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Abstract

Single-cell RNA sequencing is a powerful technique that continues to expand across various biological applications. However, in-
complete 30-UTR annotations can impede single-cell analysis resulting in genes that are partially or completely uncounted.
Performing single-cell RNA sequencing with incomplete 30-UTR annotations can hinder the identification of cell identities and gene
expression patterns and lead to erroneous biological inferences. We demonstrate that performing single-cell isoform sequencing in
tandem with single-cell RNA sequencing can rapidly improve 30-UTR annotations. Using threespine stickleback fish (Gasterosteus
aculeatus), we show that gene models resulting from a minimal embryonic single-cell isoform sequencing dataset retained 26.1%
greater single-cell RNA sequencing reads than gene models from Ensembl alone. Furthermore, pooling our single-cell sequencing
isoforms with a previously published adult bulk Iso-Seq dataset from stickleback, and merging the annotation with the Ensembl gene
models, resulted in a marginal improvement (þ0.8%) over the single-cell isoform sequencing only dataset. In addition, isoforms iden-
tified by single-cell isoform sequencing included thousands of new splicing variants. The improved gene models obtained using
single-cell isoform sequencing led to successful identification of cell types and increased the reads identified of many genes in our
single-cell RNA sequencing stickleback dataset. Our work illuminates single-cell isoform sequencing as a cost-effective and efficient
mechanism to rapidly annotate genomes for single-cell RNA sequencing.

Keywords: PacBio; emerging model organisms; 10X Genomics

Introduction
Single-cell RNA sequencing (scRNAseq) is a revolutionary tech-

nique in biology that provides expression information from tis-

sues and embryos (Shapiro et al. 2013). By barcoding RNA from

individual cells directly from dissociated samples, scRNAseq

allows for post hoc analysis of cell types and can be used to as-

certain novel cell populations, explore developmental trajecto-

ries, and define gene regulatory networks (Luecken and Theis

2019).
To maximize the utility of scRNAseq datasets, however, 30-

UTRs must be annotated for several reasons. ScRNAseq captures

transcripts through poly(A) tails leading to a 30 bias in coverage

(Hwang et al. 2018). Partially annotated genes may be represented

in a dataset with lower read counts, leading to erroneous conclu-

sions regarding their magnitude of expression across cell types.

In addition, downstream scRNAseq analysis clusters cell types

through the determination of a covariance structure across

highly variable genes (Stuart et al. 2019). The systematic absence

of such genes can lead to inferential errors in multivariate analy-

ses and obscure biological reality.
The annotations of even intensively studied models, such as

mice and zebrafish, continue to be improved (Gupta et al. 2018;

Lawson et al. 2020). Most other organismal genomes are even less
well annotated. Facilitating a broader utility of scRNAseq
requires more efficient methods for 30-UTR annotation. Recently,
full length, single-molecule isoform sequencing (Iso-Seq) has
been used to improve genome annotations (Kuo et al. 2017, 2020;
Beiki et al. 2019; Ali et al. 2021). PacBio’s Iso-seq has been further
adapted to use the 10x Genomics platform for scRNA barcoding
single-cell isoform sequencing (ScISOr-Seq) to track cell type spe-
cific isoform expression (Gupta et al. 2018; Zheng et al. 2020).

Here, we show that ScISOr-Seq in the context of a scRNAseq
experiment allows rapid 30-UTR annotation in threespine stickle-
back fish (Gasterosteus aculeatus). This fish has long been a focus
of study in behavior, ecology, and evolution (Bell and Foster 1994;
Colosimo et al. 2004; Cresko et al. 2004, 2007; Shapiro et al. 2004;
Hohenlohe et al. 2010; Reid et al. 2021), and is now a nascent sys-
tem for biomedical research (Miller et al. 2007; Gardell et al. 2017;
Small et al. 2017; Beck et al. 2020, 2021; Fuess et al. 2021). Although
stickleback has a well-assembled genome, its 30-UTR annotations
are incomplete which limits scRNAseq’s utility. We demonstrate
that a single PacBio SMRT cell of ScISOr-Seq data is sufficient to
significantly improve the stickleback annotations to an extent on
par with zebrafish for the purpose of scRNAseq analysis at this
stage. Our findings demonstrate that ScISOr-Seq will be a useful
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tool to efficiently improve genome annotations for scRNAseq in
many organisms.

Materials and methods
Tissue dissociation to generate a pool of single
cells
We crossed a laboratory line of stickleback originally isolated
from Cushman Slough (Oregon) and raised embryos to 70 hours
post fertilization (hpf) at 20�C using standard procedures from
the Cresko Laboratory Stickleback Facility (Cresko et al. 2004). 70
hpf stickleback embryos are developmentally at an equivalent
stage to 24 hpf zebrafish (Cresko et al. 2003). We euthanized 36
embryos in MS-222 following IACUC approved procedures then
dechorionated and deyolked them at room temperature. We lim-
ited our embryo dissection to 20 min based on Farrell et al. (2018).
Following protocols from Bresciani et al. (2018), we dissociated the
cells for 6 min in 0.25% trypsin in PBS at 30�C, pipetting up and
down every 30 s, then stopped the dissociation using 10% FBS
DMEM and spun down cells at 400xG for 3 min at 4�C. We resus-
pended cells in 1 ml of 0.1% BSA PBS, centrifuged at 400xG for
3 min at 4�C, and resuspended in 100 ml 0.04% BSA in PBS. At
room temperature, we filtered cells through a 40 mM cell strainer
(Thomas scientific 1181X52) then washed the original tube twice
with 100 ml of 0.04% BSA in PBS and poured over the same cell
strainer.

Library preparation
The scRNAseq and ScISOr-Seq libraries were prepared and se-
quenced by the University of Oregon Genomics and Cell
Characterization core facility (https://gc3f.uoregon.edu). The dis-
sociated cells were diluted to 800 cells/ml in 0.04% BSA in PBS to
target 10,000 cells with the 10X Genomics Single Cell 30 Genome
Expression (GEX) mRNA-Seq prep with v3.1 NextGem chemistry.
The single 10X preparation was split to create the scRNAseq and
ScISOr-Seq libraries. The scRNAseq sample was sequenced on
one-seventh of a single S4 lane on a NovaSeq 6000 platform
(Illumina). For the ScISOr-Seq library, 400 ng of the amplified 10X
cDNA was used as input for the SMRTbell Express Template Prep
Kit 2.0 (P/N 100-938-900) without reamplification. Sample specific
barcode (ATATAGCGCGCGTGTG) was added using the Barcoded
Adapter Kit 8B—OVERHANG (P/N 101-628-500). The ScISOr-Seq li-
brary was sequenced on a single SMRT Cell 8M on the PacBio
Sequel II platform using the v4 primer, v2.1 polymerase, 1 h bind-
ing, 30-h movie, and 2-h pre-extension time at a loading concen-
tration of 100 pM.

PacBio data processing
The University of Oregon Genomics and Cell Characterization
core facility (https://gc3f.uoregon.edu) generated “circular con-
sensus” reads for our ScISOr-Seq dataset (ccs -j 39 –min-passes 3
–min-snr 2.5 –min-length 10 –max-length 50000 –min-rq 0.99;
v6.6.0) and used lima (-j 39 –isoseq; v2.2.0) to remove a sample
specific barcode (ATATAGCGCGCGTGTG) as a part of the PacBio
SMRT Analysis software (Supplementary File 6). After barcode
clipping, we used a custom ScISOr-Seq processing script
(scISOr_Seq_processing.py) that removed the sample primers
(3p: CTACACGACGCTCTTCCGATCT; 5p: CCCATGTACTCTGCGT
TGATACCACTGCTT), removed and saved cell and UMI barcodes,
removed poly(A) tails, then filtered out duplicated reads. This
script outputs reads that have the expected presence and orien-
tation of primers and poly(A) tails for downstream analysis. The
script additionally outputs reads without the expected primers in

a separate file; however, these other reads were not used for fur-
ther analysis.

We aligned reads to the stickleback genome (BROAD S1, 104.1
database version) using minimap2 (v2.7; parameters: -ax splice, -
uf, -06,24, -B4; (Li 2018). We clustered for unique transcripts with
collapse_isoforms_by_sam.py script (c ¼ 0.99, I ¼ 0.95; (Tseng
2021)) from cDNA Cupcake (v27.0.0), classified transcripts with
the sqanti3_qc.py script from SQANTI3 (v4.2), and refined tran-
scripts with sqanti3_RulesFilter.py script (Tardaguila et al.
2018). We used the sqanti_classification.filtered_li-

te.gtf that resulted from the refining step (Supplementary File 2)
to run Cell Ranger from 10X Genomics (v3.2.0) as described below.

We downloaded the raw data from Naftaly et al. (2021) from
NCBI. This adult Iso-Seq dataset contains gonad, pronephros,
brain, and liver reads from both sexes, a total of 16 SMRT cells.
We processed reads from this dataset with the following steps:
we generated circular consensus reads with ccs (–min-rq¼.9;
v6.0.0), clipped barcodes listed in Naftaly et al. (2021) with lima (–
isoseq –dump-clips; v2.2.0), removed polyA tails with isoseq3

refine (–require-polyA; v3.4.0-0), and clustered reads with iso-

seq3 cluster (v3.4.0-0) from the PacBio SMRT Analysis software
(Supplementary File 6). For the analysis with solely these data,
we aligned reads to the stickleback genome (BROAD S1, 104.1
database version), collapsed transcripts with cDNA Cupcake

(v28.0.0), and filtered and classified with SQANTI3 (v4.2) as was
done with the ScISOr-Seq data. Again, we used the sqanti_-

classification.filtered_lite.gtf from SQANTI3

(Supplementary File 3) to run Cell Ranger as described below.
Due to reduced novel and increased annotated genes relative to
Naftaly et al. (2021), we additionally tried using minimap2-2.15

with -ax splice -uf -C5 -secondary¼no to match their parameters;
however, we observed negligible changes. We propose that differ-
ences in our analyses arise from different earlier processing
steps, different versions of stickleback gene models, and an
updated version of SQANTI.

We pooled both sets of Iso-Seq reads and merged it with exist-
ing Ensembl annotations to create an improved version of the
Ensembl annotations. Previously, we created a modified version
of the Ensembl annotations where we extended the 30-UTRs
(Supplementary Files 7 and 8) for several marker genes (tbx16,
sox10, sox32, and eya1) and fgf/fgfr genes (fgfr1a, fgfr1b, fgfrl1a,
FGFRL1, fgfr2, fgfr3, fgfr4, fgf3, fgf4, fgf16, fgf17, fgf6, fgf6a, fgf8a,
and fgf8b). Because we lacked Iso-Seq reads for fgf4, we used this
modified gtf for the merging (Supplementary File 8). We com-
pleted the processing of the ScISOr-Seq and bulk Iso-Seq data
separately as described above then combined the files prior to
alignment. We aligned the combined files with minimap2, col-
lapsed transcripts with cDNA cupcake, and refined and classified
isoforms with SQANTI3 as explained above.

We merged the sqanti_classification.filtered_li-

te.gtf resulting from SQANTI3 with the Ensembl annotation us-
ing TAMA (Kuo et al. 2020). To prepare the gtf files for TAMA Merge,
we converted them to bed files using bedparse gtf2bed (–
extraFields gene_id). Then, modified the output with awk to rear-
range the columns of the bed file such that the gene id was sepa-
rated from the transcript id by a semicolon (awk -v OFS¼‘\t’ ‘fprint
$1,$2,$3, $13 “;” $4, $5, $6,$7,$8,$9,$10,$11,$12g’). We merged with
TAMA’s script tama_merge.py (-s ensembl -cds ensembl -d mer-
ge_dup). We applied the ensembl gene names to genes with corre-
sponding IDs using a custom script (tama_associating_
ensembl_ids_with_genes.py). For our final gtf file, we converted
the output bed file back to a gtf with TAMA’s tama_convert_bed_-
gtf_ensembl_no_cds.py (Supplementary File 4). We also
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generated a gtf file specifically for scRNAseq analysis where mito-
chondrial genes started with “MT” by transforming the bed file
with a custom script (tama_associating_ensembl_ids_with_
genes_for_scRNAseq.py) and then converting the output back to
a gtf in the same fashion as above (Supplementary File 5).

Annotation analysis
We assessed the Iso-Seq improvements to Ensembl gene models
in 2 ways: (1) differences in starting and ending positions and (2)
differences in reads captured. We compared the 50 start and 30

end of Ensembl and Iso-Seq generated gene models with a cus-
tom script written by H.M.H. (tama_observations_bed.py).
Using the same custom script, we also compared the number of
reads present in the first and last exons between Ensembl and
Iso-Seq gene models.

scRNAseq analysis
We quantified gene counts using 10X Genomics Cell Ranger

v3.0.2 (Supplementary File 1). We generated a reference using
mkgtf and mkref, retaining protein coding and nonprotein cod-
ing genes, and then aligned and counted reads using the stickle-
back genome (BROAD S1, 104.1). We analyzed the counts using
the Seurat package [v3.2.3; (Stuart et al. 2019)] on R (v4.0.2). We
retained all cells for the analysis. We normalized the counts us-
ing SCTransform and regressed out the mitochondrial genes us-
ing the glmGamPoi method (Hafemeister and Satija 2019). Based
on the inflection point in the elbow plot of the PCA results, we
chose 38 dimensions for generating the UMAP and identifying
clusters. We identified cluster identities using 3 marker gene
approaches.

First, we searched for marker genes identified in Farnsworth
et al. (2020) for specific cell types found in a similar developmen-
tal stage from zebrafish (24 hpf in zebrafish). Next, we identified
markers with Seurat’s FindAllMarkers searching for genes
that were positively upregulated in each cluster compared to the
other identities, in a minimum of 25% of cells, and a log fold
change threshold of 0.25. Finally, we identified markers with
Seurat’s FindMarkers searching for genes that were positively
upregulated in each cluster vs all the other cells. For the second
and third approaches, we searched for the homologous gene in
zebrafish and used expression data from zfin to predict which
cell types expressed the gene. To quantify frizzled gene counts, we
used FetchData to isolate raw counts for each gene and the
number of cells expressing the gene. To determine the number of
cell clusters each frizzled gene was expressed in, we saved a dot-
plot, subsetted for clusters where the percentage of cells express-
ing the gene was greater than 10%, and then counted the number
of clusters left for each gene.

Results and discussion
ScISOr-Seq captured novel isoforms and
improved 30-UTRs
A ScISOr-Seq library was produced using dissociated cells from
70 hpf stickleback embryos. The ScISOr-Seq reads were classified
with SQANTI3 (Tardaguila et al. 2018) using Ensembl gene models
to describe isoforms based on how well they match Ensembl
splice variants (Fig. 1a). The most common structural category
(45.15% of isoforms) was “novel not in catalog” containing at least
1 new splicing site relative to the existing annotation (Fig. 1, a
and b). 17.42% of collapsed isoforms were “full splice matches”
(FSM) that contained splicing sites and exons present in the
Ensembl annotation but allowed differences in 50 or 30 ends.

Notably, only 3% of the unique isoforms matched the existing
gene annotations, while 97% improved existing or added gene
models. Confirming that 30-UTRs were poorly annotated, 46.2%
FSM isoforms had alternative 30 ends and 27.4% had alternative
30 and 50 ends relative to Ensembl gene models (Fig. 1c).
Therefore, the existing stickleback annotation—in addition to
having incomplete 30-UTRs—is also missing many splice variants.
Our work indicates that additional ScISOr-Seq or bulk Iso-Seq is
necessary to capture these variants as well as prune erroneous
transcript models from the Ensembl annotation.

ScISOr-Seq improved the number of reads
retained for scRNAseq
We initially tested how well the existing stickleback gene models
from Ensembl (BROAD S1, 104.1 database version) would capture
scRNAseq reads. Strikingly, less than 50% of reads were retained
for downstream scRNAseq analysis (Fig. 2b; Supplementary File
1). Using such an incomplete annotation for scRNAseq would
likely result in erroneous interpretation of gene expression pat-
terns for genes lacking 30-UTR annotations.

Next, we used ScISOr-sequencing data to generate new gene
models and tested how well these new models would capture
10X based illumina scRNAseq reads (Supplementary File 2).
Using the ScISOr-Seq dataset, 13,028 of 22,456 previously anno-
tated genes and 2,942 novel genes were identified (Fig. 2a). The
ScISOr-Seq annotations lead to a notable 26.1% increase in reads
retained from scRNAseq compared to the Ensembl gene models
alone (Fig. 2b; Supplementary File 1). The alignment of scRNAseq
reads with existing Ensembl and new ScISOr-Seq gene models
illustrates that ScISOr-Seq models retain greater numbers of
reads due to improved annotation of 30-UTRs (Fig. 3;
Supplementary Fig. 1). This result compares favorably with cur-
rent research in the much better studied zebrafish model.
Farnsworth et al. (2020) completed their zebrafish atlas with 80%
of reads retained in 5 dpf (days post fertilization) fish. After
Lawson et al. (2020) improved the zebrafish transcriptome using
RNAseq data, they noted a 4% increase in reads retained that led
to an increase of 2,257 cells and 8 clusters using the same 5 dpf
atlas (Farnsworth et al. 2020). The similarity in number of
retained reads in our dataset with those published in zebrafish
improves the validity of stickleback scRNAseq investigations.

Recently, Naftaly et al. (2021) published a large bulk analysis of
adult stickleback Iso-Seq data from 16 PacBio SMRT cells and 4
tissue types (gonad, brain, pronephros, and liver). We reanalyzed
this dataset to test whether we would see comparable improve-
ments in our scRNAseq analysis (Supplementary File 3).
Although we identified similar overall annotated and novel
genes, the bulk Iso-Seq annotation from adult stickleback cap-
tured 11% fewer reads than our embryonic ScISOr-Seq annota-
tion (Fig. 2, a and b; Supplementary File 1). These results are
likely due to differential expression of transcripts between the
adult and embryonic samples and highlight that even for species
with previous Iso-Seq libraries, additional sequencing may be
needed for scRNAseq analysis in other developmental stages or
tissue types.

Because both our ScISOr-Seq and the bulk Iso-Seq gtf files im-
proved the number of scRNAseq reads retained, we pooled them
to create a comprehensive annotation and also merged this
pooled dataset with the Ensembl annotations. We retained all
transcripts and united them under a single gene model for
scRNAseq analysis (Supplementary File 4). The Iso-Seq generated
gene models extended 30 ends of transcripts and increased reads
counted in the final exon (Fig. 4). This new annotation contained
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6,992 genes unique to Ensembl, 15,464 genes containing tran-
scripts from Ensembl and Iso-Seq, and 5,206 genes unique to the
pooled Iso-Seq dataset (Fig. 2a). Since reads are filtered during

analysis, the 6,992 genes unique to Ensembl might still be
expressed in 70 hpf embryos or the adult tissues. For instance,
2,152 Ensembl annotated genes were removed from the pooled

Full Splice Match

Novel not in catalog

Annotated transcript

Incomplete splice match

Novel in catalog

(a)

(b)

(c)

(d)

Genic genomic

Antisense

Fig. 1. SQANTI3 classification of ScISOr-Seq data revealed that the majority of isoforms were previously unannotated in the stickleback genome. a)
SQANTI3 categorizes isoforms based on their match to the reference, the major categories are shown here [not shown: Fusions (isoform contains 2
original separate gene models) and Intergenic (isoform present in intergenic regions)]. b) The distribution of ScISOr-Seq isoforms in the major SQANTI3
classes illustrating that the most common class of isoforms are novel not in catalog. c) Within the novel not in catalog category, isoforms are largely
coming from cases where there is at least 1 new splicing donor or acceptor with some coming from cases of intron retention (for example, nkx2.3
isoforms from Fig. 3). d) Nearly half of isoforms that are full splice matches have at least an alternative 30 site while few are complete reference
matches.

Ensembl Pooled 

6,992

Ensembl ScISOr-Seq 

2,9429,428 13,028

Ensembl

ScISOr-Seq 

Pooled and 
merged

% of reads 
mapping to 

transcriptome
Median genes 

per cell
Number of 

cells

10,117 49.6% 1,197

11,343 75.7% 1,659

11,856 1,59776.5%

(a) (b)

Adult bulk 10,902 64.7% 1,682

Ensembl

9,986

Adult bulk

12,470 2,940

15,464 5,206

Fig. 2. ScISOr-Seq (70 hpf) and bulk Iso-Seq (gonad, brain, liver, and pronephros) captured a limited number of annotated transcripts, but both together
resulted in an increase in reads mapping to the transcriptome. Ultimately, pooling these data and merging with the Ensembl annotation resulted in the
largest gains in reads mapped. a) The number of genes in common and unique to each Iso-Seq read category is compared to the Ensembl genome. b)
Results from Cell Ranger runs using the different genome annotation files illustrating the overall improvements by using Iso-Seq data particularly the
ScISOr-Seq gene models.
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Iso-Seq dataset by SQANTI3’s intra-priming and template switch-
ing filter. Although pooling and merging added 16 SMRT cells of Iso-
Seq data as well as the full suite of Ensembl annotations, this effort
only improved the proportion of reads retained by þ0.8% beyond

the annotation created by just our single ScISOr-Seq sample
(Fig. 2b; Supplementary File 1). Therefore, the gene models originat-
ing from a matching ScISOr-Seq library alone could be used for
scRNAseq analysis if a system lacks a prior annotation.

Ensembl

ScISOr-Seq

�����������	 ��


������	

������������

(a)

Fig. 3. ScISOr-Seq improved gene models by extending the 30-UTRs illustrated here by the 2 models for nkx2.3. ScRNAseq reads are shown at the top in
gray, the scale of reads is to the left of them. The existing Ensembl model (ENSGACG00000007568; ENSGACT00000010057.1) is shown in dark blue.
Notably, this model does not overlap with the majority of the scRNAseq reads. The ScISOr-Seq reads (in gray) are shown above the respective gene
models (in red) that they generated. Colored lines on the ScISOr-Seq and scRNAseq reads indicate a different base pair in the read than the stickleback
reference genome (BROAD S1, 104.1 database version). The scale bar at the bottom indicates the position of the nkx2.3 gene models on group VI. The
ScISOr-Seq gene models captures all the scRNAseq reads.
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Fig. 4. Annotation improvements using Iso-Seq (bulk Iso-Seq or ScISOr-Seq) data extended genes both 50 and 30, with 30 expansions leading to greater
numbers of reads counted. Comparing the median difference in starting or ending position between the Ensembl annotations and pooled Iso-seq
annotations shows that bulk Iso-Seq and ScISOr-Seq reads overall lead to earlier starting positions (median¼�26, a) and extended ending positions
(median¼ 94, b). These Iso-Seq differences increased the number of reads counted in the final exon of the gene (median¼341, d); however, the
alterations led to negligible changes of reads counted in the first exon (median¼ 0, c), which highlights the 30 bias of scRNAseq reads. The x-axis is
plotted on a pseudo log scale to account for the negative values.
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ScISOr-Seq enhances biological interpretation of
cell clusters
Using the pooled (ScISOr-Seq and bulk Iso-Seq) annotation that
was merged with Ensembl annotation, we proceeded with
scRNAseq analysis (Supplementary File 5) to test whether biologi-
cally meaningful cell clusters would be created. We clustered
cells by their transcriptional profiles into cell identities and ana-
lyzed the results with Seurat (Stuart et al. 2019). We identified 30
clusters of cells with 38 principal components (Fig. 5a). We puta-
tively annotated cell types via distinguishing sets of marker genes
based on zebrafish literature (Howe et al. 2013; Wagner et al. 2018;
Farnsworth et al. 2020).

Although zebrafish and stickleback diverged �229.9 MYA
(Howe et al. 2021), we identified similar cell types as observed in
existing zebrafish atlases for similar developmental stages as we
analyzed in stickleback (Wagner et al. 2018; Farnsworth et al.
2020). In addition, we compared the expression of sox9a and
sox9b in our atlas to published descriptions of stickleback in situ
expression at the same stage (Cresko et al. 2003). Supporting our
cluster annotations, we observed expression of both SOX genes in
roughly the same cell types as defined by in situ hybridization
(Supplementary Fig. 2, a and b; Cresko et al. 2003). Despite our
success using a single SMRT cell for ScISOr-Seq for isoform anno-
tation, we would need to sequence additional SMRT cells to have
enough data to correlate cell types and specific isoforms.

Since the pooled and merged dataset has higher numbers of
cells, genes per cell, and total genes detected than the Ensembl
scRNAseq dataset (Fig. 2b), assessing the degree to which pooled
and merged gene models improved the scRNAseq analysis is
complex. For instance, a higher overall expression of a gene in a
cluster might be the result of different clustering patterns, more
cells retained, and/or more reads counted. We compared the raw
counts of specific genes, number of cells expressing these genes,
and number of clusters where at least 10% of cells expressed
them (Fig. 5b). Since Cell Ranger provided a subset of these val-
ues on a global scale (Fig. 2b), we chose to examine changes in
gene counts, cell number, and number of clusters with a case
study: the frizzled genes, a family of Wnt-pathway signaling mole-
cules expressed in a wide range of tissues (Huang and Klein 2004;
Wang et al. 2016). For 10 of 11 frizzled genes, we observed
increases in raw counts and number of cells expressing them in
the pooled and merged annotation (Fig. 5b). Some genes, how-
ever, exhibited dramatic increases (fzd1, fzd2, fzd3b, fzd4, fzd6,
fzd7, and fzd8b) while others exhibited minor increases (fzd5,
fzd9b, and fzd10). Comparing the gene models of fzd1 and fzd9b,
we determined which factors influenced expression detection.
Importantly, the 50- and 30-UTRs expanded for fzd1 in the merged
and pooled annotation, however only the 50 end of fzd9b was ex-
tended (Fig. 5, c and d). Based on the read alignments (Fig. 5, c
and d), the increase in counted reads for fzd1 was due solely to
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Fig. 5. Using the updated gene models from our merged and pooled dataset, we identified expected cell types in 70 hpf stickleback scRNAseq data and
illustrated how our annotation improvements are relevant for analysis. a) The clustering and cell identities of the scRNAseq data are illustrated on the
UMAP. b) Frizzled gene family expression compared between the Ensembl annotation scRNAseq analysis and the pooled and merged analysis using
total raw counts, number of cells expressing each gene, and the number of clusters where over 10% of cells are expressing each gene. c) fzd1 gene model
is greatly extended in the pooled and merged annotation (purple) compared to the Ensembl model (blue) which allows for much greater counting of
reads (gray). d) fzd9b had minor changes in the pooled and merged model (purple), a longer 50-UTR, in comparison with the Ensembl annotation (blue)
which led to minimal increases in reads (gray) counted. The scRNAseq read pileups in c and d have colored lines on base pairs that are different from
the stickleback reference genome (BROAD S1, 104.1 database version).
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30-UTR changes, while a slight increase in fzd9b reads was due to
50 end extension. In addition to increased read counts, 7 of 11
genes were expressed in more cell clusters in the pooled and
merged dataset. Two genes, fzd9b and fzd10, were found in 1 less
cluster. We hypothesized that 2 clusters (containing fzd9b and
fzd10) were combined in the merged and pooled dataset relative
to Ensembl. Overall, this gene family comparison illustrated the
problem of using an annotation with incomplete 30-UTRs. If the
Ensembl dataset’s fzd counts were accepted as their true qualita-
tive and quantitative expression, flawed conclusions would
have been made regarding the contributions of each gene in
the family.

Summary
Incomplete 30-UTR annotations can hinder single-cell transcrip-
tional profiling studies. In addition to reducing the overall num-
ber of genes included in an analysis, systematic differences in
preliminary UTR annotations could lead to significant inferential
errors. We illustrated in stickleback fish that a minimal ScISOr-
Seq dataset, generated concurrently with scRNAseq data, was ca-
pable of dramatic improvements in retained read counts
(þ26.1%). In addition, we showed that pooling additional Iso-Seq
reads from adult bulk samples and merging with existing
Ensembl annotations improved scRNAseq reads retained negligi-
bly beyond models solely from embryonic ScISOr-Seq (þ0.8%).
Using the improved annotation for scRNAseq permitted identifi-
cation of cell types and increased the observed expression of nu-
merous genes. Overall, our work illustrates that ScISOr-Seq is a
rapid and cost-effective method to annotate genomes of various
organisms for scRNAseq and can improve efficacy of biological
inferences.

Data availability
All raw sequencing data associated with this study will be avail-
able upon peer-reviewed publication via the NCBI Sequencing
Read Archive, under BioProject PRJNA797645. Annotation and
summary files in the Supplementary Information will also be
available in the Dryad repository (https://doi.org/10.5061/dryad.
0k6djhb1x). Supplementary files are available on figshare:
https://doi.org/10.25386/genetics.16811614. All scripts can be
found in the github repository (https://github.com/CreskoLab/
scISOseq_processing).
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