
© 2020 Journal of Pathology Informatics | Published by Wolters Kluwer - Medknow 1

Abstract

Technical Note

IntroductIon

The pathology department’s archive of diagnostic case data
is a valuable resource. Our archive, for example, contains the
diagnostic text of more than 4‑million anatomic pathology
cases compiled over four decades. It represents a treasure‑trove
of information that can be leveraged for research, education,
and a variety of other scholarly activities. However, the extent
to which this data can be used for these activities depends on the
ability for users to efficiently query the archive. Unfortunately,
the search functions of commercial laboratory information
systems (LISs) often have cumbersome user‑interfaces (UIs)
which are difficult for the average pathologist to use. This is
something we experienced with our own LIS (Cerner CoPath
Plus v2014), as some amount of technical knowledge is needed
to design and execute effective searches. Furthermore, searches
of the production database can impact the entire system. Using
our LIS, we found that multiple concurrent searches could
stress the production database. Therefore, to mitigate risk to

clinical operations, our institution restricts LIS search functions
to a small team of analysts, who carry‑out searches on behalf
of the pathologist. Unfortunately, this results in a significant
lag‑time between a pathologist’s initial search request, and
eventual results delivery – usually requiring >24 h.

The aim of this project was to create a novel search platform
which would allow our pathologists to directly and expeditiously
query the case archive. To do this, a web‑based graphical UI was
used, which anyone with basic computer skills can use effectively.
Open‑source software components were used to minimize
software costs, maximize code transparency, and avoid reliance

Academic pathologists must have the ability to search their institution’s archive of diagnostic case data. This ability is foundational for research,
education, and other academic activities. However, the built‑in search functions of commercial laboratory information systems are not always
optimized for this activity, leading to delays between an initial search request, and eventual results delivery. To solve this problem, a novel
web‑based search platform was developed, named Pathtools, which allows our staff and trainees to directly and rapidly search our diagnostic
case archive. Pathtools was built with open‑source components and features a web‑based user‑interface. Pathtools uses an SQL database
which was populated with anatomic pathology case data going back to 1980, and contains 4.2 million cases (as of July 31, 2020). Pathtools
has two major modes of operation, “Preview Mode” and “Research Mode.” Since deployment in February of 2019, Pathtools carried out
33,817 searches in Preview Mode, averaging 0.72 s (standard deviation = 1.7) between search submission, and on‑screen display of search
results. In Research Mode, Pathtools has also been used to produce data sets for research activity, providing the data used in many abstracts
and manuscripts our investigators submitted recently. Interestingly, 75% of search activity is from trainees during their preview time. In a
survey of residents and fellows, 83% used Pathtools during the majority of their preview sessions, demonstrating an important role for this
resource in trainee education. In conclusion, a web‑based search tool can rapidly and securely provide search capability directly to end‑users,
which has augmented trainee education and research activity in our department.

Keywords: Education, pathology reports, python, text search, web application

Access this article online

Quick Response Code:
Website:
www.jpathinformatics.org

DOI:
10.4103/jpi.jpi_43_20

Address for correspondence: Dr. Scott Robertson,
Department of Anatomic Pathology, L25, Cleveland Clinic,

9500 Euclid Avenue, Cleveland, OH 44195, USA.
E‑mail: roberts10@ccf.org

This is an open access journal, and articles are distributed under the terms of the Creative
Commons Attribution‑NonCommercial‑ShareAlike 4.0 License, which allows others to
remix, tweak, and build upon the work non‑commercially, as long as appropriate credit
is given and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

How to cite this article: Robertson S. A novel web application for rapidly
searching the diagnostic case archive. J Pathol Inform 2020;11:39.
Available FREE in open access from: http://www.jpathinformatics.org/text.
asp?2020/11/1/39/304778

A Novel Web Application for Rapidly Searching the Diagnostic
Case Archive

Scott Robertson

Department of Anatomic Pathology, Cleveland Clinic, Cleveland, OH, USA

Submitted: 14‑May‑2020 Revised: 24‑Jun‑2020 Accepted: 31‑Aug‑2020 Published: 24‑Dec‑2020

J Pathol Inform 2020, 1:39 http://www.jpathinformatics.org/content/11/1/39

Journal of Pathology Informatics2

on a single commercial vendor. Finally, the system was designed
in close collaboration with our institution’s legal, HIPAA and
IRB stakeholders, to ensure data security and adhere to good data
governance practices. This search platform was named “Pathtools.”

ImplementatIon detaIls

Web design
The Pathtools website was written in Django, an open‑source
web application framework written in Python (Django
version 2.1.2, Python version 3.5.2).[1,2] The site is served by
Apache2 running on a Linux (Ubuntu 16.04) server behind
our institution’s firewall. A signed SSL certificate was installed
enabling HTTPS encrypted communication between the server
and client. The UI was designed around jQuery QueryBuilder,
a Javascript plugin which provides a graphical UI to design
searches.[3] This UI was chosen because of its intuitive
interface. Searches can be relatively simple, using only one or
two parameters [Figure 1]. However, more complex searches
can also be designed, mixing together various fields, operators,
and logic types [Figure 2]. The choice of available operators
depends on the underlying data type for that field [Table 1].
Many different fields are searchable, including the primary
diagnostic text (consisting of the final diagnosis, comment,
and addendum), gross description, intraoperative diagnosis,
synoptic text, patient age, patient sex, attending pathologist,
case‑type (surgical pathology, cytology, bone marrow),
accession date, consult case status and region. On, execution,
QueryBuilder transforms the user’s input into an SQL query
statement, which is sent to the database.

result delIvery modes and data Governance
Issues

The workflow for results delivery was designed in close
collaboration with our institution’s HIPAA, IRB and legal
stakeholders, who emphasized the desire to give users the
minimum amount of data needed for their specific purpose.
Looking at the different use‑cases for the system, we designed
Pathtools to work in two modes, “Preview Mode” and
“Research Mode,” which differ in the amount of results the
user receives and the data elements the user has access to.
For most use‑cases, the user needs only a few data elements.

For example, most searches are performed by trainees during
their preview time (see results section). For these searches, the
diagnostic text is most important; demographics and assigned
pathologist are also provided. Finally, the case‑number is
displayed, as the user may want to retrieve the slides from
our archive. Therefore, in its default configuration, “Preview
Mode,” Pathtools retrieves only a limited data set from the
database (diagnostic text, patient demographics, accession
number, and assigned pathologist), and displays the results
on‑screen. However, Pathtools can also be used for research,
“Research Mode,” in which patient identifiers are can be
obtained. Using Research Mode, the user can request Microsoft
Excel data extracts for IRB‑approved research projects.

prevIew mode technIcal detaIls

For Pathtools’ default configuration, Preview Mode, the results
are displayed on‑screen, and a processing script highlights the
user’s diagnostic terms within the returned text, allowing the
user to quickly determine the relevance of each result [Figure 3].
Text highlighting was coded by building a list of compiled
regular expression objects (using Python’s built‑in regular
expression module, “re”) for each search term. Then, as results
arrive from the database, Pathtools loops through the text and
uses a substitution command (re.sub) to flank each term with a
set of HTML “mark” tags (<mark> [term] </mark>). Therefore,
the user’s browser will highlight the user’s terms in yellow.

The search parameters can be changed after each search so
the user can quickly iterate their parameters to optimize their
search results. On‑screen results are limited to the most recent
100 matching results (using the SQL clauses “TOP [100]” and

Figure 1: Search example. The user searches for cases containing the
term “myxoid liposarcoma” signed out by Dr. Goldblum

Figure 2: More complex search example. The user searches for pancreatic
surgical resections staged as pT2 in a specific date range. “pT2” must
be present in the synoptic text of the case. Note that the nested subgroup
uses “OR” logic (shaded dark blue) to capture any of three different
types of pancreas resection. The top‑level logic remains “AND” type
(shaded light blue)

J Pathol Inform 2020, 1:39 http://www.jpathinformatics.org/content/11/1/39

Journal of Pathology Informatics 3

“ORDER BY accession date DESC”). On‑screen results were
limited for two reasons. First, for most use‑cases, users only
need a few relevant search results. Second, limiting search

results to 100 cases minimizes execution time. Therefore, a
user could search for a commonly used term like “helicobacter”
and receive results in 0.51 s. Whereas a comprehensive search
of the database (without the “TOP [100]” SQL clause) returns
158,043 cases and takes 1 min, 36 s to complete.

research mode technIcal detaIls

The UI of Research Mode is essentially identical to that of
Preview Mode, using the QueryBuilder Javascript plugin.
However, there are two key differences between the two modes.
First, in Research Mode, two different SQL commands are sent
to the SQL database when the user submits the search. The
first query is identical to the one sent in Preview Mode, and
retrieves the diagnostic text, patient demographics, accession
number and assigned pathologist fields for the most recent
100 results. These data are displayed on‑screen. However, a
second search query is also sent, which determines how many
total matching cases are in the database, without returning
any fields (using “SELECT COUNT [*]…”). For example,
searching for the string “helicobacter” in Research Mode
takes 0.95 s, returning a preview of the first 100 results which
appear on‑screen (diagnosis, demographics, cases number, and
assigned pathologist), and also displaying the total number of
matching cases in the database: 154,043. The second search,
which enumerates how many total cases are in the system, is
useful for search optimization, as the user may want to narrow
or expand their search based on this information.

The second difference from Preview Mode is the ability to save
the list of matching cases. After the results are returned, the user
may click the “Capture Cases” button. After the user provides a
name, Pathtools retrieves the user’s last search and sends it to the
database again, but with two alterations. First, only the case id
field (accession number) is returned (using “SELECT case id”).
Second, the “TOP (100)” clause is removed, so all matching
cases are retrieved. Using the list of matching cases, Pathtools
will build a Django database object called a “Case Set” (which
is essentially a list of accession numbers with a user‑defined
name). The Case Set is saved in Django’s database and is linked
to the user’s Django profile (making it accessible only to the
user). The user may return to the saved Case Set at any time,
using the Case Set Dashboard Page (see below).

case set dashboard and data extractIon
workflow

The “Case Set Dashboard” is a page which displays all the
user’s saved Case Sets. The user can request a Microsoft Excel
data extract by clicking on a Case Set. The user is taken to a
web‑form which asks the user to select which data elements
they want to extract. The user is instructed to select only
the data elements which have been approved by the IRB for
collection. This form also provides a location to upload the
user’s IRB‑approved data collection protocol in pdf format,
which lists the approved data elements. After the download
request is submitted, the request is forwarded to an independent

Table 1: Database fields, input types and supported
operators

Field name Input type Supported operators
Final, Comment,
Addendum Text

Text Box Contains, Does Not
Contain

Gross Description Text Box Contains, Does Not
Contain

Clinical Information Text Box Contains, Does Not
Contain

Synoptic Text Box Contains, Does Not
Contain

Intraoperative
Diagnosis

Text Box Contains, Does Not
Contain

Specimen Type Drop‑down list (Surg
Path, Cyto, Bone
Marrow)

Equals, Does Not
Equal

Attending
Pathologist

Drop‑down list
(containing all active
pathologists)

Contains, Does Not
Contain

Age Text Box (with
integer validation)

Greater, Less Than

Sex Drop‑down list
(Male, Female)

Equals, Does Not
Equal

Accession Date Text Box (with date
validation)

Before, After,
Between

Consult Case Flag Drop‑down list
(Inside Case, Outside/
Consult Case)

Equals, Does Not
Equal

Region Selector* Drop‑down list (Ohio,
Florida)

Equals, Does Not
Equal

*The database contains records from two distinct regions of Cleveland
Clinic operations, Ohio and Florida. This selector allows the user to filter
based on region

Figure 3: Format of results displayed to user on‑screen. Results are
displayed on‑screen within an HTML table. A shaded header row displays
accession number (par tially redacted here for publication), patient
age, patient sex, and attending pathologist. The next row contains the
final diagnosis, as well as any comments or addendums, if present.
A processing script highlights the user’s search terms by flanking each
term with a set of HTML “mark” tags (<mark> [user_term] </mark>)

J Pathol Inform 2020, 1:39 http://www.jpathinformatics.org/content/11/1/39

Journal of Pathology Informatics4

analyst, who adjudicates the request. The analyst checks the
download request against the investigator’s IRB protocol,
to ensure that the requested data elements are approved for
collection. Assuming the request conforms to the IRB protocol,
the analyst executes the request in Pathtools. Upon request
execution, Pathtools internally builds a Microsoft Excel file
using Pandas library functions (a Python data analysis library).[4]
The analyst places the Excel file in a secure network folder
that is accessible only to the requesting user. Importantly, the
data extract is never sent as an E‑mail attachment.

The presence of an independent analyst in the research data
extract workflow was required by our legal department and
serves as a “gatekeeper” between the user and the data.
Currently, we have a pool of four analysts who process these
requests, and are the same analysts who fulfill search requests
requiring our production LIS, Copath. The analysts are
independent, in that they are not subordinate to the pathologists
or trainees in any way, and are employed by a different section
of our institute. Finally, our legal advisor did not require a
gatekeeper in the Preview Mode search workflow, as patient
identifier fields are not visible to the user.

analyst only workflow

End‑users may not wish to design searches directly. Many
users prefer to submit search requests through our legacy
search‑request web portal, which is the traditional way a
Copath search would be initiated. Using a web‑form ‑ which
is unrelated to Pathtools ‑ the user describes the data they
want, the date range of their search, and can upload a pdf
copy of their IRB‑approved data collection sheet. These
search requests are forwarded to the analyst team, who are the
same analysts who fulfill Pathtools requests. Once the request
arrives, the individual analyst can decide which search tool
is best for fulfilling the request. If they chose Pathtools, they
use “Research Mode” to design the search, similar to how
an end‑user would. Finally, they execute the search request,
download the data extract, and place the file in a secure network
location accessible only to the end‑user.

assembly of case sets by patIent or accessIon
number

Besides text‑based searches, Pathtools also allows the user
to build Case Sets by supplying lists of patients or accession
numbers. This functionality is important for at least two
use‑cases. First, an investigator may have a list of patients that
are known to have some particular disease, and want to identify
the pathology cases for these patients. For this, Pathtools has a
“Patient/Case Upload Portal” page which features a large text
box, into which, the user may paste a list of patients, using
either MRNs or Name/DOB combinations [Figure 4]. The
user selects which type of identifiers they are providing using
a drop‑down list and submits the query. Pathtools will search
the database and identify all cases associated with the list of
patients. The system will tell the user how many matching

cases were found, and which patients had no matching cases
in the system, if any. The list of cases is saved as a Case Set
and will be available in the Case Set Dashboard.

For a second use‑case, an investigator may have a set
of accession numbers compiled from a different source
(e.g., Copath and research databases) but want to obtain
a data extract using Pathtools. For this use, the process is
similar and also uses the “Patient/Case Upload Portal” page.
The user pastes a list of accession numbers into the text box,
and selects “accession numbers” from the drop‑down list.
Pathtools will identify all matching cases in the system, and
notify the user which cases could not be located, in any. The
list of cases is saved as a Case Set and will be available in the
Case Set Dashboard.

database desIGn and populatIon

The database was built into Microsoft SQL Server 12.0
and is hosted in our institution’s secure datacenter. The
database consists of a single SQL table, which uses the
case’s accession number as the primary key, and has 13 fields
for each case [Table 1]. A full‑text index was generated
containing the following columns: Diagnostic Text (which
comprises final diagnosis, comment and addendum text),
Gross Description, Clinical Information, Synoptic, and
Intraoperative Diagnosis.

The database was populated with data extracts from Copath.
Unfortunately, Copath has no utility for large scale bulk data
extraction. Copath does have a variety of built‑in utilities that
generate reports for operational purposes and a collection of
utilities that perform natural language searches. Given these
options, we chose to use a natural language search utility. While
not well‑suited to the purpose, it produced data in tab‑delimited
text format, which could be easily processed. The search
parameters had to be carefully calibrated to capture a limited
number of cases with each run – exceeding about 3000 cases

Figure 4: Patient/Case Upload Portal. The user may build Case Sets by
supplying lists of patients or case accession numbers. “Input type” can
be set to MRN, Name/DOB combinations, or accession numbers

J Pathol Inform 2020, 1:39 http://www.jpathinformatics.org/content/11/1/39

Journal of Pathology Informatics 5

would sometimes cause the search to fail, and the Copath client
to close. Therefore, each individual search targeted a specific
case‑type and date range. After each search, the date range
would be adjusted to capture the next time period. Using this
approach, cases were downloaded in reverse‑chronological
order from 2019 to 1980. Several “rounds” of searches took
place over the course of several months. Surgical pathology
cases were captured first, followed by cytology and bone
marrow cases. While the search utility was designed for
natural language searches, the text parameter was left blank,
so that every case in the targeted date range would match. The
search utility produced tab‑delimited text files. These files were
processed with a pipeline of Python scripts, which parsed out
the targeted data elements and generated SQL statements to
insert the data into the database.

database update technIcal detaIls

It is important for the Pathtools database to be up to date,
so users can search for recent cases. To do this, we used
Copath build‑in reporting functions to create automated daily
extracts of surgical pathology, cytology and bone marrow
cases. The reports are run nightly and the data is downloaded
to a secure network location. Then, an automated process
(initiated by Linux crontab), processes the files and uploads
the data to the SQL database.

Pathology reports often change over time in Copath. For
example, the initial report in the system may be the resident’s
diagnosis. The report will probably change somewhat after
the staff pathologist sees the case, before signing it out. After
sign‑out, the case may acquire one or more addendums.
Finally, the case may be amended at any point in the future.
Therefore, the database update workflow should account for
all of these scenarios, and attempt to pull in the most recent
information. To address this, three different sets of Copath
reports are run nightly that capture cases in three different
date “windows.” The first set captures cases accessioned in
the past 4 days (the newest cases). The second sets captures
cases accessioned from 30 to 34 days previous. The last set
captures cases accessioned 150–154 days previous. The limit
of a 4‑day window is imposed by the Copath search utility,
as searching for a larger date range sometimes causes the
search to fail. This workflow is designed to capture each case
multiple times, as the case passes through each “window.”
For each case, the process checks to see if the case is already
in the database. If the case is new, the data is added using the
SQL “INSERT” command. If the case is already present in
the database, the old data are replaced by the new data with
the “UPDATE” command. It is important to note that there
may be a significant lag‑time between a change to the case
in Copath, and when this change is reflected in Pathtools,
depending on its relation to each “window”. Furthermore,
changes that occur to the case after 154 days will not be
detected by Pathtools.

reGIstratIon and authentIcatIon

To access Pathtools, users must register for an account, which
is a three‑step process. A user visits the registration page and
fills out a form. An E‑mail is sent to the user’s institutional
E‑mail account containing a confirmation link, which they
must accept. Finally, a confirmation E‑mail is sent to a site
admin (currently the only site admin is the author), who must
also confirm the account creation. This final step is necessary
to ensure that only appropriate personnel gain access to the
site. Site access is restricted to pathology staff, trainees, and
researchers working within the department and who already
have access to our LIS.

Django’s authentication suite was augmented and customized
to comply with our institution’s authentication and password
management policy – which specifies various details pertaining
to password expiration, password history, password quality,
and lock‑out functionality. Django’s built‑in code was
sufficient to support some of these policies: Password length
requirement, password quality requirements, and password
validation against a dictionary of weak passwords. However,
a third‑party module was needed to implement our password
history policy (password cannot match user’s last five
passwords). Finally, custom modification of Django’s local
source code was necessary to enable lock‑out functionality
(a user is locked‑out after 10 failed attempts) as well and our
password expiration policy (90 days).

pathtools benchmarkInG aGaInst copath

A modified version of Copath’s build‑in “InfoMaker
Wizard for Natural Language Download” utility was used
to search for cases containing the term “stomach” in either
the final diagnosis, diagnostic comment or addendum
fields. The “text type to return” parameter was also set for
final diagnosis, diagnostic comment and addendum. The
date‑range (accession date) was manually adjusted for each
test. The remaining parameters were left in their default state
(matching all values). In Pathtools, Preview Mode was used
to design a similar search (“stomach” in either the final,
comment or addendum). However, for this test, the Pathtools
search cap was removed (“TOP [100]” SQL clause) so that
all matching cases would return from the database, making
it more comparable to the Copath search. Twelve different
date‑ranges were tested for each system: 1 week, 2 weeks,
3 weeks, 6 weeks, 2 months, 4 months, 6 months, 8 months,
10 months, 12 months, 16 months, 24 months. Three trials
were performed for each data‑range, in each system. Mean and
standard deviation (SD) were calculated. Student’s t‑test was
used to compare Pathtools against Copath for each date‑range,
with statistical significance considered P < 0.05.

results

Pathtools is a very frequently used resource in our department.
Pathtools was deployed on February 19, 2019, and has carried out
33,817 searches in Preview Mode as of July 31, 2020. Preview

J Pathol Inform 2020, 1:39 http://www.jpathinformatics.org/content/11/1/39

Journal of Pathology Informatics6

Mode searches are quick, averaging 0.72 s (SD = 1.7) between
search initiation and results return. Pathtools is also frequently
used for research. From February 19, 2019 to July 31, 2020,
Pathtools generated 338 data extracts for research. These data
were used to generate multiple abstracts for USCAP 2020.[5‑7]

For Research Mode, detailed metrics (e.g., turnaround time) are
only available for cases since the beginning of 2020 (comprising
154 data extracts). Thirty‑six percent of these data extracts
were initiated by end‑users using Research Mode. For
requests submitted during the analyst’s normal working
hours (7 a.m. to 4 p.m.), the median turnaround
time (from data extract request to results delivery) was
only 36 min (n = 41). Only four requests required >24 h
to fulfill. For cases submitted in the evening, or on the
weekend, the request was fulfilled the next business day.
Interestingly, most of the data extracts (64%) originated
from analysts working in the “analyst only workflow”
(searches designed by an analyst on behalf of an end‑user). For
these requests, the turnaround time could not be calculated, as
the system which collects these requests is outside of Pathtools,
and does not keep detailed event logs.

We analyzed how many cases are in Pathtools compared to
Copath, to determine how representative Pathtools’ database is
of Copath’s. We compared the number of cases in each database
from 1980 to 2019 [Figure 5]. The analysis focused on surgical
pathology, bone marrow and nongynecologic cytology cases.
Gynecologic cytology specimens were excluded from analysis.
This is because the Copath utility used for data extraction only
captures cases that were signed‑out by a staff pathologist, and
does not extract gynecologic cytology specimens that were
released by a cytotechnologist (e.g., conventional pap smears
and ThinPrep pap tests). Therefore, these cases are known to
be absent from Pathtools. For the remaining cases, we found
that Pathtools has 3.86 million cases compared to Copath’s
4.5 million cases (86%). Pathtools has the best coverage in the
most recent years (e.g., 98% in 2019), with coverage worsening
gradually for years extending further in the past. The worst year
is 1986, in which Pathtools has only 867 of 4021 cases (22%).

We benchmarked the performance of Pathtools against Copath
in executing a text search. This task was meant to measure
the computational processing time of each system, in other
words, the time it takes for the back‑end database system to
process a search query, and return results to the requesting
front‑end program. Searches were designed in each system
to identify cases containing the word “stomach” in the
diagnostic text (final diagnosis, comment, and addendum text)
in a specific date‑range. To measure performance over a wide
variety of data‑set sizes, twelve different date‑ranges were
measured, ranging from 1 week to 2 years. For each test, the
duration of the search, and the number of matching cases were
recorded. Pathtools outperformed Copath in almost all tests,
proving significantly faster (P < 0.05) than Copath in all date
ranges >1 week [Figure 6]. Copath could not complete the
search for the longest date‑range (24 months) as the client
closed after several minutes of searching in each attempt.
In contrast, none of the Pathtools searches failed. Finally,
Pathtools matched more cases than Copath at each date‑range;
overall retrieving 52% more cases than Copath.

Search requests by trainees (residents and clinical fellows)
make up the majority of the searches, comprising about 75%
of overall search activity. The trainees were anonymously
surveyed to determine how often they use Pathtools during
their preview time and how useful they think Pathtools is an
educational aid [Table 2]. Out of 18 respondents (a mix of
residents and clinical fellows), 44% use Pathtools more than
90% of their preview days, 39% use it in 50%–90% of preview
days while 17% use it less than half of preview days. All 18
respondents “strongly agreed” or “agreed” that Pathtools
“helped me write diagnoses that require less editing by the
attending pathologist” and that “Pathtools is an important
educational aid.”

dIscussIon

The main function of the LIS is to manage a laboratory’s
workflow and deliver timely results for clinical management.[8]
However, the LIS should also be able to perform queries of

Figure 5: Comparison of the case numbers in Pathtools compared to Copath. Tops of orange bars indicate number of cases in Copath. Blue bars show
number of cases in Pathtools. Analysis restricted to surgical pathology, nongynecologic cytology, and bone marrow cases

J Pathol Inform 2020, 1:39 http://www.jpathinformatics.org/content/11/1/39

Journal of Pathology Informatics 7

the database, which is essential for report‑building, tracking
QA/QC indicators, supporting data mining operations, and
case‑finding for research and educational purposes.[9] With
our current LIS, we noted a distinct “functionality gap” in its
ability to deliver case‑finding functionality to the end‑user.[10]
Therefore, the aim of this project was to use open‑source
software to fill this gap, providing our staff pathologists,
trainees, and research investigators with the ability to rapidly
query the anatomic pathology case archive.

Pathtools is an improvement over our previous system, which
relied on Copath’s built‑in search functions. Most importantly,
Pathtools searches are significantly quicker than Copath

searches. Our benchmarking tests showed that computational
processing time is faster in Pathtools over Copath. Second,
we observed that end‑users using “Research Mode” to design
searches and request data extracts would receive their results
in a median time of 36 min. Unfortunately, this could not be
directly compared with our previous data extraction workflow
using Copath, as turnaround time is not tracked. However,
speaking anecdotally, turnaround time is usually >24 h.

In the research context, speedy searching allows the investigator
to quickly estimate how many cases of a particular diagnostic
entity are in our archive. This shortens the time between an
investigator’s initial hypothesis, and an estimate of the number
of relevant cases in the system. Our investigators can iterate
through many research ideas quickly, to find ones that are likely
to be the most fruitful. Furthermore, Pathtools is available
directly to end‑users, who can design searches themselves. In
contrast, Copath’s search functions are restricted to a team of
analysts at our institution, who design and execute searches
on behalf of the pathologist. Sometimes, this arrangement
would result in an extended “back and forth” between the
analyst and the pathologist, as the search would need to be
optimized several times to capture the desired results. This
process was often inefficient, leading to the creation of many
unused date‑sets, and consuming the time of the pathologist
and the analyst alike.

In an educational context, rapid searching is also
important. Our trainees have limited preview time each
day (sometimes just 1 h a day). Therefore, searches need to be
quick, to match the pace in which the trainee previews cases.
In Preview Mode, the trainee can execute a search and receive
results in <1 s. This activity is not possible with Copath, as the
search functions are not accessible by our trainees. However,
even if this were not the case, Copath searches are much slower
and are ill‑suited for this specific use‑case.

Curiously, the benchmarking tests showed that Pathtools
returned more cases than Copath in a similar search task. For
example, in the 16‑month test, Pathtools returned 21,364 cases
containing the term “stomach” while Copath returned only
16,869 cases. This is particularly unexpected given that
Pathtools was entirely populated with data extracted from
Copath. Examining these results in more details, we found that
the specific Copath natural language search utility we used for
benchmarking did not match cases originating from our Florida
campus, explaining the size discrepancy between the two
data‑set sizes. This was not expected behavior for this utility,
as it should match cases regardless of “region.” While we were
unable to correct this problem, given that Pathtools matched
more cases at each date‑range, it does not argue against our
conclusion that Pathtools is the faster system.

Interestingly, searches by trainees make up 75% of all search
activity. Almost all of these searches happen during a trainee’s
preview time. At our institution, trainees have dedicated time
to preview cases prior to sign out with the attending. Our
trainees are encouraged to preview as many cases as they

Table 2: Pathtools trainee user survey (n=18)

Respondents n (%)
How often do you use Pathtools when previewing AP cases?

Never 0
<50% of preview days 3 (17)
50%‑90% of preview days 7 (39)
More than 90% of preview days 8 (44)

Pathtools helps me write diagnoses that require less editing by
the attending pathologist

Strongly agree 12 (67)
Agree 6 (33)
Neither agree nor disagree 0
Disagree 0
Strongly disagree 0

Pathtools is an important educational aid
Strongly agree 14 (78)
Agree 4 (22)
Neither agree nor disagree 0
Disagree 0
Strongly disagree 0

Survey conducted anonymously via surveymonkey.com. Survey
invitation sent to 42 trainees with 18 responses (43%). AP: Anatomic
pathology

Figure 6: Benchmarking Pathtools against Copath in similar search task.
The time to complete a search task was determined for 12 different
date‑ranges (from 1 week to 24 months). Three trials were conducted
for each date‑range. Error bars indicate standard deviation (error bars too
small to be visible for Pathtools data points). Copath unable to complete
24 months search

J Pathol Inform 2020, 1:39 http://www.jpathinformatics.org/content/11/1/39

Journal of Pathology Informatics8

can, and enter their diagnoses into the LIS. Our trainees use
Pathtools during their preview time as an educational aid,
one that helps them craft their diagnostic text. This points to
important fact of our profession. Namely, a pathologist’s ability
to write diagnostic text is a key aspect of our jobs, as this is
our primary mode of communication with the clinician. It is
not merely sufficient to recognize a diagnosis, but it is also
essential that we communicate this clearly to the clinician
in writing. Furthermore, pathology diagnoses are not always
definitive, so a pathologist needs to select words carefully, to
imbue the text with the appropriate confidence. A well‑written
diagnosis leads to efficient patient care. A poorly‑worded
one generates confusion and the possibility of inappropriate
treatment. Unfortunately, there are few resources that help
trainees develop this particular skill. While numerous books are
generally close at hand to help the trainees with morphologic
and clinicopathologic descriptions of various pathologic
entities, writing or dictating the diagnosis is often a matter of
trial and error. For the pathology trainee, this is a daunting task,
and the learning curve is steep. The ability to rapidly query the
diagnostic archive is a great help in this regard, and Pathtools
has become a resource our trainees rely on.

The prime weakness of Pathtools is that its database is only a
partial copy of our clinical LIS database. There are two reasons
for this. First, the data model for Pathtools is very simple,
comprising a single SQL table. The data model works well for
surgical pathology cases with fields for diagnostic text (which
is composed of the final diagnosis, comment, and addendums),
gross description, synoptic text and intraoperative diagnosis.
The model also works for most cytology and bone marrow
cases (though none of these use the synoptic or intraoperative
diagnosis fields). However, some case‑types, like autopsy
reports, do not fit into this scheme. Similarly, Copath
“procedure reports” also have a distinct data structure (we use
this case type to attach the results of molecular or ancillary
testing). Finally, the Copath utility that was used for data
extraction did not match cytology cases that were released
directly by a cytotechnologist without pathologist review
(e.g., conventional pap smears and ThinPrep pap tests).
A significant amount of additional work would have been
required to adapt the data model to accommodate these
additional cases and we did not have the resources to do this.

Second, even for targeted case‑types, some cases were not
successfully extracted; Pathtools has only 86% of the cases
of Copath for targeted case‑types. This occurred for several
reasons. First, a pipeline of Python scripts processed the
tab‑delimited files obtained from the Copath search utility,
and uploaded them to the SQL database. Some cases fail this
procedure for various reasons, including nonstandard patient
name format, unexpected accession number format, and
the presence of characters within the text which are used as
delimiters by the processing scripts. If an error occurred in any
of these steps, the processing algorithm would skip the case.
Furthermore, the data extraction process seemed to perform
worse in older cases, with a gradual worsening in case yield

going back in time. It is unclear if these older cases failed
because of errors in the text parsing pipeline, or if the Copath
search utility did not reliably extract this older data.

Interestingly, our institution is investing considerable resources
in developing an enterprise data vault (EDV) which should
address this weakness. This is an effort to centralize and
integrate data from multiple operational systems across our
enterprise. In the near‑future, our pathology data (both clinical
and anatomic) will be comprehensively integrated into the EDV.
The EDV is implemented in Teradata (San Diego, CA, USA),
a SQL‑type relational database system. EDV tables can
serve as a centralized source of data for a wide variety of
applications across our enterprise. Therefore, Pathtools could
be adapted in the future to query the EDV, rather than using
its own stand‑alone database. This would be an improvement,
enabling the user interact with our institution’s most reliable
and comprehensive data source, thus, addressing Pathtool’s
biggest shortcoming.

A second drawback of Pathtools relates to its simplistic search
method, which does not take advantage of Natural Language
Processing (NLP). Specifically, Pathtools text searches rely
on the SQL predicate “CONTAINS” which returns only exact
matches to the user’s search terms‑though matching is not
case‑sensitive. For example, a search for “Crohn’s disease”
will not match “Crohn disease.” A search for “signet ring cell
adenocarcinoma” will not match “signet ring cell carcinoma.”
Pathtools could be improved by leveraging NLP methods
to improve the yield of relevant search results and to filter
out unwanted results. For example, a medical ontology, a
database of related concepts including their various names and
relationships, could be used to identify synonyms for the user’s
search terms.[11] Therefore, a user could search for “Crohn’s
disease” and the system would know to include results which
mention “Crohn disease.” Second, “negation detection” could
be used to filter out search results that contain a negation of
the user’s search term.[12] For example, a user may want to
find cases of Barrett’s esophagus with dysplasia. However,
searching Pathtools with the terms “Barrett’s” and “dysplasia”
will identify any Barrett’s case which contains the string
“negative for dysplasia”, which is not what the user wants.
Perhaps, the next iteration of Pathtools will take advantage of
advancements in NLP to produce a more powerful search tool.

conclusIon

Pathtools is a web‑based search platform optimized for the
academic pathologist. Most importantly, the platform is easy
to use and fast, delivering search results in seconds. This is
a heavily‑used resource in our department. The majority of
searches are performed by our trainees, who use it during
their preview time to help them write diagnoses. Pathtools
also supports departmental research activity and has generated
data sets for a variety of projects.

Financial support and sponsorship
Nil.

J Pathol Inform 2020, 1:39 http://www.jpathinformatics.org/content/11/1/39

Journal of Pathology Informatics 9

Conflicts of interest
There are no conflicts of interest.

references
1. Django; 2013. Available from: https://djangoproject.com. [Last accessed

on 02 Jan 2020].
2. Python Software Foundation. Python Language Reference, version 3.5.

Available from: https://www.python.org. [Last accessed on 06 Jan
2019].

3. jQuery QueryBuilder. Available from: https://querybuilder.js.org/. [Last
accessed on 06 Jan 2019].

4. McKinney W. Data structures for statistical computing in python. In:
Proceedings of the 9th Python in Science Conference. Austin, TX; 2010.
p. 51‑6.

5. Blank A, Cox R, Doxtader E, Fuller L, McKenney J, Mukhopadhyay S,
et al. Morphologic patterns of prostate cancer metastases to the
lung in cytology and histology: A review of 30 case. Mod Pathol
2020;33:460‑601.

6. Shetty S, Joehlin‑Price A, Habeeb O. Immunohistochemistry for
MDM2 is a useful tool in the diagnosis of malignant brenner tumors?
Mod Pathol 2020;33:1164‑337.

7. Thomas M, Robertson S, Joehlin‑Price A. Size of lymph node metastasis
significantly affects overall survival but not recurrence‑free survival in
a cohort of 182 single‑institution endometrial carcinomas. Mod Pathol
2020;33:1164‑337.

8. Cucoranu IC. Laboratory information systems management and
operations. Surg Pathol Clin 2015;8:153‑7.

9. Park S, Parwani AV, Aller RD, Banach L, Becich MJ, Borkenfeld S,
et al. The history of pathology informatics: A global perspective. J
Pathol Inform 2013;4:7.

10. Gershkovich P, Sinard JH. Customizing laboratory information systems:
Closing the functionality gap. Adv Anat Pathol 2015;22:323‑30.

11. Cai T, Giannopoulos AA, Yu S, Kelil T, Ripley B, Kumamaru KK, et al.
Natural language processing technologies in radiology research and
clinical applications. Radiographics 2016;36:176‑91.

12. Yim WW, Yetisgen M, Harris WP, Sharon WK. Natural language
processing in oncology review. JAMA Oncol 2016;2:797‑804.

