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Abstract

The blood-brain barrier (BBB) is a dynamic and complex interface between blood and the

central nervous system (CNS). It protects the brain by preventing toxic substances from

entering the brain but also limits the entry of therapeutic agents. ATP-binding cassette

(ABC) efflux transporters are critical for the functional barrier and present a formidable

impediment to brain delivery of therapeutic agents including antibiotics. The aim of this

study was to investigate the possible involvement of multidrug resistance-associated protein

1 and 4 (MRP1 and MRP4), two ABC transporters, in benzylpenicillin efflux transport using

wild-type (WT) MDCKII cells and cells overexpressing those human transporters, as well as

non-selective and selective inhibitors. We found that inhibiting MRP1 or MRP4 significantly

increased [3H]benzylpenicillin uptake in MDCKII-WT, -MRP1 or –MRP4 cells. Similar results

were also found in HepG2 cells, which highly express MRP1 and MRP4, and hCMEC/D3

cells which express MRP1. The results indicate that human and canine MRP1 and MRP4

are involved in benzylpenicillin efflux transport. They could be potential therapeutic targets

for improving the efficacy of benzylpenicillin for treating CNS infections since both MRP1

and MRP4 express at human blood-brain barrier.

Introduction

Treating CNS disorders is a huge challenge because of the presence of the blood-brain barrier

(BBB) which is a dynamic physical and biological barrier between blood circulation and the

central nervous system (CNS). The unique features of the BBB lie in the structure/function of

the cerebral microvascular endothelial cells and the neurovascular unit comprised of those

cells and surrounding astrocytes, pericytes and extracellular matrix. It offers a unique protec-

tion to CNS by restricting the entry of toxin, pathogen and xenobiotics into brain and, at same

time, it limits the delivery of therapeutic agents to the brain[1–3]. Unlike other organs of the

human body, more than 98% of small molecules and almost 100% of large therapeutic mole-

cules cannot reach the brain via the circulatory system. ABC (ATP-binding cassette) efflux

transporters, expressed on the luminal (blood-facing) plasma membrane of brain capillary
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endothelial cells, are an important functional part of the BBB. They play a critical role in keep-

ing drugs and neurotoxic substances from entering the brain and in transporting toxic metab-

olites out of the brain[4–6]. ABC efflux transporters include P-gp (P-glycoprotein), BCRP

(breast cancer resistance protein) and MRPs (multidrug resistance proteins, ABCCs; which

have 13 members), are known to be involved in exporting a wide range of drugs, such as anti-

biotics, anti-HIV drugs, anticancer agents, antihistamines, immunosuppressive drugs and

analgesics, at the BBB[7–14]. They are a potential target and an innovative strategy in treating

CNS diseases and protecting brain since changes in the transporter expression and transport

activity can have a major effect on pharmacotherapy[15–19].

Beta-lactam antibiotics are a class of drugs consisting of all antibiotic agents that contain a

beta-lactam ring in their molecular structure. This includes penicillins, cephalosponins, cepha-

mycins, carbapenems and monobactams. Because of their wide spectrum and broad therapeu-

tic index, they are among the most commonly prescribed antibiotics in treating bacterial

infections, including those of the CNS[20, 21]. That includes neonatal purulent meningitis,

which has a high mortality rate and causes neurological sequelae and lifelong impairment[22,

23]. Although uncommon, beta-lactam antibiotic toxicity is severe and antibiotic resistance

also often develops[24, 25]. Benzylpenicillin penetration across the BBB is limited, but periph-

erally administered high dose benzylpenicillin can cause seizures[25, 26]. The mechanisms

regulating benzylpenicillin entry into brain are still not clear, particularly regarding which

ABC transporters may be involved in benzylpenicillin efflux at the human BBB. Previous stud-

ies have indicated that some beta-lactam antibiotics, such as benzylpenicillin, ceftriaxone and

ampicillin, are substrates of P-gp, which might account for low brain penetration[27–30]. In

contradiction, another study suggested that P-gp and BCRP are not involved in benzylpenicil-

lin efflux transport in human[31]. Interestingly, our previous study has shown that benzylpeni-

cillin is a substrate of human BCRP, but not P-gp[32]. However, it has not yet been reported if

benzylpenicillin is a substrate of MRPs in human.

The aim of this study was to investigate if MRPs are involved in benzylpenicillin efflux

transport in human. We focused on MRP1 and MRP4 because they express in human brain

endothelial cells and selective inhibitors for them are commercially available.

Materials and methods

MDCKII-WT, MDCKII-MRP1 and MDCKII-MRP4 cells were obtained from Netherlands

Cancer Institute (Dr. A. H. Schinkel), Amsterdam, Netherlands. Hep G2 cell was purchased

from ATCC (Manassas, VA, USA). hCMEC/D3 cells were obtained from Dr. Pierre-Olivier

Couraud (Institute Cochin, Paris, France). Cell culture medium and fetal bovine serum (FBS)

was purchased from Thermo Fisher Scientific (Grand Island, NY, USA). The non-selective

MRP inhibitor MK 571 was from Cayman Chemical (Ann Arbor, MI, USA) and selective

MRP1 inhibitor reversan[33, 34] and selective MRP4 inhibitor ceefourin 1[35, 36] were from

Sigma (St. Louis, MO, USA) and ABCAM (Cambridge, MA, USA). [3H]Benzylpenicillin (25

Ci/mmol) and [14C]mannitol (55 mCi/mmol) were purchased from American Radiolabeled

Chemicals, Inc. (St. Louis, MO, USA).

Cell culture

For [3H]benzylpenicillin uptake experiments, MDCKII-WT, MDCKII-MRP1, MDCKII-

MRP4 and Hep G2 were cultured in 12-well plates. As previously described[37], cells were

grown in DMEM supplemented with 10% FBS in humidified incubator with 95% air-5% CO2

at 37˚C and the medium was changed every other day. hCMEC/D3 cells were cultured in

DMEM-F12 supplemented with: 10% FBS, 15mM Hepes, 2mM glutamine, insulin: 5μg/ml,
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EGF: 50ng/ml EGF, bFGF: 25ng/ml, hydrocortisone: 2μg/ml and transferrin: 5μg/ml. hCME

C/D3 were also grown in humidified incubator with 95% air-5% CO2 at 37˚C and the medium

was changed every other day. All of cells were ready for uptake experiment when they reached

80–90% confluency.

[3H]Benzylpenicillin uptake

[3H]Benzylpenicillin uptake was examined in MDCKII-WT, MDCKII-MRP1,MDCKII-

MRP4, Hep G2 and hCMEC/D3 cells. The culture medium was removed at the beginning of

the experiment and the cells were washed once with DMEM. Then, 1ml of uptake medium

(DMEM) containing 0.1μCi [3H]benzylpenicillin and 0.05μCi [14C]mannitol (internal con-

trol), with or without inhibitors, was added to initiate uptake. After incubating at 37˚C for 1

hour[32], the uptake medium was removed and the cells were rapidly washed with ice-cold

PBS for three times. Hyamine hydroxide was used to lyse the cells and the cell lysis was

counted in a liquid scintillation counter (Beckman Coulter LS6500). Uptake was expressed per

mg cell protein and [14C]mannitol (about 5% of [3H]Benzylpenicillin in the cells) was used to

correct for extracellular contamination as described previously[32].

Quantitative real time RT-PCR (qRT-PCR)

All of materials were from Thermo Fisher Scientific (Grand Island, NY, USA), unless otherwise

stated. Total RNA was extracted from the cells using TRIzol Reagent following the manufactur-

er’s instructions. The concentration and purity of RNA were measured spectrophotometrically

at 260 and 280 nm with NanoDrop 2000 (Thermo Fisher Scientific). cDNA was synthesized

from 1μg of total RNA in a 20μl reaction mixture using a High Capacity cDNA Reverse Tran-

scription Kit with RNase Inhibitor. The mixture was incubated at 25˚C for 10 minutes, 37˚C for

120 minutes, and 85˚C for 5 minutes. Veriquest SYBR green master mix was used for Real-time

PCR in an Eppendorf Thermal Cycler. The reaction mixture was incubated at 95˚C for 10 min-

utes and cycled 40 times from 95˚C for 15 seconds to 60˚C for 1 minute. The primers used for

qRT-PCR are shown in Table 1. All PCR data were normalized to GAPDH using the Double

Delta CT Value method.

Statistical analysis

All measurements were performed in triplicate wells and data collected from at least three

independent experiments are presented as means ± SEM. Results were analyzed by t-test or

one-way analysis of variance (ANOVA) followed by Dunnett post hoc test for comparisons to a

single control or Tukey post hoc test for multiple comparisons between groups. A P value less

Table 1. Primer sequences for qRT-PCR.

Genes Accession # Forward (5’—3’) Reverse (5’—3’)

MRP1, canine NM_001002971.1 GGCTCTGCTTCCCCTTCTAC GGATTTTGCCCCAACTTCTT

MRP4, canine NM_001197174.1 ATTCTGTGGCTCTGCACGAA GGTTGACAATCTGGCCGGTA

GAPDH, canine AB038240.1 GCGGGGCCAAGAGGGTCATCAT GCTTTCTCCAGGCGGCAGGTCAG

MRP1, human L05628.1 CTCCCCGGTCTATTCCCATTTCAA TCTCGGTAGCGCAGGCAGTAGTTC

MRP4

, human

AY207008.1 GTGTACCAGGAGGTGAAGCC CCTCTCCAAGGTGCTGTGAG

GAPDH, human BC023632.2 GGGGAGCCAAAAGGGTCATCATC GACGCCTGCTTCACCACCTTCTTG

https://doi.org/10.1371/journal.pone.0225702.t001
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than 0.05 was considered statistically significant (�P< 0.05, ��P< 0.01 and ���P< 0.001). All

analyses were performed with Prism 7 (Graph Pad, San Diego, CA).

Fig 1. mRNA expression of MRP transporters in MDCKII-WT cells (A) and [3H]benzylpenicillin uptake in

MDCKII-WT cells with and without inhibitors (B). Values are means +/- S.E., n = 3, each performed in triplicate. ���

indicate significant differences from comparison between different cells at the P<0.001 level.

https://doi.org/10.1371/journal.pone.0225702.g001
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Results

Wild-type MDCKII (WT) is a canine epithelial cell line which expresses MRP1, MRP2 and

MRP5[38] and our qRT-PCR data showed that it also expresses MRP4 (Fig 1A). The cellular

uptake of [3H]benzylpenicillin was examined with and without non-selective MRP inhibitor

(MK571), selective MRP1 inhibitor (reversan) and MRP4 inhibitor (ceefourin 1). Compared

to control, 10μM MK571, 2.5μM reversan and 10μM ceefourin 1 significantly increased [3H]

benzylpenicillin uptake in MDCKII-WT cells by 2.94±0.06, 1.75±0.12 and 2.07±0.05 fold,

respectively (Fig 1B). These results suggest that benzylpenicillin is a MRP1 and MRP4 sub-

strate in these canine cells.

MDCKII-MRP1 and MDCKII-MRP4 are MDCKII cell lines overexpressing human MRP1

and MRP4, which were 23.9 and 8 times higher than canine MRP1 and MRP4, respectively

(Fig 2A). As shown in Fig 2B and 2C, [3H]benzylpenicillin uptake was increased 2.35±0.18 and

3±0.11 fold by 10μM MK571 and 2.5μM reversan in MDCKII-MRP1 cells, and increased 2.87

±0.14 and 2.63±0.09 fold by 10μM MK571 and 10μM ceefourin 1 in MDCKII-MRP4 cells,

compared to control, indicating benzylpenicillin is also a substrate of human MRP1 and

MRP4.

Hep G2 is a cell line from human hepatocellular carcinoma. According to prior reports,

Hep G2 cells express MRP1, MRP2 and MRP3 [39, 40]. Our qRT-PCR result showed that Hep

G2 cells also express MRP4 (Fig 3A). [3H]benzylpenicillin uptake in Hep G2 cells was

enhanced 1.85±0.03, 1.37±0.02 or 1.92±0.03 fold when 10μM MK571, 2.5μM reversan or

10μM ceefourin 1 was present, respectively (Fig 3B).

hCMEC/D3 is a human cerebral microvascular endothelial cell line. Prior studies have

shown MRP1, MRP2 and MRP4 expression in hCMEC/D3 cells[41, 42]. However, while

qRT-PCR assay confirmed MRP1 expression in the current study, MRP4 was not detected (Fig

4A). Compared to control, [3H]benzylpenicillin uptake in hCMEC/D3 cells was increased 1.24

±0.02 and 1.11±0.02 fold by 10μM MK571 and 2.5μM reversan, respectively (Fig 4B). Overall,

results from Hep G2 and hCMEC/D3 cells provided more evidence that benzylpenicillin is a

substrate of endogenous human MRP1 and MRP4.

Discussion

Benzylpenicillin, a beta-lactam antibiotic, has been used to treat bacterial infections, including

those of the brain such as neonatal purulent meningitis. ABC efflux transporters P-gp, BCRP

and MRPs are abundantly expressed at the BBB. They have a wide range of substrates includ-

ing many therapeutic drugs, such as antibiotics and anticancer agents, and restrict those drugs

from entering brain. It is very controversial and contradictory whether benzylpencillin can

enter brain and whether ABC transporters are involved in benzylpenicillin efflux transport. A

previous study has suggested that benzylpenicillin enters brain freely [43] but Rousselle et al.

found that benzylpenicillin can barely cross BBB and this can be significantly changed after

coupling with SynB1 vector[26]. A study by Poelarends et al. have shown that benzylpenicillin

and ampicillin are P-gp substrates after examining the effect of LmrA (a structural and func-

tional homolog of human P-gp) expression on the relative antibiotic resistance of E. Coli

CS1562[28]. However, we have reported in our previous study that BCRP, but not P-gp, is

involved in benzylpenicilin efflux transport in human. Results from the current study showed

Fig 2. mRNA expression of human and canine MRP1 and MRP4 in MDCKII-MRP1 and–MRP4 cells (A), [3H]

benzylpenicillin uptake in MDCKII-MRP1 (B) and MDCKII-MRP4 (C) cells with and without inhibitors. Values are

means +/- S.E., n = 3–6, each performed in triplicate. ��� indicate significant differences from comparison between

different cells at the P<0.001 level.

https://doi.org/10.1371/journal.pone.0225702.g002
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Fig 3. mRNA expression of MRP transporters in Hep G2 cells (A) and [3H]benzylpenicillin uptake in Hep G2 cells

with and without inhibitors(B). Values are means +/- S.E., n = 3, each performed in triplicate. ��� indicate significant

differences from comparison between different cells at the P<0.001 level.

https://doi.org/10.1371/journal.pone.0225702.g003
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Fig 4. mRNA expression of MRP transporters in hCMEC/D3 cells (A) and [3H]benzylpenicillin uptake in hCMEC/

D3 cells with and without 10μM MK 571 and 2.5μM reversan(B). Values are means +/- S.E., n = 3–6, each performed

in triplicate. �� and ��� indicate significant differences from comparison between different cells at the P<0.01 and

P<0.001 levels, respectively.

https://doi.org/10.1371/journal.pone.0225702.g004
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that inhibiting MRP1 and MRP4 in MDCKII-MRP1 and MDCKII-MRP4 cells with selective

or non-selective inhibitors significantly increased benzylpenicillin amount in the cells. Similar

results were found in Hep G2 (a cell line from human hepatocellular carcinoma) and hEMEC/

D3 (a human cerebral microvascular endothelial cell line) cells. All of the results from the cur-

rent study indicate that benzylpenicillin is also a substrate of human MRP1 and MRP4.

MRP1 and MRP4 are structurally close and their expression in human brain capillary endo-

thelial cells, astrocytes, microglia and choroid plexus (which form the blood-CSF barrier) are

well documented. They have been demonstrated to be associated with brain tumor resistance

and also mediate efflux transport of a wide range of drugs such as glutathione, glucuronide,

sulfate conjugates, immunosuppressants, HIV protease inhibitors, organic anions, prostaglan-

dins and nucleoside analogs[4, 6]. In this study, we found that that MRP1 and MRP4 are also

involved in antibiotic efflux transport.

Among ABC efflux transporters, MRPs are the largest group, consisting of 13 subfamily

members [4, 6]. Besides MRP1 and MRP4, MRP2, MRP3 and MRP5 are also expressed in

human brain capillary endothelial cells [4]. It is still unknown if other MRP transporters are

involved in benzylpenicillin efflux transport, and this needs to be investigated in further stud-

ies. Furthermore, all beta-lactam antibiotics have a beta-lactam ring in their molecular struc-

ture and it is possible that other beta-lactam antibiotics are also substrates of human MRP1

and MRP4, because of their structural similarity. This also needs further studies.

ABC efflux transporters play a very important role at BBB in protecting the brain but, at the

same time, they are an obstacle for therapeutic agents entering the brain. Therefore, there has

been great interest in modulating ABC transporters at the BBB in order to increase brain pro-

tection (up-regulating ABC transporters) or improve drug delivery to the brain (inhibiting

ABC transporters)[18, 19, 44, 45].

In summary, we found in this study that benzylpenicillin is a substrate of MRP1 and MRP4

in human and inhibiting these two transporters, plus BCRP, could be a new strategy to

increase benzylpenicillin entering into brain to treat infection.

Supporting information

S1 Table. Data for Fig 1. A) Raw data on mRNA expression of canine MRP1 and MRP4 in

MDCKII-WT cells (delta delta CT) used for Fig 1A and 1B) Data of [3H]-benzylpenicillin

uptake in MDCKII-WT cells (% of Control) used for Fig 1B along with the raw data.

(XLSX)

S2 Table. Data for Fig 2. A) Raw data on mRNA expression of Canine/Human MRP1/4 in

MDCKII-MRP1/4 cells (delta delta CT) used for Fig 2A. B) Data of [3H]-benzylpenicillin

uptake in MDCKII-MRP1 cells (% of Control) used for Fig 2B and 2C) Data of [3H]-benzylpe-

nicillin uptake in MDCKII-MRP4 cells (% of Control) used for Fig 2C.

(XLSX)

S3 Table. Data for Fig 3. A) Raw data on mRNA expression of Human MRP1 and MRP4 in

Hep G2 cells (delta delta CT) used for Fig 3A and 3B) Data of [3H]-benzylpenicillin uptake in

Hep G2 cells (% of Control) used for Fig 3B.

(XLSX)

S4 Table. Data for Fig 4. A) Raw data on mRNA expression of Human MRP1 and MRP4 in

hCMEC/D3 cells (delta delta CT) used for Fig 4A and 4B) Data of [3H]-benzylpenicillin uptake

in hCMEC/D3 cells (% of Control) used for Fig 4B.

(XLSX)
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