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Abstract

Traumatic brain injury is among the most common causes of death and disability in youth and young adults. In
addition to the acute risk of morbidity with moderate to severe injuries, traumatic brain injury is associated with a
number of chronic neurological and neuropsychiatric sequelae including neurodegenerative diseases such as
Alzheimer’s disease and Parkinson’s disease. However, despite the high incidence of traumatic brain injuries and the
established clinical correlation with neurodegeneration, the causative factors linking these processes have not yet been
fully elucidated. Apart from removal from activity, few, if any prophylactic treatments against post-traumatic brain injury
neurodegeneration exist. Therefore, it is imperative to understand the pathophysiological mechanisms of traumatic
brain injury and neurodegeneration in order to identify potential factors that initiate neurodegenerative processes.
Oxidative stress, neuroinflammation, and glutamatergic excitotoxicity have previously been implicated in both
secondary brain injury and neurodegeneration. In particular, reactive oxygen species appear to be key in mediating
molecular insult in neuroinflammation and excitotoxicity. As such, it is likely that post injury oxidative stress is a key
mechanism which links traumatic brain injury to increased risk of neurodegeneration. Consequently, reactive oxygen
species and their subsequent byproducts may serve as novel fluid markers for identification and monitoring of cellular
damage. Furthermore, these reactive species may further serve as a suitable therapeutic target to reduce the risk of
post-injury neurodegeneration and provide long term quality of life improvements for those suffering from traumatic
brain injury.
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Background
Traumatic brain injury (TBI) represents one of the most
common causes of death and disability in young people
[1–3]. About 1.6 million people per year experience
traumatic brain injuries in the USA [4, 5]. Besides the
initial mechanical damage, TBI can induce a process of
secondary injury [6, 7], which can lead to long term
neurological and neuropsychiatric sequelae [8, 9], depict-
ing a serious public health problem worldwide [10].
Some of the observed post-TBI sequelae include, but are
not limited to, neurodegenerative diseases [11], such as
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Alzheimer’s disease (AD) [12], Parkinson’s disease (PD)
[13], and amyotrophic lateral sclerosis (ALS) [14].
Importantly, the mechanisms underlying the patho-

genesis that lead to such disabilities are still incompletely
understood [15, 16]. Therefore, while the post-TBI
central nervous system (CNS) illnesses have a high
prevalence [17]; few, if any, treatments are available to
deter and prevent the pathological progression thought
to lead to chronic neurological diseases and conditions
[18–21]. Thus, a better understanding of the molecular
mechanisms underlying TBI and neurological diseases is
crucial to uncover the potential link between these con-
ditions to enable development of effective diagnostic and
treatment strategies which could reduce the incidence of
post-TBI neurological complications.
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This review intends to present the analysis of the
current related published literature, that could lead to a
better understanding of the mechanisms underlying TBI
and neurodegenerative diseases, that might be linked to
the development of neurodegenerative diseases post-TBI.

Pathological mechanisms of TBI
In most cases, TBI results from a physical blow to the
head during traumatic events such as falls [22], motor ve-
hicle collisions [23], or sports related injuries [24], al-
though these injuries can also be inflicted by exposure to
explosive blasts [25]. TBI is currently classified as mild,
moderate, or severe based on clinical observations and
history such as duration of loss of consciousness and post
traumatic amnesia [26, 27]. Mild TBI (mTBI) comprises
the majority of cases [28]; however, diagnosis is primarily
by exclusion of injuries requiring specific intervention
[29]. Furthermore, inconsistent clinical definitions be-
tween governing organizations presents challenges in
comparing incidence rates of mTBI [28, 30]. This difficulty
in diagnosis can be a serious concern due to acute effects
such as second impact syndrome [24] or through chronic
effects arising from repetitive TBI [31].
Damage to nervous tissue can be classified as primary

injury, which occurs as a direct result of the experienced
physical forces [32]; and secondary injury, which arises
from pathophysiological processes following the trau-
matic event [33]. The primary injury process consists of
the rapid acceleration-deceleration applied to the head,
which is thought to damage the brain by producing
shear forces within nervous tissue resulting in axonal in-
jury and impact with the cranial wall [34]. These injuries
can be ipsilateral or contralateral to the blow, and have
been described in literature as coup and contre-coup, re-
spectively [35]. In more severe cases, injury can cause
intracranial hemorrhage and subsequent intracranial
hypertension [26]. This increase in pressure not only
damages brain tissue by compression, but also by caus-
ing cerebral hypoperfusion and potential ischemic injury
by decreasing cerebral perfusion pressure [36].
Secondary injury in TBI typically occurs in the days,

weeks, and months following the traumatic event due to
biochemical changes in nervous tissue [37, 38]. This
damage is frequently mediated by free radicals and react-
ive oxygen species (ROS) produced from ischemia-
reperfusion injury, glutamatergic excitotoxicity, or
neuroinflammation [39–41]. Following the initial
trauma, axonal damage from the shear forces of primary
injury affects membrane permeability and ionic balance
[42]. In particular, uptake of calcium through either
membrane disruption or activation of NMDA and
AMPA receptors by glutamate can result in mitochon-
drial dysfunction and overproduction of free radicals
and activation of apoptotic caspase signaling [43–45].
Subsequent inflammatory processes such as activation of
native microglia may also contribute to oxidative stress
via oxidative burst or through secondary effects of in-
flammatory cytokines [46]. These reactive radicals can
overwhelm endogenous antioxidant systems and inflict
cellular damage via lipid peroxidation and protein modi-
fications [47]. The secondary products of free radical
mediated lipid peroxidation, such as reactive carbonyl
species, are also electrophilic and can further propagate
oxidative damage to biomacromolecules [48, 49].
Clinical and preclinical studies have demonstrated the

presence of oxidative stress and its byproducts following
TBI with both serological and histological methods [50–52].
In animal studies, these products have been shown to be el-
evated as early as one day [53] following a single traumatic
event and to persist up to 42 days with repeated injury [50].
Furthermore, spectroscopic evaluation suggests that the
major endogenous antioxidants glutathione and ascorbic
acid may remain diminished for 3 and 14 days post injury,
respectively [38]. Elevation of F2-isoprostane, a lipid peroxi-
dation byproduct, has been observed in the cerebrospinal
fluid of human severe TBI patients with peak levels at 1 day
post injury; however this was primarily an evaluation of
hypothermia treatment and did not establish comparison
with healthy controls [47]. Lipid peroxidation products such
as 4-hydroxynoneal were also found to be elevated in the
serum of severe TBI patients requiring long term care [54].
Although chronic oxidative stress has not currently been
observed following single mild injuries in humans, it
appears likely that oxidative stress and its associated pro-
cesses may exacerbate or prolong post-concussive symp-
toms [55]. Given the common involvement of oxidative
stress in excitotoxicity and reperfusion injury, it is likely that
oxidative stress plays a central role in secondary neuronal
injury following TBI.
The pathological mechanisms in secondary TBI are par-

ticularly interesting due to capacity to prolong cellular in-
jury beyond the initial traumatic event. Some of these
characteristic changes, such as oxidative stress and excito-
toxicity, have also been observed in the pathophysiology
of neurodegenerative diseases which suggests a potential
pathological mechanistic link between TBI and neurode-
generative diseases. Therefore, review of the pathological
mechanisms in neurodegenerative diseases and TBI may
be helpful in elucidating the causative factors for develop-
ment of neurodegenerative diseases after TBI.

Pathological mechanisms of neurodegenerative
diseases
Despite divergent clinical presentation, AD, PD, and
ALS have several common characteristics [56]. Each
disease has identified genetic risk factors, although most
cases are idiopathic [57–59]. Pathologically, these dis-
eases are characterized by the degeneration of specific
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neuronal populations associated with the observed clin-
ical symptoms [60, 61]. In addition, aggregation or dys-
function of amyloid-β (Aβ), α-synuclein, and superoxide
dismutase (SOD1) are commonly found in AD, PD, and
ALS, respectively [56, 62–65]. Although the exact mech-
anisms of pathogenesis have not been fully determined,
it has been suggested that oxidative stress, glutamatergic
excitotoxicity, and neuroinflammation play key roles in
the pathophysiology of neurodegeneration, particularly
in AD [66–71], PD [72–76], and ALS [56, 77–81].
Alzheimer’s disease has an extraordinary high preva-

lence in the elderly population that greatly reduces the
quality of life and the survival [82]. In 2008, as many
people as 24 million had dementia world-wide, of whom
most had AD; number which was expected to double
every 20 years as the population aged [83]. Alzheimer’s
disease’s pathology involves the presence of neuritic
plaques and the loss of cholinergic neurons in the brain,
but the underlying mechanisms leading to these events
are still unclear [84]. Neurodegeneration in Alzheimer’s
disease is thought to occur due to the accumulation of
amyloid β-peptide (Aβ) in plaques in the brain tissue,
but the mechanisms underlying its aggregation and tox-
icity are still incompletely understood [85].
Specifically, studies have indicated that oxidative stress

might play a major role in AD pathogenesis [86], due to
direct evidence of increased neurotoxic markers of lipid
peroxidation, such as 4-hydroxynonenal, in human sub-
jects [87], excessive brain protein oxidation in AD [88],
increased nuclear DNA oxidation in the brain of AD pa-
tients [89], 30% increased activity of the free radical
scavenging enzyme SOD-1 in cell lines of AD patients
[90], and significantly, direct evidence that beta amyloid
generates free radical peptides [70, 91]. Additionally, it
has been well documented that Aβ-induced free radicals
and lipid peroxidation are major contributors to neur-
onal death in AD [92, 93]. Remarkably, in vitro and
animal studies have shown that the antioxidant effect of
cannabinoids was able to prevent the neurodegenerative
process occurring in the disease [94], suggestive of the
important role of oxidative stress in the neurodegenera-
tive process of AD.
Another process that has been related to Aβ toxicity is

inflammation, which has also been linked to oxidative
stress by inflammatory cytokines’ activity [95]. Under
healthy conditions, inflammatory processes are expected
to restore cellular homeostasis and rebalance redox
equilibrium [96]; but in AD conditions, the inflamma-
tory processes are altered with co-localized Aβ deposits,
inflammatory related proteins, and activated microglia
[97]. Microglia and astroglia recognize misfolded and
aggregated proteins to trigger an innate immune re-
sponse that contributes to the disease progression and
severity [98]. In other words, microglia recruitment
promotes Aβ clearance and is neuroprotective in early
stages of AD, but as the disease progresses, inflamma-
tory cytokines downregulate Aβ clearance genes, and
promote Aβ accumulation, contributing to neurodegen-
eration [99]. Furthermore, cytokines can induce the pro-
duction of arachidonic acid, which exacerbates
neurodegenerative processes by increasing extracellular
levels of glutamate, known to cause excitotoxicity in AD
[100]; and can also lead to the formation of superoxide
free radicals, which have a direct effect in cellular death
[101]. Moreover, studies suggest that non-enzymatically
glycated tau induces oxidative stress, which results in
cytokine gene expression and release of Aβ-peptide in
AD [102], indicating a vicious pathological mechanistic
circle between cytokines and oxidative stress that
contributes to the progression and severity of AD. Add-
itionally, oxidative damage from reactive oxygen species
and lipid peroxidation products, such as 4-hydroxy-2-
nonenal (HNE), is capable of inhibiting glutamate trans-
porters, causing a decreased glutamate uptake critical
for neuronal survival, an increased glutamate concentra-
tion in the synaptic cleft, and subsequent excitotoxicity
that leads to neurodegeneration in AD [103].
Chronic traumatic encephalopathy (CTE) is a progres-

sive neurodegenerative syndrome associated with re-
peated blunt force impacts to the head with transfer of
acceleration and deceleration forces to the brain [104];
in other words, caused by repetitive mild traumatic brain
injuries [105], although the central pathological mechan-
ism explaining the development of progressive degener-
ation in CTE has not been elucidated [106]. CTE has
been clinically associated with behavioral and personality
changes, parkinsonism and dementia [107, 108]. Original
findings of CTE studies were similar to Alzheimer’s dis-
ease, but different in the predominance of tau protein
deposition over amyloid [109]. The tau protein depos-
ition in CTE is interesting since it has been previously
demonstrated that tau inhibits kinesin-dependent trans-
port of peroxisomes, and that the loss of peroxisomes
makes the cells vulnerable to oxidative stress, leading to
degeneration [110]. This tau protein deposition, which
also occurs in AD but less dramatically when compared
to CTE, also inhibits the transport of amyloid precursor
protein (APP) into axons or dendrites, causing its accu-
mulation in the cell body [110]. Besides tau proteins,
fragments of TDP43, a nuclear RNA/DNA binding pro-
tein that regulates the transcription of thousands of genes
[111], have been identified in AD, PD, ALS, and CTE,
which induce the misfolding of SOD1, predisposing the
surrounding cells to free-radical damage [112, 113]. These
observations indicate the relevance of oxidative stress also
in CTE neurodegeneration.
Chronic inflammation has also been observed in CTE

and AD, which is thought to exacerbate the
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neurodegenerative process [31], and as previously de-
scribed, has a relationship with oxidative stress though
inflammatory cytokines. Moreover, it has been previ-
ously described that after the initial head trauma in
CTE, microglia get activated and release toxic levels of
cytokines, excitotoxins like glutamate, etc.; the excitotox-
ins inhibit phosphatases, resulting in hyperphosphory-
lated tau, neurotubule dysfunction, and neurofibrillary
tangle deposition, all being relevant components of the
CTE syndrome; and besides, there appears to be a syn-
ergy between proinflammatory cytokines and glutamate
receptors that increases reactive oxygen species and
worsens neurodegeneration in the injured brain [106,
114].
Parkinson’s disease is the second most prevalent neu-

rodegenerative disease in industrialized countries with
prevalence of approximately 0.3% of the adult population
[59]. Histologically, PD is characterized by the formation
of α-synuclein rich Lewy bodies and subsequent death of
the dopaminergic neurons of the substantia nigra [63].
Several genetic risk factors have been identified including
mutations to the ubiquitin proteasome system [59, 115].
Although the exact mechanisms which initiate dopamin-
ergic degeneration in non-hereditary PD are still unclear,
it has been suggested that oxidative modification or car-
bonylation of the lysine rich N-terminus and non-amyloid
component of α-synuclein may contribute to α-synuclein
aggregation [63, 116, 117].
Consistent with this notion, the reactive carbonyls

produced as secondary products in oxidative stress have
been shown to form lysine adducts and induce α-
synuclein aggregation in vitro [118, 119]. In addition,
animal models of PD using agents such as 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine have demonstrated in-
creased production of superoxide in dopaminergic cells
relative to cortex [120]. Furthermore, mitochondrial
localization of α-synuclein has been shown to promote
oxidative stress in vitro [121]. Neuroinflammation has
been proposed as a partial contributor to the oxidative
stress in PD [122] with activated microglia being ob-
served in the substantia nigra and striatum of deceased
PD patients [123, 124]. Similarly, activated microglia
were seen in rhesus monkeys up to 14 years after model
induction [125]. Additionally, glutamatergic excitotoxi-
city has been proposed to play a role in PD. Rotigotine,
an FDA approved dopamine receptor agonist, has been
suggested to improve the efficiency of glutamate trans-
porter 1 [126] (GLT-1), and has been shown to offer
neuroprotection against glutamatergic excitotoxicity in
dopaminergic cell culture [127].
On the other hand, ALS is a fatal neurodegenerative

disease characterized by the death of motor neurons in
the central nervous system and is the most common
motor neuron disease [128]. Approximately 10% of ALS
cases have been attributed to genetic causes while the
majority are idiopathic [57]. Mutations affecting super-
oxide dismutase (SOD1) account for nearly 20%, of fa-
milial cases; however, this accounts for only 2% of cases
overall [58]. Despite identification of these mutations,
the exact pathological mechanism is yet to be deter-
mined [129].
SOD1 mutant mouse models have demonstrated for-

mation of SOD1 aggregates [64]. Given the role of
SOD1 in detoxification of the superoxide radical [130], it
was previously suggested that loss of function could
cause increased cellular exposure to reactive oxygen spe-
cies [131]; however, this hypothesis has been challenged
by findings of normal development of SOD1 deficient
mice in the absence of significant traumatic insult [132].
Furthermore, Bruijn et al. found that SOD1 mutant ani-
mals showed no significant improvement in symptomatic
progression with knockout or coexpression of wild type
SOD1 [64] which suggests that the mutation results not in
loss of function, but rather a gain of toxic properties. Stud-
ies in rats and human patients suggest that, similar to α-
synuclein and Aβ, SOD1 mutation results in formation of
potentially cytotoxic protein aggregates even in patients
lacking known mutations of SOD1 [62, 64, 133]. In
addition, the altered catalysis performed by some mutant
variants results in diminished astroglial reuptake of glu-
tamate via inhibition of GLT-1 [134–137]. Indeed, Rilu-
zole, an FDA approved treatment for ALS, has been
suggested to alleviate glutamatergic excitotoxicity via a
variety of mechanisms including increased glutamate up-
take via GLT-1 [138] and blockade of sensitive channels
[126]. Hence, it appears that oxidative stress is also in-
volved in the processes of neuronal death and disease pro-
gression in ALS [139].
Given its role in mediating damage from neuroinflam-

mation and excitotoxicity, it is likely that oxidative stress
plays an important role in the pathophysiology of AD,
PD, and ALS in a similar fashion to TBI. As such, ad-
dressing oxidative stress in neurodegeneration could
serve as an effective strategy in neuroprotection.

Behavioral and molecular mechanisms linking TBI
to neurodegenerative diseases
Several studies have reported an increased incidence of
the development of neurodegenerative diseases after TBI
events. Previous reports have indicated a three times
higher incidence of PD among TBI victims, compared to
overall cases [13]. Similarly, the incidence of AD has
been reported to be higher for post-TBI cases [140, 141].
TBI has also been suggested to be a risk factor for ALS
with repeated studies in professional Italian soccer
players showing elevated risk of disease [142, 143]. A
case control study of ALS patients in the United States
also found a nearly 11-fold increase in ALS risk with
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repeated TBI [14]. However, at this time it appears un-
likely that a single occurrence of TBI significantly affects
risk of ALS [14, 144]. In addition, chronic traumatic en-
cephalitis (CTE), a tau pathology, has drawn increasing
attention due to presence in NFL players and profes-
sional athletes that suffer from repeated TBI [107, 145].
Because the incidence of neurodegenerative diseases and
conditions appears to be increased after TBI, it is rele-
vant to discuss the possible behavioral and molecular
mechanisms linking TBI to neurodegeneration.
TBI victims and TBI animal models have been shown

to present characteristic pathological changes in key pro-
teins, reflecting the interruption of axonal transport due
to axonal injury [146]. The accumulated proteins that in-
duce protein neuropathy include Aβ [147], α-synuclein
[148], and tau protein [149]. These protein changes are
particularly interesting, since it is well-established that
Aβ protein aggregation is an important pathological
component of AD [150], α-synuclein protein aggregation
is a critical characteristic of PD [151, 152], and tau pro-
tein aggregation is important in the pathogenesis of CTE
[153] and AD [154]. Remarkably, these protein neuro-
pathological changes can be promoted in all three pro-
teins via oxidative stress related free radicals and
reactive aldehydes which are commonly elevated follow-
ing TBI [77, 118, 119, 155, 156]. In addition, the reactive
aldehyde byproducts of lipid peroxidation have been
shown to cause further lipid peroxidation [52]. Given
that these pathological protein states can also induce
production of free radicals through excitotoxicity [127,
128] or alteration of mitochondrial ion balance [92, 121]
and that reactive aldehydes can induce further lipid per-
oxidation and protein carbonylation [48, 49, 157, 158], it
is possible that oxidative stress holds a key role in a self-
propagating cycle of lipid peroxidation, protein carbonyl-
ation, and neurodegenerative protein aggregation.
TBI patients and TBI animal models have shown be-

havioral signs such as post-TBI dementia that resembles
AD [159]; post-TBI motor deficits that provide evidence
of post-TBI brain tissue damage in the area of the hippo-
campus [160], resembling brain tissue damage in AD
[161]; and damage in the basal ganglia [162], resembling
the brain tissue damage that occurs in PD [163]. Func-
tional magnetic resonance imaging (fMRI) studies have
also indicated transient and persistent neuropathological
functional changes in the brain of TBI victims that could
contribute to the development of chronic neurodegener-
ative diseases [164]. These changes observed in
post-injury patients suggest that TBI could inflict the
initial tissue damage that resembles or promotes
processes common in the pathophysiology of neurode-
generative diseases.
Based on the central role that oxidative stress plays in

post-TBI secondary injury and in the pathophysiology of
neurodegeneration, it is probable that oxidative stress is
a key process in linking TBI to increased incidence of
neurodegeneration. Therefore, oxidative stress may serve
as a therapeutic, diagnostic, or prognostic marker in
evaluating the risks of long term neurological conse-
quences following TBI.

Effective diagnosis and treatment of post-TBI
neurological sequelae
Considering the significant risks incurred by TBI, it is
clear that there is an imminent need for effective
methods of early diagnosis, management, and monitor-
ing of TBI patients to curtail the incidence of post-TBI
neurological sequelae. At this time, diagnosis of TBI is
based primarily on patient provided history and clinical
observations [165–167]. Several clinical workflows have
been developed for evaluation of mTBI, which is the
most prevalent form of clinical TBI, including the Sport
Concussion Assessment Tool and Military Acute
Concussion Evaluation; however, these assessments are
designed for use shortly following injury and, as such,
rapidly diminish in sensitivity with delayed evaluation
[168]. As well, the Glasgow Coma Scale has been in use
for decades and allows for both rapid and consistent
communication of patient condition [169]; nevertheless,
the currently accepted threshold score of 13 may not be
adequate to exclude visible abnormalities on computed
tomography imaging that require neurosurgical
intervention [170]. Due to these shortcomings in
current diagnostic methodologies, civilian and military
work groups have recommended the development of
fluid or imaging based biomarkers for identification of
mTBI [166, 168].
Several compounds and proteins have been suggested

to serve as fluid biomarkers including glial fibrillary
acidic protein (GFAP), calcium binding protein S100B,
and tau protein [171]. In most cases, presence of these
biomarkers is partially indicative of blood brain barrier
disruption as they are typically confined within the
central nervous system [171]. These proteins have been
shown to be acutely elevated following TBI in human
patients [172–174], but currently face challenges of low
specificity [175, 176], poor correlation with development
of post-concussive symptoms [177], and poor correlation
with imaging abnormalities [178, 179].
Given the key role of oxidative stress and neuroinflam-

mation in secondary neuronal injury and neurodegener-
ation, it is likely that the products of these processes
may also serve as suitable biomarkers. As previously
discussed, plasma levels of several oxidative stress and
inflammation related markers have been observed to be
elevated in serum up to 42 days after multiple blast in-
juries [50] and as early as 1 day following a single injury
[53]. Furthermore, lipid peroxidation products, such as
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acrolein and 4-hydroxynonenal, have also been shown to
be involved not only in TBI secondary injury [50, 53], but
also in other modes of neuronal insult such as spinal cord
injury [51, 180] and ischemia-reperfusion injury [181].
Given that these peroxidation products are not only indi-
cative of damage, but also capable of causing modification
of biomacromolecules, it is possible that measured eleva-
tions may be indicative not only of present damage, but
also of continued secondary injury [49, 52, 182, 183]. As
such, alleviation of oxidative stress could serve as a viable
prophylactic strategy to diminish the risk of post TBI neu-
rodegeneration. Direct supplementation with endogenous
antioxidants, such as glutathione and superoxide dismut-
ase, has not shown significant benefits as they do not eas-
ily cross the blood brain barrier [184–186]. However, the
glutathione precursor N-acetylcysteine has shown some
acute benefits in both animal and human studies [55,
187]. In addition, targeting of downstream components of
the oxidative cascade, such as reactive aldehydes, has been
suggested as a potential strategy due to the more extended
half-lives of these compounds when compared to ROS
[180, 184, 185]. However, despite extended elevation of in-
flammatory and oxidative byproducts, trials of antioxidant
therapies have typically favored acute treatment, often
within hours of the traumatic event, suggesting that acute
treatment and monitoring may be more appropriate [184].
Considering the crucial role of post-TBI oxidative stress

in the development and progression of chronic neuro-
logical diseases, detection and therapeutic targeting of this
process appears to be a promising strategy for assessment,
treatment, and monitoring of neurodegeneration risk post
TBI. Given their connection to oxidative stress, inflamma-
tory markers and lipid peroxidation byproducts could
serve as surrogate biofluid markers. In addition, antioxi-
dant treatment strategies can help neutralize perpetuation
of cellular and molecular damage and diminish risks of
long term neurological sequelae.
Conclusion
Despite the prevalence of TBI in both civilian and mili-
tary populations and the significant neurological seque-
lae incurred by such injuries, diagnosis and treatment of
TBI remains poorly understood. Furthermore, the causa-
tive factors linking TBI to neurodegenerative diseases,
such as AD, PD, ALS, and CTE, have not been fully elu-
cidated. Several processes, including oxidative stress and
neuroinflammation, have been found to be common be-
tween TBI secondary injury and several neurodegenera-
tive diseases. In particular, oxidative stress appears to be
the key mechanism linking neuroinflammation and glu-
tamatergic excitotoxicity in both TBI and neurodegener-
ation. As such, it is probable that the oxidative cascade
induced by TBI initiates and subsequently propagates
the characteristic pathologies of neurodegeneration via
oxidation or carbonylation of key proteins.
Due to the high prevalence of TBI and neurodegenera-

tive diseases, the development of new effective strategies
for early diagnosis and treatment for TBI is imperative.
Given the key role that oxidative stress plays in linking
secondary injury and neurodegeneration, detection of
ROS and key byproducts could serve as a novel method
for identification and monitoring of potential cellular
damage. Furthermore, these reactive species may serve
as a viable therapeutic target for reduction of long term
neurodegeneration risk following TBI, having the poten-
tial to reduce the disability and death, and improve the
quality of life in the long term of the civilian and military
populations that suffer of TBI.
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