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This review examines two important aspects that are central to modern big data bioinformatics analysis - soft-
ware scalability and validity. We argue that not only are the issues of scalability and validation common to all
big data bioinformatics analyses, they can be tackled by conceptually related methodological approaches, namely
divide-and-conquer (scalability) and multiple executions (validation). Scalability is defined as the ability for a
program to scale based on workload. It has always been an important consideration when developing bioinfor-
matics algorithms and programs. Nonetheless the surge of volume and variety of biological and biomedical data
has posed new challenges. We discuss how modern cloud computing and big data programming frameworks
such as MapReduce and Spark are being used to effectively implement divide-and-conquer in a distributed com-
puting environment. Validation of software is another important issue in big data bioinformatics that is often
ignored. Software validation is the process of determining whether the program under test fulfils the task for
which it was designed. Determining the correctness of the computational output of big data bioinformatics soft-
ware is especially difficult due to the large input space and complex algorithms involved. We discuss how state-
of-the-art software testing techniques that are based on the idea of multiple executions, such as metamorphic
testing, can be used to implement an effective bioinformatics quality assurance strategy. We hope this review
will raise awareness of these critical issues in bioinformatics.

© 2017 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The term big data is used to describe data which are large with
respect to the following characteristics: volume (amount of data
generated), variety (type of data generated), velocity (speed of data
generation), variability (inconsistency of data) and veracity (quality of
captured data) [1]. Sequencing data is the most obvious example of
big data in the field of bioinformatics, especially with the advancement
in next-generation sequencing (NGS) technology and single cell capture
technology. Other examples of big data in bioinformatics include elec-
tronic health records, which contain a variety of information including
phenotypic, diagnostic and treatment information; and medical imag-
ing data, such as those produced by magnetic resonance imaging
(MRI), positron emission tomography (PET) and ultrasound. Further-
more, emerging big data relevant to biomedical research also include
data from social networks and wearable devices.

One particularly major advancement in experimental molecular
biology within the last decade has been the significant increase in
sequencing data available for analysis, at a cheaper cost [2]. The cost of
sequencing per genome has reduced from $100,000,000 in 2001, to
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$10,000,000 in 2007, down to a figure close to $1000 today. The $1000
genome is already a reality [3]. Currently, the data that comes out of a
NGS machine are in the order of several hundred gigabytes for a single
human genome. With the rapid advancement in single-cell capture
technology and the increasing interest in single-cell studies, it is expect-
ed that the amount of sequencing data generated will increase substan-
tially as each single-cell run can generate profiles for hundreds to
thousands of samples [4]. In this review, we will focus specifically on
bioinformatics software that deals with NGS data as this is currently
one of the most prominent and rapidly expanding source of big data
in bioinformatics.

In this review, we argue that the two main issues that are fundamen-
tal to designing and running big data bioinformatics analysis are: the
need for analysis tools which can scale to handle the large and unpre-
dictable volume of data (Scalability) [4-7], and methods that can effec-
tively determine whether the output of a big data analysis conforms to
the users' expectation (Validation) [8,9]. In general, there are many
other issues associated with bioinformatics big data analysis, such as
storage, security and integration [10]. However, these issues have
existed even before the rise of big data in bioinformatics, and these is-
sues are typically targeted to specific use cases, such as the storage of
sensitive patient data and integration of several specific types of data.
Solutions to these specific issues are available [11,12], though there
may be additional challenges associated in implementing the solution
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due to the increased volume and noise. Nonetheless, these issues are
mostly specific to individual application areas. We believe that if we
can effectively deal with the scalability and validation problem, it will
go a long way in terms of making big data analysis more widespread
in practice. This review aims to provide an overview of the technological
development that deals with the scalability and validation problems in
big data bioinformatics for sequence-based analysis tools (Fig. 1).

2. Scalability

Scalability is not a unique challenge in big data analysis. In fact,
software scalability has always been an issue since the early days of bio-
informatics because of the high algorithmic complexity of some of the
algorithms such as those involving global multiple sequence alignment.
The early focus on scalability is on parallelising the computation, while a
lot less attention is paid on optimally distributing the data. Efforts to
make bioinformatics software scalable have continuously been made
with the evolution of new hardware technologies, such as cluster com-
puting, grid computing, Graphical Processing Unit (GPU) technology,
and cloud computing. Currently in the age of big data bioinformatics,
the focus is not only on parallelising computational intensive
algorithms, but also on highly distributed storage and efficient commu-
nication among various distributed storage or computational units.
Furthermore, the volume and variety of data can change dynamically
in response to potentially unpredictable user demand. For example, in
a medium-sized local sequencing centre, the volume of data can grow
rapidly during certain unexpected peak periods, but remain constant
during other periods. This variability of demand on computational
resources is also a critical feature of modern big data bioinformatics
analysis. In this section, we will review the evolution of parallel distrib-
uted computing technologies and how they have contributed to solving
the issue of scalability of bioinformatics software. In particular, we will
discuss how modern cloud computing technology and big data analysis
frameworks, such as MapReduce and Spark, can be effectively used to
deal with the scalability problem in the big data era.

2.1. Cluster Computing

Early attempts at scaling bioinformatics software beyond massively
parallel (super) computers involved networking individual computers
into clusters to form a parallelised distributed-memory machine. In
this configuration, computations are performed by splitting and distrib-
uting tasks across Central Processing Units (CPUs) in a way that is
similar to the symmetric multiprocessing (SMP) approach utilised in
massively parallel computers. Unlike SMP, which relies on a shared
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main memory, clusters have distributed-memory, with each node
having its own memory and hard drive, thus presenting a new challenge
in developing software for cluster environments. To help with the de-
velopment of cluster-based software, communications protocols and
software tools, such as Message Passing Interface (MPI) [13] and Parallel
Virtual Machine (PVM) [14], have been developed for orchestrating
computations across nodes. An example of bioinformatics software de-
signed for cluster computing is mpiBLAST, an MPI-based, parallelised
implementation of the basic local alignment search tool (BLAST)
algorithm which performs pairwise sequence similarity between a
query sequence and a library or database of sequences [15]. The ap-
proach taken by mpiBLAST includes the use of a distributed database
to reduce both the number of sequences searched and disk I/0 in each
node, thereby improving the performance of the BLAST algorithm.
MASON is another example of MPI-based bioinformatics software for
performing multiple sequence alignment algorithms using the ClustalW
algorithm [16]. MASON speeds up the execution of ClustalW by
parallelising the time- and compute-intensive step of calculating a
distance matrix of the input sequences, and the final progressive
alignment stage.

2.2. Grid Computing

The next approach in scaling bioinformatics software comes with
the introduction of grid computing, which represents an evolution in
the distributed computing infrastructure. Grid computing allows for a
collection of heterogeneous hardware, such as desktops, servers and
clusters, which may be located in different geographical locations, to
be connected through the Internet to form a massively distributed
high performance environment [17]. Although conceptually similar to
a cluster, grid computing presents a different set of challenges for
developing software. The comparatively large latency between nodes
in a grid environment compared to a cluster environment means that
software for grid needs to be designed with minimum communication
between nodes. Furthermore, the heterogeneity of the grid environ-
ment means that software may need to take into account differences
in the underlying operating system and the system architecture of the
nodes. Development of bioinformatics software for a Grid typically
uses a middleware layer which abstracts away the underlying grid
architecture management. A widely-used middleware layer is the
Globus Toolkit, a software toolkit for managing and developing in a
grid environment [18]. An example of a bioinformatics software
for the Grid environment is GridBLAST, an implementation of BLAST
with Globus as the middleware layer for distributing BLAST queries
across nodes in the grid [19]. Aside from Globus, there are also
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Fig. 1. Scalability and validation - two important aspects of big data bioinformatics.
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bioinformatics-specific grid middleware layers such as myGrid [20] and
Squid [21].

2.3. GPGPU

The introduction of general-purpose computing on GPUs (GPGPUs)
revived interest in the massively parallel approach initially used before
the distributed computing approach became the mainstream. GPUs are
specialised processing units designed for performing graphic rendering.
Unlike a CPU, which has a limited number of multi-processing units, a
GPU has a large number of processing units in the order of hundreds
and thousands, thus allowing for the high computational throughput re-
quired for rendering 3D graphics. Though the GPU is not a new technol-
ogy, early GPU architectures were hardwired for graphics rendering and
thus it was not until the development of a more generalised architecture
which supported general-purpose computing that GPU become more
widely used for computation. As with other technologies, there are chal-
lenges associated with implementing bioinformatics software on GPUs
due to the single instruction multiple data (SIMD) programming para-
digm where data are processed in parallel using the same set of instruc-
tions. Due to its architecture, computation for GPU will need to be
designed with minimum level of branching (homogenous execution)
with high computational complexity in order to fully take advantage
of the high multiprocessing capability of the GPU. One of the early bio-
informatics software utilising GPGPUs is GPU-RAXML (Randomized
Axelerated Maximum Likelihood), a GPU based implementation of
RAXML program for the construction of phylogenetic trees using a Max-
imum Likelihood method [22]. GPU-RAXML utilises the BrookGPU pro-
gramming environment [23], which supports both OpenGL and
DirectX graphic libraries, to parallelise the longest loop in the RAXML
program, which accounts for 50% of the execution time. Another exam-
ple of GPU-accelerated bioinformatics software is CUDASW + +, an im-
plementation of the dynamic-programming based Smith-Waterman
(SW) algorithm for local sequence alignment [24]. CUDASW + + uti-
lises the CUDA (Compute Unified Device Architecture) programming
environment [25], developed for NVIDIA GPU, to implement two
parallelisation strategies of the SW algorithm based on the length of
the subject sequence.

2.4. Cloud Computing

Cloud computing is defined by the United States' National Institute
of Standards and Technology as ‘...a model for enabling ubiquitous, con-
venient, on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applications and
services) that can be rapidly provisioned and released with minimal
management effort or service provider interaction.’ [26]. Though similar
to cluster and grid computing in that cloud computing is based on col-
lections of commodity hardware, cloud computing utilises hypervisor
technology to provide dynamic access to ‘virtualised’ computing
resources. Virtualisation enables a single hardware resource to ‘host’ a
number of independent virtual machines that can run on different oper-
ating systems, and which each share some of the underlying hardware
resources. Cloud computing is very well suited for big data bioinformat-
ics applications as it allows for on-demand provisioning of resources
with a pay-as-you-go model, thus eliminating the need of purchasing
and maintaining costly local computing infrastructure for performing
analyses. Furthermore, the on-demand provisioning of cloud computing
also enables the scaling of computational resources to match the work-
load being performed at any particular time.

Modern cloud computing is widely accessible, and is not limited to
researchers in a large university or institution that have a large comput-
er cluster. There are currently three major cloud computing providers
which offer pay-as-you-go access to computing resources - Amazon
Web Services (AWS), Google Cloud Platform and Microsoft Azure.
There are also a number of cloud computing platforms which are freely

available to researchers, such as Atmosphere cloud from CyVerse [27],
EGI cloud compute [28] and Nectar Research Cloud [29]. Cloud pro-
viders can offer access to “instances”, which are the virtual machines
for which a user can select from various configurations, including num-
ber of CPU, amount of RAM and operating system. The configuration can
range from that of a notebook (1 CPU, 2 GB RAM), to a desktop worksta-
tion (8 CPU, 16 GB RAM) or even a supercomputer (128 CPU, 2 TB RAM).
Furthermore, some cloud providers also offer specialised instances, such
as those with a field-programmable gate array (FPGA) or GPUs. An in-
stance typically starts within minutes, and the user is charged for the
duration of the instance's lifetime. As well as traditional instances
(servers or workstations in non-cloud terminology), cloud providers
offer access to a range of other software and hardware offerings. Other
offerings include compute facilities, storage and content delivery, data-
base, networking, analytics, enterprise applications, mobile services, de-
veloper tools, management and security tools, and application services.

The services offered by cloud computing providers can be roughly
categorised into Data as a Service (DaaS), Software as a Service (SaaS),
Platform as a Service (PaaS), and Infrastructure as a Service (laaS).
Data as a Service is a service where data is provided on-demand for
users through the Internet. This type of service is particularly relevant
for bioinformatics with the increasing production of biological data as
a way to store and share data for analysis. There are currently two
DaasS providers for biological data - AWS Public Dataset [30] and Google
Genomics Public Data [31] - which provide free access to public data
sources such as various reference genomes, the 1000 genomes project
and The Cancer Genome Atlas. Software as a Service, on the other
hand, provides on-demand access to software without the need to
manage the underlying hardware and software resources. There have
been many bioinformatics SaaS solutions to perform tasks ranging
from short-read alignment (CloudAligner [32] and SparkBWA [33]),
variant calling (Halvade [34] and Churchill [35]) and RNA-seq analysis
(Oqtans [36] and Falco [37]). In Platform as a Service, users are provided
with a platform for developing their own software. Some PaaS providers
also provide support for automatically scaling the computing resource
used based on the workload being run. Unlike the SaaS model where
the user is only able to access the provided software, PaaS allows
bioinformaticians to develop their own custom bioinformatics pipeline.
Examples of PaaS platforms in bioinformatics include Galaxy Cloud [38],
a cloud-based scientific workflow system, and DNANexus [39], an
AWS based analysis and management platform for next-generation
sequencing data. Finally, Infrastructure as a Service is the most basic
type of service where users are given access to the virtualised ‘instance’.
In bioinformatics, IaaS solutions are typically virtual machine (VM) con-
tainers in which a user can deploy to their own customised instance on
the cloud. Both CloudBioLinux [40] and CloVR [41] are examples of laaS
solutions for performing bioinformatics analysis. Some cloud providers,
especially those targeted for researchers, also provide some pre-built
VM snapshots or images with pre-configured software tools which
can be deployed to the instance for ease of use.

Containerisation is another virtualisation approach which is becom-
ing increasingly popular in bioinformatics - driven by the introduction
of Docker, a simplified, cross-platform tool for deploying application
software to containers. Unlike virtual machines, container-based
virtualisation - also known as operating-system level of virtualisation -
only creates lightweight, isolated virtual environments (called
containers) which utilise the system kernel without virtualising the
underlying hardware. Containers have high degree of portability as
they provide a consistent environment for software regardless of
where it is executed. This is particularly useful in the bioinformatics
field to help researchers in reproducing their studies by setting up
‘analysis’ containers which can be reused and shared [42]. Due to its
popularity in the software industry, there are a growing number of
cloud computing providers which support the deployment of con-
tainers, such as AWS EC2 container service, Google Container Engine
and Azure Container service.
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2.5. Programming Frameworks for Big Data Analysis on the Cloud

One important factor that has contributed to the widespread adop-
tion of cloud computing is the development of software frameworks
for big data analysis. The nature of big data means that it is difficult to an-
alyse them efficiently using existing computational and statistical
methods since they often do not deal with distributed storage and
often do not cope well with large data size. MapReduce was introduced
by Google in 2004 as both a programming model and an implementation
for performing parallelised and distributed big data analyses on large
clusters of commodity hardware [43]. In the MapReduce programming
model, computation is expressed as a series of Map and Reduce steps,
which consumes and produces a list of key-value pairs. Apache Hadoop
is an open-source implementation of the MapReduce programming
model. The Hadoop framework is composed of several modules, includ-
ing the Hadoop Distributed File System (HDFS), which is a distributed
and fault-tolerant storage system, Hadoop YARN for resource manage-
ment and job scheduling/monitoring, and the Hadoop MapReduce en-
gine for analysis of data. Halvade is an example of a Hadoop-based
bioinformatics tool for performing read alignment and variant calling
for genomic data (Fig. 2a). The Halvade framework is composed of a
Map step, which performs alignment of sequencing reads to the refer-
ence genome using Burrows-Wheeler Aligner (BWA), and a Reduce
step, which performs variant calling in a chromosomal region using
Genome Analysis Toolkit (GATK). Other examples of MapReduce-based
bioinformatics analysis tools include Myrna, which performs RNA-
sequencing gene expression analysis [44] and CloudAligner, a short-
read sequence aligner.

One disadvantage of the MapReduce programming model is the need
to decompose tasks into a series of map and reduce steps. Iterative tasks,
such as clustering, do not suit the MapReduce model and thus perform
poorly when implemented as MapReduce tasks. Apache Spark is a gener-
al purpose engine for big data analysis designed to support tasks incom-
patible with the MapReduce model, such as iterative tasks and streaming
analytics, through the use of in-memory computation [45]. Unlike the
MapReduce model, Spark provides a variety of operations, namely
transformations and actions, which can be chained to form a complex
workflow. Furthermore, Spark supports multiple deployment modes -
local mode, standalone cluster mode and using cluster managers,
such as YARN - thus allowing for integration with the Hadoop
framework. An example of a Spark-based tool is Falco, a single-cell
RNA-sequencing processing framework for feature quantification [37].
The Falco pipeline utilises Spark in the main analysis step for performing
alignment and quantification of reads to produce gene counts from a
portion of the sample, which are then combined to obtain the total
gene counts per sample (Fig. 2b). VariantSpark [46] and SparkBWA
[33] are other examples of Spark-based tools for performing
population-scale clustering based on genomic variation, and read
alignment of genomic data, respectively.

3. Validation

Another very important, yet largely ignored, area of big data bioin-
formatics is the problem of software validation - a process that deter-
mines whether the output of a software program conforms to users'
expectations of the intended function. For example, NGS-based assays,
such as whole genome sequencing (WGS), are now ubiquitous in al-
most all areas of biomedical research, and is beginning to be used in
translational applications, as exemplified by the use of NGS-based
targeted gene panels in clinical pathology laboratories [47]. Ensuring
that the computational pipeline is producing the correct and valid re-
sults is critical, particularly in a clinical setting. Many bioinformatics
analysis programs have been developed to analyse NGS data, however
recent studies found the results generated by different bioinformatics
pipelines based on the same sequencing data can differ substantially.
Bennett et al. [48] recently reported a study initiated by the Boston

Children's Hospital. Twenty three international bioinformatics groups
analysed NGS data relating to a group of participants with known geno-
mic disorders. Only one third of the groups reported any of the known
variants that the participants were known to contain. In another
study, O'Rawe et al. [49] reported on the lack of agreement between a
number of variant calling pipelines when analysing the same data. Be-
yond variant calling, low concordance is also observed when comparing
analysis programs used in RNA-seq analysis [9], ChIP-seq analysis
[50-52], and BS-seq analysis [53]. These troubling reports highlight
the urgent need to ensure bioinformatics pipelines for NGS analysis
are subjected to better validation, especially for translational genomic
medicine applications.

Lack of quality assurance (QA) of software pipelines is a critical prob-
lem that has a widespread impact on all areas of biomedical research
and clinical translation of NGS-based assays. The main difficulty is that
while it is possible to perform validation of a software program in a
test environment using simulation data or a limited number of ‘gold
standard’ test data sets, it is generally impossible to determine the
correctness of the software program on real data within the software's
deployment environment. Many bioinformatics programs have a large
and complex input space, implying a large number of different test
cases need to be sampled to ensure the input space is comprehensively
covered. This implies that the testing results on a suite of simulation
data may or may not fully recapitulate the characteristics of the real
data. Obviously it would be the best to directly validate the correctness
of a program using specific real input data, but it is often difficult, if not
impossible, to decide if the output based on this real data is correct -
otherwise the program would not be needed in the first place. This
type of user-oriented software QA is lacking in bioinformatics, especially
in NGS-based data analysis.

3.1. Current Bioinformatics Software Testing Approaches Used in the
Genomics Field

Using a variant calling pipeline for analysing WGS data as an exam-
ple, a common approach to testing a variant calling pipeline (involving
short read alignment, variant calling, and variant annotation) to is to run
the pipeline using a gold standard reference test data and compare the
results (i.e., the variants called) with the expected reference output. In
the US, The National Institute of Standards and Technology (NIST),
along with the Genome in a Bottle Consortium [54] and the Food and
Drug Administration (FDA), is developing such reference material for
whole human genomes. One of the goals of this partnership is to
develop reference standards, methods and data for whole human
genome sequencing. Reference data sets can also be obtained from the
manufacturer of the particular sequencing machine - e.g., [llumina's
The BaseSpace Platinum Genomes Project and the Variant Calling
Assessment Tool (VCAT) [55]. While this approach is a good starting
point, it only verifies a very limited number of input/output combina-
tions. All humans are different, and clinicians want to have confidence
that the pipeline will work for every new case. For testing partial results,
a smaller FASTQ input file can be used to either manually or automati-
cally determine if the output is correct, or Sanger sequencing [56] can
be used to verify a subset of the data.

There are a number of simulation packages available that can
simulate read data, and provide a ‘ground truth’ VCF file for the
expected output. Two such programs are ART [57], and VarSim [58].
Such programs allow for the generation of large amounts of data to be
tested. While partially addressing the ‘gold-standard’ issue of lack of
data, there are additional sources of uncertainty introduced depending
upon the simulation process used.

As O'Rawe et al. [49] demonstrated, and as also commented on by Li
et al. [59], another popular testing method in the genomic sequencing
bioinformatics area is that of N-version programming. Multiple versions
of independently developed programs that are meant to solve the
same problem are executed, and the outputs of these programs are
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compared to check if they are same. One obvious shortcoming of this is
that if different results are obtained, the tester may not be able to
determine which program is correct.

In this review, we argue that adapting and extending state-of-the-
art methods in the field of software testing can provide a foundation
for developing evidence-based, effective and readily deployable
strategies for bioinformatics QA.

3.2. Software Testing Concepts and Approaches

According to Myers et al. [60], the goal of software testing in general
is to ensure that a program works as intended or, perhaps more realis-
tically, to identify as many errors as possible in the underlying software.
There are testing techniques that identify problems by exploring the in-
ternal structure of the software, applying inputs based on the various
logic built into the system. Such a type of testing is termed white-box
testing. Black-box testing, on the other hand, is the process of examining
the output or behaviour of a software system, without any examination
of the internal workings of the system. In many practical situations,
bioinformatics pipelines are comprised of many individually complex
programs solving some subset of an overall task. Some of the individual
components may include software for which the source code is not
publicly available. Therefore, we argue that in many cases, a black-box
testing approach is the only practical option.

In many classes of software applications, it may be possible to verify
the correctness of a small subset of output, but it is often impossible to
obtain a systematic mechanism to verify all the output. The mechanism
that enables any input to be verified is called an oracle [61]. In most
practical cases, bioinformatics big data analysis software lacks an oracle
[62]. Ideally, we would like to directly test the correctness of a bioinfor-
matics program with respect to a real input data set. Nonetheless, in the
absence of an oracle, it is impossible to easily determine the correctness
of a program with respect to an input.

3.3. Metamorphic Testing

Metamorphic testing (MT) is a state-of-the-art technique of software
testing, first introduced by Chen et al. in 1998 [63], as a method to deal
with situations where there is no oracle. Rather than verifying individu-
al output values, multiple related input test data are executed by the
same program under test, and their corresponding outputs are
examined to determine if known relationships hold. Each particular
domain-specific relationship is termed a metamorphic relation (MR).
Some test cases (namely source test cases in the context of MT) can be
selected by random or based on real data. Further test cases (namely
follow-up test cases in the context of MT) can be generated based on

the source test cases and according to the MRs. All test cases are execut-
ed, and then the outputs of the source and follow-up test cases are
checked against the MRs. If any pair of source and follow-up test cases
violates (that is, does not satisfy) their corresponding MR, the tester
can say that a failure is detected and hence conclude that the program
has bugs. In other words, MT tests for properties that users expect of a
correct program.

As an example, here is an MR that can be used to test the correctness
of a RNA-seq gene expression feature quantification pipeline (Fig. 3):
After the source execution of the feature quantification pipeline using
real data, we select a gene (e.g., Gene B in Fig. 3) with non-zero read
count, and duplicate all the reads that are mapped to this gene to con-
struct the input for the follow-up test case. The expectation is that if
Gene B has read count of x in the source test case, the read count of x
in the follow-up test case should be 2x, and the read count of all other
genes should remain identical to that of the source case. This rather
simple example illustrates two important features of MT: (1) we can
conduct the test with real data, (2) the follow-up test case is constructed
by both the input and output of the source execution, and (3) it is
possible to generate additional follow-up test cases using this same
MR by targeting different genes.

Let's consider another example to illustrate how MT can be applied to
test a supervised machine learning classifier. Let's denote classifier C takes
three sets of input: training data set Dyin, labels of the training data set
Lirain, and the test sample des. The goal of the classifier C is to predict
the label of dieg, i.€., liest = C (Dtrain, Lerain, drest)- It is in general very difficult
to validate the correctness of any given output prediction /g, since if we
can easily determine the correctness of the output, there is no need to
build the classifier Cin the first place. In the field of machine learning, val-
idation is normally performed by cross-validation or by the use of a held-
out test set. Nonetheless, these strategies rely on using data with known
labels. They are not able to directly test the validity of the specific predic-
tion output Les based on the input dies. The most critical step in MT is to
identify some desirable properties that C should satisfy, and use them to
construct MRs. Here are several simple MRs for illustration purposes (a
more comprehensive list of MRs can be found in Xie et al. [64]):

MR1 (consistency upon adding an uninformative feature): After
executing the source test case, add one additional feature with the
same value, such as 0, to all samples in Dy, and diest. Since this fea-
ture does not discriminate between samples from different classes,
this feature can be treated as an uninformative feature. We expect
that the output of the follow-up test case is the same as that of the
source test case.

MR2 (consistency upon re-prediction): After executing the source
test case, append dyes t0 Dyrain, and Liesy tO Lain. We use the modified

ATGACCAATGATGA
GTACACGTGATGAG
AGTGTACGGATAAA
CGCAGCGAGGACGA
CGGCGCGGTGCAGA
TGATGATGAGTATA
ATATAAAGCGCACA
CACGATCGACGTAC

Feature Quantification
Pipeline

Source
Execution

Gene A: 4
> | Gene B: 2

Gene C: 3

Create
follow-up
input by
duplicating
reads from
Gene B

ACTAGCATGTAGAC

ATGACCAATGATGA

GTACACGTGATGAG
AGTGTACGGATAAA
CGCAGCGAGGACGA
CGGCGCGGTGCAGA
TGATGATGAGTATA

Feature Quantification
Pipeline

Gene A: 4
> | Gene B: 4

Gene C: 3

Follow-up
Execution

CGGCGCGGTGCAGA

Fig. 3. An example to illustrate how metamorphic testing (MT) can be used to test the correctness of a RNA-seq feature quantification pipeline.
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training data to predict the label for di.s; in the follow-up test case. We
expect that the output of the follow-up test case is the same as that of
the source test case.

It should be noted that these MRs were specified without knowing
the classification algorithm (k Nearest Neighbour classifier, Support
Vector Machine, neural network, etc.). They were derived from some
intended user behaviours of a reasonable supervised classifier. Some
of these MRs may be necessary properties of a specific supervised
classification algorithm if these properties can be derived from the spec-
ification of the algorithm. In this case, MT is said to be performing soft-
ware verification. Otherwise, MRs that are derived primarily from user
expectation is said to be performing software validation. Violation of
one or more MR indicates potential limitations in the algorithm or de-
fects in the software implementation. Even though passing all MRs
does not necessarily imply the correctness of the program under test,
it does provide confidence that the program is behaving as expected
with respect to your specific input data. Recent study showed that a
small number of diverse MRs, even those identified in an ad hoc manner,
had a similar fault-detection capability to a true test oracle [65]. Impor-
tantly, MT can use real data as source test cases, therefore allowing
testers to test the correctness of the program with respect to the specific
real data in its normal operational environment. This unique feature of
MT is highly desirable for bioinformatics QA.

MT has been used in the testing of many types of software, such as
web services [66], compilers [67], feature models [68], machine learning
[64], partial differential equations [69], and bioinformatics [70]. Within
the field of bioinformatics, there have been a number of studies that es-
tablish the case for MT. In 2009, Chen et al. [71] apply MT to two differ-
ent bioinformatics problems: network simulation and, short sequence
mapping. The authors show that MT can be simple to apply, has the po-
tential to be automated, and is applicable to a diverse range of programs.
A key point of interest to bioinformaticians, is that the construction of
relevant MRs draws on domain knowledge. MT also has its limitations,
and just because all MR's are satisfied does not imply that the program
is free of defects - a fundamental limitation of all dynamic software test-
ing techniques.

4. Discussion

This review has surveyed some methods for implementing scalabil-
ity and validation for big data bioinformatics software, more specifically
for sequence-based analysis tools. With the increasing push to generate
sequencing data sets at the single-cell level of resolution [72,73], it is
clear that analysis of these large amount of NGS data will need to be per-
formed on large-scale cloud and/or grid infrastructure, using software
which can efficiently scale to handle the large amount of data. However,
the techniques and concepts introduced in the review are not limited to
sequence-based analysis tools and can be adopted to bioinformatics
software in other fields. There are already a number of tools which
have been developed using big data frameworks in other bioinformatics
fields, such as AutoDockCloud, a tool for drug discovery through virtual
molecular docking which utilises the Hadoop MapReduce framework
[74], and PeakRanger, a tool for calling peaks from chromatin immuno-
precipitation sequencing (ChIP-Seq) data also on the MapReduce
framework [75].

The central methodological concept for dealing with scalability is
divide-and-conquer. The goal is to divide a large task into many small
portions and process them in parallel. The main requirement for the
success of such an approach is to have an efficient means to manage
the division and merging of data and computation, and the availability
of a variable amount of IT resources on demand. Modern cloud-based
computing technology and big data programming frameworks provide
a systematic means to tackle these issues.

The central methodological concept for dealing with validation is
multiple executions. Through executing a program multiple times on
related inputs (based on real input or simulated data) we are able to
check whether the output conforms to a set of properties that a user
might expect of the correct results. The idea is that specifically designed
multiple executions allows a user to extract useful information about
the program, and whether the output is likely valid with respect to
users' expectations.

Methodologically, the idea of multiple executions involves making
the computational task larger, which further highlights the importance
of scalability. Without a scalable computing solution, it would be diffi-
cult to effectively implement a validation solution in practice. As an il-
lustration of this concept, our team has recently developed a pilot MT-
based validation framework for a whole exome sequencing processing
pipeline, which is easy, cost effective, and available as an on-demand
platform on the cloud [70]. We showed that using this cloud-based
MT validation framework reduced the overall runtime seven-fold com-
pared to running it on a standalone computer with comparable power.
This initial effort on using cloud-based computing to substantially speed
up the validation runtime highlights the relationship between scalabil-
ity and validation. We believe further research in this area will contrib-
ute toward building scalable and valid bioinformatics programs for big
biological data.
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