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Abstract: Hard problems have recently become an important issue in computing. Various methods,
including a heuristic approach that is inspired by physical phenomena, are being explored. In this
paper, we propose the use of simulated quantum annealing (SQA) to find a Hadamard matrix,
which is itself a hard problem. We reformulate the problem as an energy minimization of spin
vectors connected by a complete graph. The computation is conducted based on a path-integral
Monte-Carlo (PIMC) SQA of the spin vector system, with an applied transverse magnetic field whose
strength is decreased over time. In the numerical experiments, the proposed method is employed to
find low-order Hadamard matrices, including the ones that cannot be constructed trivially by the
Sylvester method. The scaling property of the method and the measurement of residual energy after
a sufficiently large number of iterations show that SQA outperforms simulated annealing (SA) in
solving this hard problem.

Keywords: quantum annealing; adiabatic quantum computing; hard problems; Hadamard matrix;
binary optimization

1. Introduction

1.1. Background

Finding a solution to a hard problem is a challenging task in computing. Such a problem is
characterized by its complexity, as it grows beyond the polynomial against the size of the input.
A class of particularly important ones are NP (non-deterministic polynomial) problems, in which
verifying a solution can be conducted in polynomial time, whereas finding the solution is of
exponential order. Examples of such problems are, among others, the TSP (traveling salesman problem),
SAT (Boolean satisfiability), graph coloring, graph isomorphism, and subset sums.

An interesting approach to the hard problems is a method inspired by physical phenomena, such
as classical annealing (CA) or quantum annealing (QA). Both CA and QA are physical processes that
obtain an ordered (physical) system from an unordered one, which can be done either thermally (as is
the case in CA) or quantum-mechanically (as is the case in QA). To simulate the physical processes on
a (classical/non-quantum) computer, numerical methods, such as MC (Monte Carlo) for CA and PIMC
(path-integral Monte Carlo) for QA, have been developed. The algorithm or computational method
inspired by classical/thermal annealing is called simulated annealing (SA), whereas the one based
on quantum annealing is called simulated quantum annealing (SQA). Both of these methods make
use of the methods in numerical CA or numerical QA. They encode the problem into a Hamiltonian
of a spin system [1] and then evolve the system from a high energy state down to the ground state.
The annealing process enables the system to avoid local minima trapping and therefore is capable of
achieving a global optimum, which represents the best solution of the problem. The main difference
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between SA and SQA is in the evolution of the systems; whereas SA uses classical/thermal annealing,
SQA employs quantum mechanism.

In SA [2–4], one starts the system in total randomness with regard to a high temperature state.
The temperature is then lowered and the system is evolved, which causes the energy to decrease so
that the system becomes increasingly ordered. To avoid local-optima trapping, a particular updating
rule, such as the Metropolis [2], is applied. The rule allows the system to (sometimes) move to a higher
energy state. Upon completion of the algorithm, the system achieves the ground state, at which point
a solution is found.

In [5], Kadowaki and Nishimori introduced quantum fluctuations to replace the thermal
fluctuations in SA to accelerate the convergence. They applied the method on an Ising model, where a
transverse field plays the role of temperature in classical SA, enabling the system to achieve the ground
state with greater probability. Santoro et al. [6] compared classical and quantum Monte Carlo annealing
protocols on a two-dimensional Ising model. They found that the quantum Monte Carlo annealing is
superior to classical annealing. In [7], Boixo et al. show experimental results on a 108 qubit D-Wave One,
which is a kind of hardware implementation of QA. A strong correlation between D-Wave and SQA,
compared to the device with classical annealing, was found, which indicates that the D-Wave performs
quantum annealing. This result raised the important issue of whether QA actually outperforms SA [8].
Rønnow et al. [9] showed how quantum speedup should be defined and measured. In an experiment
with random spin glass instances on 503 qubits of D-Wave Two, they did not find any evidence of
such speedup.

Regardless of these issues, different results have been achieved via SQA. Isakov [10] performed
quantum Monte Carlo (QMC) simulations and found that the QMC tunneling rate displayed scaled
according to system size. He also found quadratic speedup in QMC simulations when, instead of
periodic conditions, open boundary conditions were employed. In [11], Mazzola et al. demonstrated
that QMC simulations can recover the scaling of ground-state tunneling rates, which validates QA in
terms of solving combinatorial problems.

Some classes of hard problems, including ones with exponential or combinatorial complexity,
have been a subject of interest in SQA research. Martonak et al. [12] introduced an application of SQA
to solve the TSP problem. They found that a PIMC algorithm was more efficient than SA in terms of
finding an approximately minimal tour in a given graph. SQA has also been used to successfully address
other hard problems related to graphs, such as graph coloring [13] and graph isomorphism [14].

In this paper, we propose SQA as a mean to find a Hadamard matrix (H-matrix). Previously, in [15],
we successfully employed SA to perform a similar task, in which low-order H-matrices were found.
Compared to existing H-matrix construction methods, an SA-based method is more general in terms
of its capability of finding (or constructing probabilistically) an m = 4k order H-matrix, without any
restriction on the property of the order m, whereas the Sylvester method requires m = 2n, where k and
n are positive integers. This paper extends this classical SA method to its quantum version, where
PIMC based on Suzuki–Trotter formulation [16,17] is employed to simulate the quantum process.

1.2. Finding A Hadamard Matrix

A Hadamard matrix, or H-matrix, is an orthogonal binary {±1} matrix of size 4k× 4k, where k is
a positive integer. This matrix was discovered by J. J. Sylvester [18] in 1867 and then studied more
extensively by J. Hadamard [19] during his investigation of the maximal determinant problem.
The orthogonal property makes the H-matrix popular in applied areas, such as information coding
and signal transform. In the 1960s and 1970s, Hadamard code was used in space exploration for
information transmission [20,21]. In a recent technological case, CDMA (code-division multiple access),
which is widely used in cellular mobile phone systems, employs Walsh–Hadamard signals to reduce
interference between its users [22,23].
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One of the most important issues in the theory of H-matrix is its existence. Any 2l order H-matrix
with l a positive integer can be constructed using Sylvester’s method. Furthermore, if there is an m
order H-matrix, m = 4k can be shown for a positive integer k. On the other hand, no one yet knows
if there is always a 4k order H-matrix [20,21]. The latter case is formulated as the Hadamard matrix
conjecture. Up to this writing, the smallest unknown 4k order H-matrix is 668.

Various reconstruction methods have been proposed [24–29]. Nevertheless, these methods force
the order m to follow a particular rule. In [15], a general m = 4k order algorithm employing SA is
proposed. The method works on a special H-matrix called a seminormalized Hadamard (SH) matrix,
in which the first column is a 4k order unity vector ~v0 = (1, · · · , 1)T , and the rest are 4k order SH
vectors ~vi ∈ V.

A brute-force method needs to verify all NB of the 4k order binary matrix to find an H-matrix,
where NB(4k) = 216k2

[15]. Let all matrices constructed where ~v0 is the first column and a combination
of~vi ∈ V constitutes the remaining (4k− 1) columns be called quasi-SH (QSH) matrices. Since there are

NV = C(4k, 2k) SH vectors, there are about NQU(4k) ≈
(

24k

8k3/2

)4k
unique QSH-matrices. Although the

number has been greatly reduced compared to NB, exhaustive checking still requires a great amount
of computational resources. The SA method proposed in [15] is capable of finding a few low-order SH
matrices in a more reasonable time.

Following the convention in our previous paper [15], the role of the spin, i.e., its ±1 eigenvalues,
is replaced by SH spin vectors ~vi ∈ V. To find a 4k order SH-matrix, one needs (4k− 1) fully connected
SH spin vectors, which initially are set randomly. With a defined energy E(~Q), the SH spin vectors are
randomly changed in accordance with conditions whereby a transition into another SH spin vector is
allowed but a transition into a non-SH-spin-vector is forbidden.

2. Methods

2.1. Simulated Quantum Annealing

The Hamiltonian of an Ising system with spin configuration {σ̂k}, where k ∈ K = {1, 2, · · · , i, j, · · · }
is the set of the lattice’s indices, can be expressed as

Ĥ = −∑
i 6=j

Jijσ̂
z
i σ̂z

j −∑
i

hiσ̂
z
i (1)

where Jij is a coupling constant/strength between a spin at site i with a spin at site j, hj is the magnetic
strength at site j, and {σ̂z

i , σ̂x
i } are Pauli’s matrices at site i. In SQA, quantum fluctuation is elaborated

by introducing a transverse magnetic field Γ. The Hamiltonian of the system takes the following
form [5]:

ĤQA = −∑
i 6=j

Jijσ̂
z
i σ̂z

j −∑
i

hiσ̂
z
i − Γ ∑

i
σ̂x

i . (2)

In Equation (2), the transverse field is changed (reduced) over time, i.e., Γ ≡ Γ(t). On the right
hand side of the equation, the first two terms corresponds to potential energy Ĥpot, while the third one
is the Hamiltonian introduced by the transverse field, which is related to kinetic energy Ĥkin; i.e, we
can define

Ĥpot ≡ −∑
i 6=j

Jijσ̂
z
i σ̂z

j −∑
i

hiσ̂
z
i (3)

Ĥkin ≡ −Γ ∑
i

σ̂x
i . (4)
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In general, Ĥpot and Ĥkin do not commute, so [Ĥpot, Ĥkin] 6= 0. Denoting the Hamiltonian of the
potential as a function of spin configurations Ĥpot ≡ Ĥ

(
{σ̂z

i }
)
, we can also express Equation (2) in a

more general form as follows:
ĤQA = −Ĥ ({σ̂z

i })− Γ ∑
i

σ̂x
i . (5)

To simulate a quantum system described by Equation (5) using the classical method, we have to
formulate PIMC by introducing imaginary time. It can be then approximated by the Suzuki–Trotter
transform by adding one dimension in the imaginary time direction, which, for (P× N) degrees of
freedom, takes the following form [13,30]:

HST =
1
P

P

∑
p=1

Hpot
(
{Si,p}

)
− JΓ

(
P−1

∑
p=1

N

∑
i

Si,pSi,p+1 +
N

∑
j

Sj,1Sj,p

)
(6)

where N is the number of spins in the lattice, P is the number of Trotter’s replicas, Si = ±1 are the
eigenvalues of the spin matrices, and

JΓ = −PT
2

ln tanh
(

Γ
PT

)
> 0 (7)

is the nearest-neighbor coupling of the transverse magnetic field [30].

2.2. SQA Formulation of the SH Spin Vector

Similar to the previous paper [15], we employ a seminormalized Hadamard spin vector,
abbreviated here as an SH spin vector, instead of an ordinary spin. In a 4k order SH spin vector,
for a given positive integer k, 2k spins are −1 and another 2k spins are +1. Therefore, an SH spin
vector transition is allowed only if these balance numbers are conserved; otherwise, such a transition
is forbidden. We also treat the SH spin vector as a single entity, even though it consists of 4k spins,
and is denoted as~vi ∈ V, where V is the set of all 4k-order SH vectors. We formulate the energy of a
particular configuration of spin vectors {~vi} as follows:

E ({~vi}) =
∣∣∣∣∣∑i 6=j

~vi ·~vj +∑
i

~1 ·~vi

∣∣∣∣∣− 16k2 (8)

where~vi ·~vj denotes the inner product of the vector~vi with~vj.
Figure 1 shows an Ising system with four SH spin vectors with an additional Trotter’s dimension.

In the lower part of Figure 1a, each circle represents a binary spin, whereas the solid line represents the
connection among the spins. Interacting spin i with binary variable Si and spin j with binary variable
Sj contributes the term JijSiSj to the Hamiltonian. For a 4k order case, every 4k non-connected spins
are grouped into one SH vector~vi, which is illustrated as a dashed line. To simplify the diagram, each
SH vector is represented by a filled circle; thus, we obtain the upper part of Figure 1a, which is called a
slice or a replica. In the PIMC, the slice is replicated P-times, and these slices are arranged as layers
in imaginary time. Each neighboring SH vector in a replica, i.e.,~vi,p with~vi,p−1 and~vi,p with~vi,p+1,
interacts. The extension (in imaginary time) is illustrated in Figure 1b. The Hamiltonian in Equation (6)
becomes a Hamiltonian of an SH vector spin system HQV that can be rewritten as follows:

HQV =
1
P

P

∑
p=1

Hpot
(
{~vi,p}

)
− JΓ

(
P−1

∑
p=1

∑
i
~vi,p ·~vi,p+1 +∑

i
~vi,1 ·~vi,p

)
(9)
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where JΓ ≡ JΓ(t) and Hpot
(
{~vi,p}

)
represent complete-graph connections among the SH spin vectors,

similar to Equation (8), which is given by

Hpot
(
{~vi,p}

)
=

∣∣∣∣∣∑i 6=j
~vi,p ·~vj,p +∑

i

~1 ·~vi,p

∣∣∣∣∣− 16k2. (10)

The evolution of HQV in Equation (9) leads to the solution to the H-matrix search problem.

(a) (b)

Figure 1. Connection diagrams of the spins and spin vectors. We consider a four-order SH vector
in this example: (a) four SH spins are connected by a complete graph K4, and each column is then
grouped into a single SH spin vector; (b) an extension of fully connected SH spin vectors into a Trotter
dimension (imaginary time) τ.

We will now formulate the SQA method for finding the H-matrix into an algorithm, which
is displayed as pseudo-code in Algorithm 1. It takes the matrix order, the number of replicas,
the initial temperature, the initial value of Γ, and the amount of iterations and sub-iterations as inputs.
This algorithm yields either an SH-matrix or a QSH-matrix that has more orthogonal column vectors
than the initial one. The algorithm starts with a random initialization of replicas with QSH-matrices,
which are (4k− 1) sets of SH vectors, and then calculates its initial energy. Following the schedule of a
linear transverse field, a trial transition is performed for each replica. The acceptance and rejection
of the transition is based on the Metropolis criterion. The iteration will be stopped when either the
number of maximum iterations is reached or an SH-matrix is found.
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Algorithm 1 Finding an H-Matrix via Simulated Quantum Annealing

1: Input: Order of SH-matrix 4k, number of replicas P, T0, Γ0, MaxIter, SubIter.
2: Output: A 4k-order SH-matrix ~HF or a partially orthogonal matrix ~Q.
3: Initialize T = T0, Γ = Γ0

4: Initialize all-replicas R with randomly generated QSH-matrix: R← {~Q1, ..., ~QP}
5: idx ← 0
6: ~HF ←~0
7: FLAG← 0
8: while (idx < MaxIter) or (FLAG== 0) do
9: Calculate JΓ(idx; Γ, P, T)

10: Calculate current all-replicas energy: Erep = HQV(R, JΓ)

11: r ← 0
12: while r < P do
13: Select a replica at position r: ~Qr

14: Calculate potential energy of the replica: Epot = Hpot(~Qr)

15: if Epot > 0 then
16: m← 0
17: while (m < SubIter) and (FLAG== 0) do
18: Flip SH spin vector randomly: ~Qr → ~Q′r
19: Calculate energy of the updated replica: Epot1 = Hpot(~Q′r)
20: if Epot1==0 then
21: Epot ← Epot1

22: ~HF ← ~Q′r
23: FLAG← 1
24: r ← P
25: else
26: Update all-replicas: R→ R′

27: Calculate energy of updated all-replicas Erep1 ← HQV(R′, JΓ)

28: ∆Erep ← Erep1 − Erep

29: ∆Epot ← Epot1 − Epot

30: Perform a transition if allowed (Metropolis update rule):
31: if (∆Epot < 0) or (∆Erep < 0) or (e−

∆Erep
T > rand) then

32: Accept the transition: R← R′, Erep ← Erep1

33: end if
34: end if
35: m← m + 1
36: end while
37: else
38: ~HF ← ~Qr

39: FLAG← 1
40: r ← P
41: end if
42: r ← r + 1
43: end while
44: end while
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3. Numerical Experiments and Analysis

3.1. Finding a 12-Order SH-Matrix Using SQA

We have performed numerical experiments to find low-order H-matrices. Here we present results
for the H-matrix of order 12 for detailed analysis, since it is the lowest-order H-matrix that cannot
be constructed by the Sylvester method. Initially, all of the slices (replica) were filled with randomly
generated ~vi ∈ V. Note that there are two nested iterations in Algorithm 1. The first one is an iteration
of all replicas with the maximum number set to k ·M×M, where M = 12 is the H-order. The second one
is an iteration of flipping within a slice of a replica, whose number is c ·M, c can be any small number.

The energy evolution during the iteration is shown in Figure 2. The figure shows curves of
replica energy Erep, mean potential energy Epmean, and minimum potential energy Epmin. The replica
energy is defined similarly to Equation (9), i.e., Erep ≡ HQV , whereas the potential energy is given
by Equation (10) Epot ≡ Hpot. The mean and minimum values have been taken across the replicas.
Based on the figure, both Epmean and Erep fluctuate over time, but they tend to decrease. The minimum
energy of a lattice in the replica Epmin also tends to decrease. When Epmin = 0, the H-matrix is found.

Figure 2. Energy evolution during the SQA algorithm runs to find an SH-matrix of order 12. Four curves
are drawn in the graph, which are the mean potential energy Epmean, the minimum potential energy
Epmin, the replica energy Erep, and the deviation standard of the potential energy Epstd. When Epmin

equals zero, the iteration is stopped since an SH-matrix has been found. The Epstd curve indicates high
variation in the configuration of replicas at the initial stage, which is then reduced in later stages.

The degree of orthogonality of the matrix ~Q is displayed by the indicator matrix ~D ≡ ~QT ~Q.
Figure 3 shows the initial QSH-matrix and its related indicator matrix. We also show the initial and
final indicators for the first and last slices of the replica in Figure 4. It is expected that all of the
QSH-matrices become more orthogonal, indicated by a lower number of zeros in off-diagonal entries.
The last figure showing the last slice of the replica condition after the iterations are completed clearly
show this case. The found H-matrix is shown in the left part of Figure 5, with its corresponding
indicator shown on the right, which is a diagonal matrix.
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Figure 3. The initial state of the found H-matrix: (a) The QSH-matrix, white squares indicate +1, black
squares indicate −1. (b) Orthogonality indicator, gray squares show the non-orthogonality condition
of related pair of vectors.

Figure 4. Indicator matrices of the replica content: (a) the first replica at the initial stage; (b) the last
replica at the initial stage; (c) the first replica at the final stage, and (d) the last replica at the final stage.
The matrices at the initial stages show most of the vectors as non-orthogonal, whereas those at the final
stages show most of the vectors as orthogonal.
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Figure 5. Final results: (a) the found H-matrix and (b) its orthogonality indicator. The diagonal form of
the indicator matrix indicates that all of the column vectors are now orthogonal.

3.2. The Number of The Replicas and Convergence Issue

In theory, the number of Trotter’s replicas P should be as large as possible. However, in practice,
we should also consider the convergence issue when a running time restriction (iteration number)
is given. As explained in [13,30], replicas provide diversity of solutions; a greater P selects the best
solution with minimum energy. On the other hand, the replicas are not merely running Monte Carlo
on several replicas; the interactions between replicas JΓ(t) also define their behavior, i.e., a large value
of Γ at the initial stage implies a low value of JΓ, which loosens the connections, and the interactions
then become independent. A low Γ value at the end of an iteration implies a high JΓ value, which
tightens the replica connections such that they become similar. To measure these variations, we used a
simple deviation standard of energy across the replicas. Figure 6 shows the curves of variation of the
energy evolution for P = 5, 10, 15, and 20 in finding a 12-order H-matrix.

Figure 6. The effect of the replica number P in the algorithm: although ideally a large P is desired,
it also needs to be adjusted to the problem. Variation in replica energy (in terms of deviation standards
of the energy across the replicas) when searching for an H-matrix is shown. The numbers of replicas
P = 10, 15, 20 yield large variations up to the end of the iteration, whereas P = 5 yields a better result
with steady values at the end. In all of these cases, for the construction of a 12-order H-matrix, the total
maximum iteration is set to 20,000, consisting of a global iteration count of 20,000 for each P.

Since initially the replicas were set randomly, they will have almost identical energy, so variation
in the energy will be very low. In later iterations, the value will increase as a new configuration is
explored, and this will be followed by a decrease, which indicates that the replicas have become
homogeneous. This cycle of increasing–decreasing energy should be observed if P is chosen properly
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with respect to the dimension of the problem (H-order) and a sufficient number of iterations. When P
is too small, the system will perform akin to classical SA, whereas a P that is too large will cause the
system to fail. The figure shows that, for a given number of maximum iterations 20,000, the number of
replicas P = 5 is the most suitable; anything higher is too high. This also shows that frequent updates
on a limited number of replicas, compared to less frequent updates on a larger number of replicas,
better achieve convergence.

3.3. Performance Comparison: SQA vs. SA

To compare performances, in the first experiment, we measured the residual error of both
algorithms. Since the ground state is achieved when the matrix becomes orthogonal, in which case
Equation (10) will equal zero, the residual error ε will be defined as the minimum Hpot over all of the
replicas, i.e., ε = min (Hpot). We have chosen the order of the H-matrix to be sufficiently large so that
we will still have a residual error at the end of the execution of the algorithm, i.e., so that the H-matrix
is not found. We considered order M = 28 to be sufficient for this purpose, where we actually have
283 = 21,952 spins. We also chose a Trotter slice of P = 5 and plotted the curve for iterations 50 up
to 5,000,000.

Following [30], the annealing schedule was linear; i.e., the temperature T was reduced linearly
in SA, and was the transverse magnetic strength Γ. Even though T is reduced linearly, the threshold
probability Pthresh will change exponentially. By using the function

Pthresh(t) = 1− 1
2

e
−1

T(t) (11)

the threshold will start a bit higher than 0.5, which asymptotically approaches 1.0 at the end of iteration
time t. Figure 7 shows the curve of T(t), Pthresh(t), Γ(t), and JΓ(t).

(a) (b)

Figure 7. The annealing schedules in SA and SQA: (a) Linear temperature schedule and corresponding
threshold schedule in SA. (b) Linear transverse-field Γ(t) and corresponding JΓ(t) in SQA.

The experiments were repeated 10 times for each case. The averages of residual errors for each
iteration numbers are plotted in Figure 8 for both SA and SQA.

The figure shows that, although initially the residual error of SQA is larger than SA, the slope
is steeper. With a higher number of iterations, which in this case is around 100,000, SQA is superior.
Considering that SQA shows the least amount of error among the replica slices, it seems that variation
in the replica is an ideal solution. In SA, once a solution is selected, the change in spin configuration
will be less significant by the time the system reaches a lower energy state. Therefore, in terms of
finding an H-matrix, SQA is superior to SA.
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Figure 8. Residual energy left by the SA and SQA algorithms. The QAP curve shows when the
horizontal axis accounts for the MCS (the Monte Carlo step); i.e., the number of iterations in the SQA
curve is divided by the number of slices P. The figure shows that SQA outperform SA in finding an
H-matrix. Even when the number of steps is counted without the MCS, SQA eventually outperforms SA
at higher iterations, demonstrated by the steeper slope of the SQA performance curve, compared to SA.

In the second experiment, both SA and SQA were applied to matrices with an increasing size
(order). Figure 9 shows a graph of computational gain, which is defined as the ratio of the number of
SA iterations to the number of SQA iterations needed to achieve 50 percent of the residual energy of the
initial mean energy of all replicas. The horizontal axis shows the order of the H-matrix, from 4 to 20,
whereas the vertical axis shows the computational gain. The gain grows with the order of the H-matrix,
which shows that speedup increases with problem size. Based on this curve, we observe that SQA
outperforms SA for the Hadamard search problem.

Figure 9. Curve of computational gain, which is the ratio of the number of SA iterations to the
number of SQA iterations needed for the algorithm to achieve 50 percent of its initial residual error.
The horizontal axis represent the problem size, which is the order of the H-matrix. The figure shows
that the gain grows non-linearly with problem size, indicating that SQA outperforms SA.

4. Conclusions

We here propose a new method of finding an H-matrix based on SQA. We have formulated the
method into an algorithm, which has been implemented, tested, and analyzed. Low-order H-matrices,
including one of order 12 that cannot be constructed via the Sylvester method, were found. We have
also discussed the advantages of the method over classical SA. Measurements of the residual error and
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the relative running time on an increasing order of H-matrices indicate that SQA is superior to SA in
solving the Hadamard search problem.
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