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When delivered directly into the brain, vitamin D, can improve glucose levels in male mice.
Additionally, the loss of the vitamin D receptor (VDR) in male mice’s paraventricular
hypothalamus (PVH) results in impaired glucose tolerance. Data in humans shows that low
vitamin D levels are detrimental to glucose homeostasis, an effect that may be more
prominent in men. However, it is unknown if vitamin D action in the brain is required for
normal glucose regulation in female mice. This study shows that in both viral and genetic
models, male mice with obesity and PVH VDR loss have impaired glucose tolerance while
female mice are unaffected. Weights were unaltered in both sexes by PVH VDR loss.
Additionally, PVH VDR loss did not cause any glucose abnormalities in either sex when the
mice were on a chow diet. Utilizing electrophysiology studies, we show PVH VDR loss
resulted in decreased baseline firing frequency and resting membrane potential in males,
but not females. Additionally, male mice with PVH VDR loss had impaired miniature
excitatory postsynaptic currents (mEPSC), while females were unaffected. Interestingly,
the PVH neurons of both sexes were activated by exogenous vitamin D (1,25-
dihydroxyvitamin D3), an effect dependent upon the VDR. Thus, there is sexual
dimorphism, for the actions of the PVH VDR on glucose regulation. PVH VDRs are
necessary for normal glucose homeostasis in males but not females and this may be
secondary to actions of the VDR on neuronal activity.

Keywords: vitamin D receptor, glucose, brain, paraventricular hypothalamus, obesity
INTRODUCTION

The association between vitamin D deficiency and diabetes has led several groups to test vitamin D
as an anti-diabetic therapy in type 2 diabetes. However, the results have been confusing. Several
studies have shown beneficial effects of vitamin D on measures of glucose control or insulin
sensitivity (1–4) while others have found no effect (5–7). The factors mediating this profound
heterogeneity are unknown.

Preclinical studies previously demonstrated that vitamin D action at the level of the pancreatic
beta-cell was a clear pathway by which vitamin D could affect glucose homeostasis. Vitamin D
n.org May 2022 | Volume 13 | Article 8696781
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receptors (VDRs) are present in pancreatic beta cells (8), are
essential for beta cell survival (9), and the VDR-null mouse has
impaired glucose tolerance with decreased insulin levels (10).
Thus, the inconsistency of vitamin D supplementation to
improve abnormal glucose tolerance is perplexing (1, 11–16).

Although previous work has focused on the effects of vitamin
D in the periphery, the brain, specifically the hypothalamus, is
well known to control peripheral blood glucose levels (17). We
previously reported that VDRs have important actions in the
brain to control glucose (18). Exogenous vitamin D delivered
both into the third-ventricle of the hypothalamus and directly
into the paraventricular hypothalamus (PVH) of the brain
improves glucose tolerance in diet-induced obese (DIO)
animals. More importantly, bilateral viral knockdown of the
PVH VDR results in impaired glucose tolerance in DIO males.

Interestingly, recent human epidemiological studies have
highlighted a sex-specific association of low vitamin D levels
with glucose abnormalities. Furthermore, several epidemiological
studies have shown that vitamin D deficiency is associated with
insulin resistance only in males (19–22) or in postmenopausal
females (23). However, whether there is a differential effect of VDR
action in the brain in males vs. females has not been tested. Here,
we aim to test the necessity of vitamin D receptors in the brain in
both sexes in both in vivo and ex vivo experiments.
MATERIALS AND METHODS

Animals
Animals were group-housed at Baylor College of Medicine (BCM)
on a 12 h light/dark cycle with ad libitum access to water and food.
The mice used for viral studies were bearing a floxed VDR allele
(VDRf/f) (18, 24). Additionally, we bred Sim1-cremice (25) bearing
a Rosa26-tdTOMATO allele onto the VDRf/f mice. For the initial
phenotyping experiments, mice bearing homozygous VDR floxed
alleles were mated (VDRf/f x VDRf/f;Sim1-cre;TOMATO), creating
experimental PVH VDR knockdown mice (KD; VDRf/f;Sim1-cre)
and control animals (VDRf/f), without regard for the presence or
absence of the TOMATO gene. However, for electrophysiological
experiments, we mated heterozygous VDRf/+ x VDRf/+;Sim1-cre;

TOMATO mice in order to have VDR+/+;Sim1-cre;TOMATO controls
which would allow for visualization of the PVH neurons. Animal
numbers are stated in the figure legends. All studies used littermate
controls. Mice were euthanized with ketamine/xylazine per BCM
protocols. All studies were approved by the BCM Institutional
Animal Care and Use Committee (IACUC).

Diet
Animals were studied in a lean state (chow diet) or an obese state.
Obesity was induced by a western diet (45% fat, D12451,
Research Diets, New Brunswick, NJ) for 8 weeks prior to
glucose tolerance testing.

Virus Injection
Some mice at 8-12 weeks of age received 20nL of a replication-
defective adenovirus-associated virus (AAV) containing Cre-
Frontiers in Endocrinology | www.frontiersin.org 2
recombinase (AAV9.CMV.HI.eGFP-Cre.WPRE.SV40 9.82e12
gc/mL; University of Pennsylvania Vector Core, Chapel Hill,
NC) or its control (AAV-CMV-GFP-9 4.0e12 gc/mL) injected
bilaterally into the PVN (coordinates 0.94A/P, 4.75D/V, 0.20M/
L) as previously published (18).

Glucose and Insulin Tolerance Tests
Intraperitoneal glucose tolerance tests (i.p. GTT) were performed
as previously published (26). Mice were fasted for four hours and
injected i.p. with 1.5 g/kg dextrose (D20W). A tail laceration was
made, and blood glucose was measured on a glucometer in
duplicate prior to dextrose administration (“0” minutes) and
again 15, 30, 45, 60 and 120 min after dextrose administration.
The insulin tolerance test (ITT) was performed similarly. Mice
were fasted for four hours and injected i.p. with 1 unit/kg
Humulin R U-100 (Eli Lilly, Indianapolis, IN). Blood glucose
was measured from a tail vein laceration in duplicate on a
glucometer prior to and at 15, 30, 45 and 60 minutes after
insulin administration. Both GTT and ITT were performed in
freely moving, conscious mice.

Gene Expression
At euthanasia, the paraventricular hypothalamic nuclei were
dissected through punch biopsy microscopically and rapidly
frozen with liquid nitrogen. Tissue RNA was extracted using a
Qiagen RNeasy kit. cDNA was isolated and real-time
quantitative PCR (qPCR) was performed using a TaqMan 7900
sequence detection system with TaqMan universal PCR master
mix and TaqMan gene expression assays (all from Applied
Biosystems). Relative mRNA expression for the VDR using a
primer/probe targeted to exons 3 and 4 of the VDR gene
(Mm00437297_m1, Applied Biosystems) was calculated
relative to the housekeeping gene L32 using the DDCT method.
Quantification of mRNA expression was performed as previously
described (27).

Electrophysiology
Electrophysiology recordings were performed as previously
published (26, 28, 29). Briefly, 10-12 week old Sim1-Cre;
TdTOMATO mice were used where all neurons in the PVH
would be labeled. Two male and female PVH VDR knockdown
mice (VDRf/f;Sim1-Cre;TdTomato) and control mice (VDR+/+;Sim1-cre;

TOMATO) were used for recordings. Separate mice were used for
baseline and 1,25D3-activated recordings. Mice were
anesthetized with isoflurane and brains were dissected rapidly
and immersed in ice-cold and oxygenated cutting solutions (in
mM: 10 NaCl, 195 Sucrose, 2.5 KCl, 1.25 NaH2PO4, 7 MgCl2, 25
NaHCO3, 5 glucose, 0.5 CaCl2, 2 sodium pyruvate. balanced with
95% O2/5% CO2). Coronal brain slices (220 mm) containing the
PVH were cut with a Microm HM 650 V vibratome (Thermo
Scientific) in oxygenated cutting solution. Slices were then
incubated in oxygenated artificial cerebrospinal fluid (aCSF)
(in mM: 126 NaCl, 2.5 KCl, 2.4 CaCl2, 1.2 NaH2PO4, 1.2
MgCl2, 11.1 glucose, and 21.4 NaHCO3, balanced with 95%
O2/5% CO2, pH 7.4) to recover ~25 min at 32°C and
subsequently for ≧1 h at room temperature before recording.
May 2022 | Volume 13 | Article 869678
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For whole-cell recording, slices were transferred to the
recording chamber at room temperature and perfused
continuously with aCSF bubbled with 95% O2/5% CO2 to
ensure adequate oxygenation of slices. tdTomato+ neurons and
tdTomato- neurons were identified by using epifluorescence and
IR-DIC imaging on an upright microscope (Eclipse FN-1,
Nikon) equipped with a moveable stage (MP-285, Sutter
Instrument). Patch pipettes with resistances of 3–5 MW were
filled with intracellular solution (adjusted to pH 7.3) containing
(in mM: 128 K gluconate, 10 KCl, 10 HEPES, 0.1 EGTA, 2
MgCl2, 0.3 Na-GTP and 3 Mg-ATP). Recordings were made
using a MultiClamp 700B amplifier (Axon Instrument), sampled
using Digidata 1440A and analyzed offline with pClamp 10.3
software (Axon Instrument). Series resistance was monitored
during the recording, and the values were generally <10 MW and
were not compensated. The liquid junction potential was +12.5
mV, and was corrected after the experiment. Data were excluded
if the series resistance increased more than 20% during the
experiment or without overshoot for action potential. Currents
were amplified, filtered at 1 kHz, and digitized at 20 kHz. Current
clamp was engaged to test neural firing frequency at the baseline
and after puff delivery (Picospritzer III, Parker Hannifin) of VDR
agonist 1,25-dihydroxyvitamin D3 (1,25D3) (500 ms at a
concentration of 1 mM) (30). The resting membrane potential
and firing frequency values were averaged within 2-min bin at
the baseline or after 1,25D3 puff. In some experiments, the aCSF
solution also contained 1 mm tetrodotoxin (TTX) and a cocktail
of fast synaptic inhibitors, namely bicuculline (50 mM; a GABA
receptor antagonist), D-AP5 (30 mM; an NMDA receptor
antagonist) and CNQX (30 mM; an AMPA receptor
antagonist) to block the majority of presynaptic inputs.

To measure mEPSC, the internal recording solution
contained 125 mM CsCH3SO3, 10 mM CsCl, 5 mM NaCl, 2
mMMgCl2, 1 mM EGTA, 10 mM HEPES, 5 mM (Mg)ATP, 250
and 0.3 mM (Na)2GTP (pH 7.3 with NaOH) (31). The mEPSCs
were recorded in whole-cell voltage-clamp mode, by holding the
membrane potential a t Vh = −60 mV in the presence of 1mM
TTX and 50 mM bicuculline.

Statistics
For GTT, ITT, and body weight curves, data were analyzed with
a paired 2-way ANOVA and Sidak post-hoc test. For AUC and
qPCR measurements, data were analyzed with unpaired t-tests.
The data for electrophysiology are presented individually for
each recorded neuron and data were analyzed with unpaired 1-
way ANOVA for baseline averages. Pre- and post-vitamin D
treatment comparisons were made by paired 2-way ANOVA. P <
0.05 was considered to be statistically significant.
RESULTS

Viral-Mediated PVH VDR Loss Does Not
Impact Glucose Tolerance in Females
We demonstrated previously that male mice with PVH VDR
viral knockdown had impaired glucose tolerance when obese, but
Frontiers in Endocrinology | www.frontiersin.org 3
not when lean (18). However, female mice with viral PVH VDR
knockdown did not differ in glucose tolerance compared to
control virus when lean (Figure 1A) or obese (Figure 1B).
Importantly, these female mice were littermates to our
previously published male cohort and thus, were of the same
age and exposed to the same housing conditions as their male
counterparts. Thus, external factors are unlikely to have
influenced the observed sexual dimorphic difference in glucose
tolerance. Furthermore, viral knockdown of VDR within the
PVH in females did not alter their body weight in chow or DIO
conditions (Figure 1C). We analyzed expression data from our
previous male cohort and found that males and females had
similar expression levels of VDR within the PVH and that virus
administration resulted in a similar knockdown of the VDR
(Figure 1D). Thus, the difference in glucose tolerance between
male and female mice resulting from PVH VDR loss does not
seem to be due to a difference in levels of the VDR but rather a
sexually dimorphic function of the VDR within the PVH.

Genetic-Mediated Loss of PVH VDR
Disrupts Glucose Tolerance in Males but
Not Females
To determine if the effects of PVH VDRs were consistent across
other models, we tested the effects of genetic deletion of PVH
VDR. The single-minded homolog 1 gene (Sim1) is expressed
significantly in the PVH and parts of the amygdala. By mating
VDRf/f mice with Sim1-Cre (25), we established mice with loss of
VDR within the PVH from birth. Once again, PVH VDR
knockdown did not result in any glucose or insulin tolerance
abnormalities in females (Figures 2A, B). However, PVH VDR
knockdown had a pronounced deleterious effect on glucose
tolerance in males, as evidenced in their glucose curves
(Figure 2C; main effect of genotype, p < 0.05) and AUC
(Figure 2C inset). We did not observe significant insulin
resistance during an ITT (Figure 2D). Before starting high-fat
diet, mice were tested for glucose tolerance under chow-fed
conditions. We observed no effect of PVH VDR loss in either
sex when animals were on chow (Figures 2E, F), which is similar
to our viral data shown in Figure 1 and our prior publication
(18). Body-weight trajectories on a high-fat diet did not differ
between the groups (Figure 2G). VDR expression was
significantly decreased in the PVH of VDRf/f;Sim1-Cre mice but
did not differ between sexes (Figure 2H).

PVH VDR Loss Decreases Neuronal
Activity in a Sex-Specific Manner
We and others have published that vitamin D has rapid actions
on neuronal activity (18, 30, 32). However, whether VDRs affect
basal levels of neuronal function within the hypothalamus were
unknown. In DIO VDRf/fSim1-Cre mice and their controls, we
tested the role of VDRs on PVH neuronal function. Loss of PVH
VDR decreased the basal firing frequency in male mice but not in
female mice (Figure 3A). However, we noticed that female
control mice had lower firing frequency compared to male
controls. Loss of PVH VDR also hyperpolarized neuronal
membranes in male but not female mice (Figure 3B). We did
May 2022 | Volume 13 | Article 869678
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not observe differences between baseline levels in male and
female controls, indicating a role for the VDR within the PVH
on neuronal function that was apparent in males but not females.
Since the loss of PVH VDR decreased neuronal firing frequency
and hyperpolarized neurons, we tested whether loss of PVH
VDR impacts miniature excitatory post- synaptic current
Frontiers in Endocrinology | www.frontiersin.org 4
(mEPSC), a key factor in the generation of action potentials.
Interestingly, we did not find any effect of PVH VDR on the
frequency of mEPSCs in either males or females (Figures 3C, E).
Yet, male animals with PVH VDR loss had significantly lower
mEPSC amplitude while females with PVH VDR loss had no
effect (Figures 3D, E). These results indicate that VDR is
A B

DC

FIGURE 1 | Viral Knockdown of VDR in the PVH of females does not alter body weight or glucose tolerance. (A) Glucose tolerance test in lean female mice (16-20
weeks of age) after AAV-control or AAV-Cre bilateral administration into the PVH (1.5g/kg). (B) Glucose tolerance test (1.5 g/kg) in 24-28 week old DIO mice.
(C) Body weight trajectories of female mice after virus administration. HFD = start of high-fat diet to induce obesity. (D) VDR expression in the PVH in male mice
(previously published) and females. n = 7-8/gp for (C, D) and 3-4/gp for (D) *p<0.05.
A B D

E F G H

C

FIGURE 2 | Genetic PVH VDR knockdown impairs glucose and insulin tolerance in males but not females. (A, B) Glucose tolerance (A) and area under the curve
(inset) in 26-29 week old DIO female mice. (B) Insulin tolerance test in 30-33 week old DIO female mice. (C) Glucose tolerance test (C) and area under the curve
(inset) in 30-33 week old DIO male mice. (D) Insulin tolerance test in 34-37 week old DIO male mice. (E) Glucose tolerance test in chow-fed female mice (18-21
weeks of age). (F) Glucose tolerance test in chow-fed male mice (22-25 week old). (G) Body weight trajectories of female and male mice after starting high-fat diet.
(H) VDR mRNA expression in upper hypothalamus of male and female mice. N=8-14/gp for (A–G) and 4-6/gp for (H) Open shapes represent Cre+ mice; closed
shapes represent control mice. *p<0.05 compared to same-sex control.
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required to maintain normal post-synaptic responses of male
PVH neurons to excitatory inputs (likely via glutamate), but
female PVH neurons do not require this VDR function.

PVH Neurons Respond to 1,25D3 Through
the Vitamin D Receptor in Both Males and
Females
We previously published that vitamin D has acute activating
effects on neurons in the hypothalamus (18, 26). Thus, we next
tested the loss of the VDR within the PVH had any sex-specific
effects on vitamin D-mediated actions on electrical activity.
Active vitamin D (1,25-dihydroxyvitamin D3; 1,25D3)
increased the firing frequency in 10 of 15 (66.7%) PVH
neurons (identified by Sim1-Cre mediated Tomato florescence)
in males and 8 of 15 (53.3%) PVH neurons in females
(Figure 4A). However, vitamin D had reduced effects in mice
with PVH VDR KD, only activating 2 of 12 (16.5%) male
neurons and 3 of 16 (18.7%) female neurons. There was no
difference in the magnitude of change in firing frequency after
1,25D3 stimulation in control male and female mice (Figure 4B).
Similarly, 1,25D3 depolarized 10 of 15 PVH neurons in males
and 8 of 15 PVH neurons in females (Figure 4C). Loss of PVH
VDR neurons decreased the ability of 1,25D3 to depolarize PVH
neurons. Only 2 of 16 neurons in males and 3 of 16 neurons in
females were depolarized by vitamin D in animals with PVH
VDR knockdown (Figure 4C). There was no difference in the
change in resting membrane potential between the sexes
(Figure 4D). To confirm that the effects of vitamin D on
neuronal function were due to direct actions of vitamin D on
these PVH neurons, we treated neurons from male mice with
vitamin D (1,25D3) in the presence of synaptic blockers. We
found that in the presence of synaptic blockade, vitamin D
depolarized 8 of 11 (72.7%) PVH neurons in control animals
Frontiers in Endocrinology | www.frontiersin.org 5
and was unable to depolarize any neurons in animals with PVH
knockdown (Figure 4E). This data indicated that vitamin D
(1,25D3) directly acts on VDR in PVH SIM-1 neurons to activate
their activities.
DISCUSSION

Our results show a consistent requirement for PVH VDR in male
mice for glucose regulation, but not in female mice. Human
epidemiological data has recently supported the possibility of a
sex-specific effect of vitamin D deficiency on glucose regulation
(19–22, 33). However, there are undoubtedly other analyses
where no mention of sex-specific effects exists (34–37). One
possibility for these differences may be that the impact of sex on
glucose homeostasis negates the ability to see sex-specific
interactions with vitamin D and glucose in some studies. Given
that we only see the effects of PVH VDR in DIO mice, and the
mediators of this are unknown, study populations may differ in
their underlying characteristics that are necessary to observe the
effects of vitamin D action in the brain on glucose homeostasis.

Our previous (18) and current data show no effect of PVH
VDR on body weight during the development of obesity. This is
intriguing given the very powerful impact effect of the PVH on
body weight. We recently created and published a novel VDR-
Cre mouse to visualize VDR positive neurons in the PVH (26).
We did not observe significant colocalization of VDR PVH
neurons with oxytocin or vasopressin in that study. Given this
study, we surmise that there is likely little colocalization with
MC4R neurons. While more work needs to be done to
characterize PVH VDR neurons, their ability to regulate
glucose independent of weight indicates that they likely
represent an important, and unique, neuronal population.
A B

D

E

C

FIGURE 3 | PVH VDR loss decreases neuronal activity in male but not female mice. (A) Firing frequency in male and female control VDR+/+;Sim1-cre;TOMATO (“C”) and
PVH VDR knockdown VDRf/f;Sim1-cre;TOMATO (“KD”) mice. (B) Resting membrane potential. (C) mEPSC firing frequency. (D) mEPSC amplitude. (E) Representative
traces from male control and PVH VDR knockdown mice. *p<0.05 via one-way ANOVA. N=12-30 neurons/group.
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We again found a requirement for a DIO state for animals to
display the effects of PVH VDR loss on glucose homeostasis. A
DIO animal is known to have hypothalamic inflammation (38).
Given that vitamin D has known anti-inflammatory properties, it
may be that the function of VDR within the hypothalamus is to
aid in decreasing inflammation. However, there is also a possible
interaction between components of our DIO-inducing diet and
VDR, which causes effects of PVH VDR loss only in a DIO state.
Determining the mechanisms behind this interaction between
weight status/diet and VDR action has clear clinical relevance
given the strong association of obesity and a western diet with
insulin resistance and diabetes.

We have presumed that the effects observed in our VDRf/f-
Sim1-Cre mice are due to the effects of PVH VDR. However, this
mouse model would also have effects of VDR knockdown within
the amygdala (25). Some data show that insulin signaling in the
amygdala may affect peripheral glucose tolerance (39). Thus, it is
possible that some of the effects of our Sim1-Cre mediated VDR
knockdown are through the amygdala. However, since both
direct PVH VDR knockdown with a virus and genetic VDR
knockdown resulted in similar abnormalities in glucose
tolerance, effects of the amygdala are likely minor in this
group. Future studies will need to confirm if VDR action in
the amygdala has any impact on glucose tolerance.

In these experiments, some control PVH neurons did not
respond to vitamin D. However, we were not able to identify
VDR positive neurons. Fluorescent neurons indicated the
presence of Sim1 expression, a marker for PVH neurons. Thus,
the lack of response to vitamin D in some of the PVH neurons is
likely due to a lack of VDR within those neurons. This is
Frontiers in Endocrinology | www.frontiersin.org 6
supported by our recent work demonstrating that all VDR-Cre
reporter neurons in our new mouse model responded to 1,25D3

while no non-reporter neuron responded (26). Additionally, a
few neurons in the PVH VDR knockdown group responded to
vitamin D. Given that we did not see a complete loss of all VDR
expression, consistent with other cre models, this is likely from
some VDR expression present in those neurons.

The loss of effect of vitamin D in our PVH VDR knockdown
group supports the specificity of the VDR in mediating the effects
of vitamin D overall. Our electrophysiological experiments use
higher than physiological concentrations since the drug is quickly
washed away. However, given that the electrophysiological
recording of neurons lacking the PVH VDR, and thus lacking
endogenous vitamin D at physiological levels, is opposite of our
pharmacologic study adding vitamin D, it is likely that the
experiment represents actual responses of in vivo vitamin D.

This paper demonstrates that the VDR itself affects neuronal
activity as loss of PVH VDR significantly impairs the firing
frequency, resting membrane potential, and mEPSC amplitude
in male mice. We did not observe any effect of PVH VDR loss on
any parameter in females, although the impact on firing
frequency may be masked by the overall lower firing frequency
observed in our female controls. However, given the lack of effect
of PVH VDR loss in females on the other parameters, where
differences from male controls were not observed, our data
strongly support a sex-specific effect of PVH VDR loss on
neuronal activity that may explain our underlying sex-specific
glucose phenotype.

Given that we observe a detrimental effect of VDR loss on
postsynaptic excitatory response, these effects may be secondary
A B

D EC

FIGURE 4 | Vitamin D activates PVH neurons through the VDR. (A) Firing frequency response to 1,25D3 treatment in male and female control VDR+/+;Sim1-cre;TOMATO

(“C”) and PVH VDR knockdown VDRf/f;Sim1-cre;TOMATO (“KD”) mice. (B) Firing frequency change after 1,25D3 in male and female control mice. (C) Resting membrane
potential response to 1,25D3 treatment. (D) Resting membrane change after 1,25D3 in male and female control mice. (E) Resting membrane potential response to
1,25D3 treatment in male mice in the presence of synaptic blockers (TTX, DAP-IV, CNQX, and bicuculine). *p < 0.01 compared to untreated state. N=11-18 neurons/
group.
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to genomic actions of the VDR on the glutamatergic system.
There is limited data on the role of vitamin D on the
glutamatergic system. A previous group published that vitamin
D supplementation altered the expression of glutamate receptor
subunits in diabetic rats (AMPA GluR2 and GluR4) (40).
Additionally, we previously published that hypothalamic tissue
from DIO male rats treated with 1,25D3 had increased
expression of two glutamate receptor subunits Grin2a and
Grin2b (30). A few studies show vitamin D is protective
against glutamate-induced neurotoxicity (41, 42), which may
be due to vitamin D’s known anti-inflammatory properties.
These articles did not measure the effects of vitamin D on
glutamate receptors. One study performed transcriptomic
analysis of a mixed neuron-glial cell culture of neural stem
cells but only found 27 genes differentially regulated by
vitamin D, and none were glutamate receptor subunits (43).
However, this may be due to the differences between embryonic
and adult gene transcription. Altogether, our data and previously
published data would support that vitamin D likely has genomic
effects in neurons to support baseline electrical activity and the
ability to respond to circulating 1,25D3 rapidly.

An interestingfinding inour study is that despite the sex-specific
differences in the glucose phenotype and electrical activity of PVH
neurons in mice with PVH VDR loss, we did not observe sex-
specific differences in the ability of vitamin d to activate PVHVDR
neurons. This is consistent with our previous study demonstrating
similar effects of 1,25D3 to activateVDR-Cre reporter neurons (26).
This may mean that vitamin D can be a helpful treatment in both
sexes for neurological disorders. Since we only investigated the sex-
specific effects of the VDRwithin the PVH,more work is needed to
determine differences within other brain areas, especially regarding
vitamin D treatment. Additionally, we did not test how global
vitamin D deficiency may impact neuronal function of VDR+

neurons or the effects of 1,25D3 on neuronal activity. Thus, there
is future work needed to understand how the VDR function in the
brain is correlated with physiologic measures of vitamin D action
(i.e. low 25-hydroxyvitamin D).

Overall, this study strongly demonstrates that PVH VDR has
sex and weight status-specific actions. In two different mouse
models, loss of PVH VDR results in glucose intolerance in DIO
males, but not in DIO females, nor in lean mice from either sex.
Additionally, loss of PVH VDR diminishes baseline neuronal
firing, resting membrane potential, and mEPSC amplitude in
male but not female mice. However, neurons from both sexes
responded well to exogenous vitamin D, in a VDR-dependent
Frontiers in Endocrinology | www.frontiersin.org 7
manner. Thus, this may explain some of the clinical data
demonstrating associations between vitamin D deficiency and
glucose levels in men but not women. The clear effect of vitamin
D in the brain to regulate glucose levels indicates a need to
understand the extent to which this action is necessary for
exogenous vitamin D to impact glucose regulation and how
this may be modified by sex or dietary factors.
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