knockout, indicating cell cycle‐independent mechanisms of
combined lenalidomide and palbociclib treatment.31

Comparison with several types of B‐cell lymphomas revealed
CDK6 to be highly expressed in all entities, underlining its importance
in B‐cell malignancies. However, multiple myeloma seems to be ex-
ceptional, as their expression was at a comparably high level only at
relapse, whereas the level at diagnosis was low. Connection to dis-
ease progression is further emphasized by our findings of high CDK6
associated with extramedullary disease. The latter is a less frequent

but highly aggressive entity of myeloma caused by the bone‐marrow‐
independent growth of plasma cells.45

CDK6 measurement in multiple myeloma did not have a statistically
significant impact on outcome in the overall cohort but showed a ten-
dency toward shorter progression‐free and overall survival in CDK6‐
positive cases. However, in the subgroup of lenalidomide‐treated patients,
we saw a significantly shorter progression‐free survival for patients with
CDK6‐positive samples compared to patients with CDK6‐negative sam-
ples, supporting the hypothesis that CDK6 is involved in IMiD resistance.
The short follow‐up time is a major limitation that may prevent achieving
clearer results regarding the prognostic value of CDK6 expression in
multiple myeloma. Future studies with higher case numbers and a longer
follow‐up, ideally in the setting of clinical trials, are necessary to verify our
findings.

High proliferation assessed by Ki‐67 expression corresponded to an
inferior outcome in our cohort. This has already been shown in several
previous studies.46,47 However, we did not find any correlation between
Ki‐67 expression and CDK6 expression. This indicates that CDK6 has
additional functions for controlling the cell cycle in multiple myeloma. Ng
et al.31 recently found a relapse signature of deregulated proteins linked

(A)

(C)

(B)

F IGURE 5 Presence of cyclin‐dependent kinase 6 (CDK6)‐positive plasma cells has a negative prognostic impact in lenalidomide‐treated patients. (A, B)

Progression‐free survival after high‐dose chemotherapy (HDCT) according to CDK6 expression in the overall cohort (A) and in patients with lenalidomide‐comprising

induction therapy (B). (C) Progression‐free survival after second‐line therapy in patients who formerly underwent primary HDCT according to high versus low CDK6

with a cut‐off of 60%. All survival analyses were carried out by the log‐rank test.
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to DNA damage repair and cellular metabolism that is governed by CDK6
through phosphorylation or transcriptional regulation. They showed that
the action of CDK6 is beyond cell cycle control and that there are further
important substrates of CDK6, such as TRIP13 and RRM1.31 Kollmann
et al.48 described kinase‐independent functions of CDK6 like transcription
modulation of p16 and VEGF‐A. They additionally argue that further al-
terations like p16 mutation or deletion are required for CDK6 to endow
its full proliferation capacity.48

In conclusion, we have shown that CDK6 protein expression
determined by immunohistochemistry is a marker for aggressive and
drug‐resistant multiple myeloma. CDK6 thus may represent a po-
tential drug target and palbociclib has already shown efficacy in re-
lapsed and refractory myeloma patients in combination with
bortezomib. We demonstrate that CDK6 expression is increased
especially in lenalidomide‐treated patients and high CDK6 expression
has a negative prognostic impact in this subgroup. Our study provides
a rationale for evaluating CDK4/6 inhibitors further in lenalidomide‐
resistant, CDK6‐positive multiple myeloma.
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