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Abstract: The increasing prevalence of diabetes and its complications, such as cardiovascular and
kidney disease, remains a huge burden globally. Identification of biomarkers for the screening,
diagnosis, and prognosis of diabetes and its complications and better understanding of the molecular
pathways involved in the development and progression of diabetes can facilitate individualized
prevention and treatment. With the advancement of analytical techniques, metabolomics can iden-
tify and quantify multiple biomarkers simultaneously in a high-throughput manner. Providing
information on underlying metabolic pathways, metabolomics can further identify mechanisms
of diabetes and its progression. The application of metabolomics in epidemiological studies have
identified novel biomarkers for type 2 diabetes (T2D) and its complications, such as branched-chain
amino acids, metabolites of phenylalanine, metabolites involved in energy metabolism, and lipid
metabolism. Metabolomics have also been applied to explore the potential pathways modulated by
medications. Investigating diabetes using a systems biology approach by integrating metabolomics
with other omics data, such as genetics, transcriptomics, proteomics, and clinical data can present a
comprehensive metabolic network and facilitate causal inference. In this regard, metabolomics can
deepen the molecular understanding, help identify potential therapeutic targets, and improve the pre-
vention and management of T2D and its complications. The current review focused on metabolomic
biomarkers for kidney and cardiovascular disease in T2D identified from epidemiological studies,
and will also provide a brief overview on metabolomic investigations for T2D.

Keywords: biomarkers; cardiovascular disease; chronic kidney disease; metabolomics; type 2 diabetes

1. Introduction

Diabetes affected 463 million people in 2019, and it has been projected that 700 million
adults will have diabetes worldwide by 2045, with the majority being type 2 diabetes
(T2D) [1]. Diabetes is the leading cause of chronic kidney disease (CKD); whereby around
40% of individuals with T2D develop diabetic kidney disease (DKD) [2], and DKD has
become the major cause of end-stage kidney disease (ESKD), contributing to half of new
cases of ESKD each year [3]. Moreover, individuals with T2D have 2- to 4-fold increased
risk of cardiovascular disease (CVD) and death [4]. A multinational study including
participants from South and East Asia, North Africa, the Middle East, South America,
and Europe reported an approximate 50% prevalence of microvascular complications
and 30% prevalence of macrovascular complications in T2D [5]. DKD characterized by
impaired glomerular filtration rate or albuminuria has been associated with increased risk
of CVD and mortality [6,7]. Furthermore, CVD has been estimated to cause two-thirds of
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deaths in T2D [8]. Consequently, T2D has been ranked fourth among the disease burden
worldwide [9], with a 2- to 3-fold increase in medical expenditures [10].

T2D is believed to arise due to complex interactions between genetic information,
developmental exposures and environmental factors such as diet, physical activity, and
pollution [11,12]. Hyperglycemia is the hallmark feature of diabetes and has been utilized
as a screening and diagnostic biomarker for diabetes, however, metabolic alteration leading
to diabetes may be present decades before the onset of hyperglycemia. Modification
of lifestyle (diet and physical activity) could delay or even prevent the development of
diabetes [13,14], highlighting the utility of powerful screening biomarkers to identify
individuals at risk of developing diabetes. Given the increasing risks of adverse outcomes
in diabetes and the availability of drugs proven to delay or prevent CVD and DKD [15–17],
it is also critical to identify prognostic biomarkers involved in the pathogenesis of diabetic
complications or predictive of future diabetic complications, which can facilitate clinicians’
decision making and benefit individuals at risk. Biomarkers indicating clinical response
to specific medications can help identify individuals who may benefit from the therapy
compared with those who have no biological response.

To improve the prevention and risk stratification of diabetes and its complications,
as well as to maximize the benefits from interventions, approaches which provide novel
insights into the etiology, diagnosis and prognosis of diabetes are much needed. With
the rapid advancements in analytical techniques, it has become possible to identify and
quantify multiple biomarkers simultaneously in a high-throughput manner, which has
dramatically advanced approaches for biomarker discovery.

2. Metabolomics and Metabolites

In 1971, Linus Pauling and colleagues introduced the concept of using quantitative
and qualitative patterns of metabolites to understand the physiological status within
a biological system [18]. Metabolites (with a small molecular mass < 1500 Da) can be
endogenous compounds that are produced during endogenous catabolism or anabolism,
such as amino acids, peptides, nucleic acids, sugars, lipids, organic acids, and fatty acids
(FAs), as well as exogenous chemicals, such as toxins and xenobiotics. The metabolome is
termed as the complete collection of metabolites in a given biosample. Metabolomics is
the method of comprehensively characterizing the metabolome in cells, organs, biofluids,
or other biological systems. Metabolomics is emerging as an attractive tool for biomarker
discovery in diabetes and its complications, since metabolites can provide information on
the molecular pathways involved in the development and progression of disease.

Multiple factors contribute to the development of diabetes. Most genetic variants
associated with T2D identified in large genome-wide association studies (GWAS) only
modestly contribute to the risk of diabetes. Among the identified genetic variants, over
300 common genetic variants collectively explained only 16% of the variance of diabetes in
a study which included around one million individuals of European decent [19]. Metabo-
lites are, in general, the downstream products of gene expression, transcripts, protein
transporters, and enzymatic reactions, which are closely correlated with genes in which a
single deoxyribonucleic acid (DNA) base change in a given gene can result in 10,000-fold
change in the level of endogenous metabolites [20] (Figure 1). Besides internal variations,
metabolites can also be affected by exogenous factors, such as diet, lifestyle, physical
activities, gut microbiota, and environmental pollution; thus, the metabolome is believed to
reflect the molecular profile most proximal to an individual’s phenotype, since it integrates
information from the genome, transcriptome, proteome, and enzymes as well as exogenous
exposures (Figure 1).
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Figure 1. Metabolomics provide a comprehensive molecular profile of a phenotype by integrating both endogenous and 
exogenous information. Metabolites are the downstream products of the genome, transcriptome, proteome, and enzymatic 
reactions, which are also affected by environmental exposures, such as environmental pollution, physical activities, med-
ications, and diet. The metabolome is closely correlated with genes in which even one single base change in a protein-
coding gene can result in 10,000-fold change in the level of a metabolite. In contrast to the relatively simple chemical 
constitutions of genome (4 nucleotide bases) and proteome (20 proteogenic amino acids), the metabolome consists of thou-
sands of different chemical classes and the number of metabolites is estimated to be around 1 million, while the number 
of genes and proteins are about 20,000 and 620,000, respectively. Thus, metabolomics provides a comprehensive molecular 
profile of a phenotype. 

With the advances of analytical techniques and statistical approaches, the number of 
measurable metabolites has been increasing exponentially over the past 10 years (from 
2200 to around 1 million currently) [21]. The application of metabolomics in diabetes and 
its complications, especially in large-scale epidemiological studies, has facilitated the 
identification and validation of metabolites that can serve as screening and prognostic 
biomarkers. Moreover, a multi-omics approach, combining metabolomics with other 
“omics” data, can provide insights into the complex intercorrelations of different axes in-
volved in the disease and provide opportunities to elucidate the potential causality be-
tween biomarkers and disease. The current review focuses on metabolomic biomarkers 
for kidney and cardiovascular disease in T2D identified from epidemiological studies, and 
will also provide a brief overview on metabolomic biomarkers for T2D identified in pro-
spective studies. In the following section, we firstly introduce the analytical methods for 
metabolic profiling. 

3. Analytical Methods 
3.1. Untargeted and Targeted Metabolomics 

There are two analytical approaches for metabolomics studies: untargeted and tar-
geted. Untargeted metabolomics represents the unbiased approach to complete profiling 
of the metabolome, aiming to detect, identify, and quantify as many metabolites in a bio-
logical sample as possible. The major strength of untargeted metabolomics is the possibil-
ity of uncovering novel biomarkers and pathophysiological pathways of disease. How-
ever, the annotation of unknown compounds often becomes a challenge, given the wide 
coverage of signals. In contrast, targeted metabolomics aims to measure a prespecified set 
or cluster of chemical compounds, which are usually lying on the same metabolic path-
ways or are structurally similar. Although only capable of providing limited information 
on the metabolic profiling, targeted metabolomics in general has higher sensitivity and 
selectivity, and can often provide a deeper understanding of the selected metabolites. 

3.2. Nuclear Magnetic Resonance (NMR) Spectroscopy 
In sharp contrast to the genome, which comprises of only four nucleotide bases, or 

the proteome, which represents the different combinations of 20 proteogenic amino acids, 
the metabolome consists of chemical compounds belonging to thousands of different 
chemical classes [22] (Figure 1). Given the diverse chemical properties and the wide range 

Figure 1. Metabolomics provide a comprehensive molecular profile of a phenotype by integrating both endogenous
and exogenous information. Metabolites are the downstream products of the genome, transcriptome, proteome, and
enzymatic reactions, which are also affected by environmental exposures, such as environmental pollution, physical
activities, medications, and diet. The metabolome is closely correlated with genes in which even one single base change
in a protein-coding gene can result in 10,000-fold change in the level of a metabolite. In contrast to the relatively simple
chemical constitutions of genome (4 nucleotide bases) and proteome (20 proteogenic amino acids), the metabolome consists
of thousands of different chemical classes and the number of metabolites is estimated to be around 1 million, while the
number of genes and proteins are about 20,000 and 620,000, respectively. Thus, metabolomics provides a comprehensive
molecular profile of a phenotype.

With the advances of analytical techniques and statistical approaches, the number of
measurable metabolites has been increasing exponentially over the past 10 years (from
2200 to around 1 million currently) [21]. The application of metabolomics in diabetes
and its complications, especially in large-scale epidemiological studies, has facilitated the
identification and validation of metabolites that can serve as screening and prognostic
biomarkers. Moreover, a multi-omics approach, combining metabolomics with other
“omics” data, can provide insights into the complex intercorrelations of different axes
involved in the disease and provide opportunities to elucidate the potential causality
between biomarkers and disease. The current review focuses on metabolomic biomarkers
for kidney and cardiovascular disease in T2D identified from epidemiological studies,
and will also provide a brief overview on metabolomic biomarkers for T2D identified in
prospective studies. In the following section, we firstly introduce the analytical methods
for metabolic profiling.

3. Analytical Methods
3.1. Untargeted and Targeted Metabolomics

There are two analytical approaches for metabolomics studies: untargeted and tar-
geted. Untargeted metabolomics represents the unbiased approach to complete profiling of
the metabolome, aiming to detect, identify, and quantify as many metabolites in a biological
sample as possible. The major strength of untargeted metabolomics is the possibility of
uncovering novel biomarkers and pathophysiological pathways of disease. However, the
annotation of unknown compounds often becomes a challenge, given the wide coverage
of signals. In contrast, targeted metabolomics aims to measure a prespecified set or clus-
ter of chemical compounds, which are usually lying on the same metabolic pathways or
are structurally similar. Although only capable of providing limited information on the
metabolic profiling, targeted metabolomics in general has higher sensitivity and selectivity,
and can often provide a deeper understanding of the selected metabolites.

3.2. Nuclear Magnetic Resonance (NMR) Spectroscopy

In sharp contrast to the genome, which comprises of only four nucleotide bases, or
the proteome, which represents the different combinations of 20 proteogenic amino acids,
the metabolome consists of chemical compounds belonging to thousands of different
chemical classes [22] (Figure 1). Given the diverse chemical properties and the wide
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range of concentrations of metabolites, currently, no single platform can quantify the
entire metabolome. The two most commonly used techniques are NMR spectroscopy and
mass spectrometry (MS), with the latter usually coupled to separation techniques, such
as gas chromatography (GC-MS) or liquid chromatography (LC-MS). NMR works by the
manipulation of the nuclear spin of certain atomic nuclei, such as 1H, 13C, 15N, and 31P, by
exposing them to a strong external magnetic field, and then recording the frequency of
electromagnetic radiation released as a result of nuclei relaxation. Because the signal of a
given nucleus is influenced by the neighboring atoms in a predictable way, the chemical
shifts in its resonance frequency can thus be used to identify the underlying molecular
structure. Since 1H atoms can be found in most of the organic compounds, proton (1H)
NMR spectroscopy (1H NMR) is widely employed in NMR-based metabolomics studies.
NMR is noninvasive and nondestructive, and requires little or no sample preparation,
chromatographic separation, or chemical derivatization; it can also be applied to in vivo
tissues or to living samples, such as the real-time profiling of living cells and analysis of
real-time metabolic flux [23,24]. Another advantage of NMR is that NMR is especially
suitable for assessing protein-bound metabolites (i.e., lipoprotein particles), and given the
high automatability and reproducibility, NMR can be applied in large-scale metabolomics
studies [25,26]. The major limitation of NMR, however, is its relatively low sensitivity
(millimole to micromole per liter range), which is approximately 10 to 100 times less
sensitive than MS.

3.3. Mass Spectrometry

The high resolution and sensitivity of MS has made it the most widely used platform
for metabolomic studies [27]. Compounds are first separated by chromatographic tech-
niques (i.e., GC or LC) to reduce ion suppression, before quantification and identification
by the mass spectrometer. GC-MS is a highly sensitive and suitable method for the separa-
tion of volatile and thermally stable metabolites. GC-MS can separate naturally volatile
compounds, such as ketones, aldehydes, alcohols, esters, and furans, and compounds
that can be made volatile by derivatization, such as sugars, amino acids, lipids, and or-
ganic acids [28]. As chemical derivatization may alter the structure of compounds and
unpredictable variations may occur during sample preparation, one of the drawbacks of
GC-MS is its relatively low reproducibility [29]. Compared with GC-MS, LC-MS requires
higher instrument costs, and suffers from lower reproducibility. LC-MS can separate a
wide range of classes of compounds, from very polar to very nonpolar ones [30]. As
compounds in biofluids must be ionized prior to MS measurement, unlike GC-MS which
utilizes the hard-ionization approach (i.e., electron-impact [EI] ionization), LC-MS often
uses soft-ionization methods instead (i.e., electrospray ionization [ESI] and atmospheric
pressure chemical ionization [APCI]), thus generating ions without fragmentation and
allowing the identification of unknown compounds [31,32]. Compared to GC-MS, one of
the advantages of LC-MS is that chemical derivatization is not required in most conditions
since high temperatures and volatility are no longer required. Moreover, LC-MS is in
general more sensitive, covering compounds from low molecular weight to molecular
weights beyond 600 Da, including phospholipids, conjugated bile acids, glycosides and
sugars [33]. However, the major drawback of LC-MS as an untargeted platform is the lack
of transferable mass spectral libraries [34]. Compared with NMR, although MS techniques
have higher sensitivity, they are destructive and in general produce results which are
comparatively less reproducible. The major advantages and disadvantages of NMR and
MS techniques for metabolomic profiling are summarized in Table 1.
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Table 1. Advantages and disadvantages of different platforms for metabolomics studies.

NMR GC-MS LC-MS

Applications Targeted and untargeted Targeted and untargeted Targeted and untargeted
Throughput 10–30 min 20–60 min 15–60 min

Advantages Nondestructive and suitable for
in vivo Sensitive Highly sensitive

Quantitative of absolute
concentrations

Quantitative of absolute
concentrations Wide dynamic range

Requiring little or no sample
preparation Robust and reproducible No need for derivatization

Automated and robust Small sample volume required
(~1 uL)

Small sample volume required
(10–100 uL)

Highly reproducible Available databases for
identification (i.e., NIST)

Compatible with solids and
liquids

Less expensive compared with
LC-MS

Disadvantages Poor sensitivity Destructive Destructive
Large sample volumes required

(~0.5 mL)
Requiring derivatization and

separation Requiring separation

Not compatible with solids Lack of absolute quantification in
untargeted applications

Less reproducible
Difficulty in unknown metabolite

identification
More expensive compared with

GC-MS

GC-MS, gas chromatography–mass spectrometry; LC-MS, liquid chromatography–mass spectrometry; NIST, National Institute of Standards
and Technology; NMR, nuclear magnetic resonance.

4. Metabolomics in Diabetes

The characteristic perturbations of metabolic homeostasis associated with or preceding
the development of hyperglycemia makes metabolomics a good method to elucidate
the potential pathways and to explore potential biomarkers for T2D. Over the past two
decades, metabolomics has been widely utilized in large epidemiological studies, and some
metabolites/pathways have been identified and validated to be associated with insulin
metabolism or being predictive of diabetes across different studies [35]. Table 2 summarizes
the findings from some of key prospective studies [36–66].
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Table 2. Circulating metabolites associated with type 2 diabetes in prospective epidemiological studies.

Reference;
Year Study Design Number, Follow-Up Technique Biological

Matrix Outcome Adjustments Major Findings Replication

[36]; 2005 IRAS; America;
population-based cohort

825 (129 T2D);
5.2 years Targeted; NMR Plasma Incident T2D Age, gender, and ethnicity

(+): VLDL particle, large VLDL,
LDL particle, small LDL, small

HDL, triglycerides;
(−): large HDL, HDL cholesterol

No

[37]; 2010

WHS; America;
randomized,

double-blinded,
placebo-controlled trial

26,836 (1687 T2D);
13.3 years Targeted; NMR Plasma Incident T2D

Age, race, randomized
treatment assignment,

smoking, exercise,
education, menopausal

status, hormone use, blood
pressure, BMI, family

history of diabetes, HbA1C,
and high-sensitivity
C-Reactive protein

(+): total LDL particle, IDL
particle, small LDL particle, small
HDL particle, triglycerides, total

VLDL particle, large VLDL
particle, small VLDL particle
(−): large LDL particle, HDL

cholesterol, total HDL particle,
large HDL particle

No

[38]; 2011 FHS; America; nested
case–control

189 T2D and 189
control; 12 years Targeted; LC-MS Plasma Incident T2D Age, sex, BMI, FPG, and

family history of T2D
(+): isoleucine, leucine, valine,

tyrosine, phenylalanine

Yes; Malmö Diet and
Cancer study,

Sweden; nested
case–control (163

T2D and 163 no T2D)

[39]; 2012 METSIM; Finland;
population-based cohort

1775 (151 T2D);
4.7 years Targeted; NMR Serum Incident T2D Age, BMI

(+): alanine, isoleucine, leucine,
phenylalanine, tyrosine;

(−): glutamine
No

[40]; 2012 KORA; Germany;
population-based cohort

589 (118 IGT) and
876 (91 T2D); 7 years Targeted; LC-MS Plasma Incident IGT and

T2D

Age, sex, BMI, physical
activity, alcohol intake,

smoking, systolic BP and
HDL cholesterol

(−): glycine, LPC (18:2) No

[41]; 2013 Botnia study; Finland;
family-based study

2580 (151 T2D);
9.5 years Targeted; LC-MS Plasma Incident T2D

Age, sex, BMI, family
history of diabetes, and

fasting glucose

(+): a-hydroxybutyrate;
(−): L-GPC No

[42]; 2013 EPIC; Germany;
case–cohort

2282 (800 T2D);
7 years Targeted; MS Serum Incident T2D

Age, sex, alcohol intake,
smoking, physical activity,

education, coffee intake,
red meat intake,

whole-grain bread intake,
prevalent hypertension

BMI, and waist
circumference

(+): hexose, phenylalanine,
diacyl-phosphatidylcholines
(C32:1, C36:1, C38:3, C40:5);
(−): glycine, sphingomyelin

C16:1, lysophospha-tidylcholine
C18:2, and

acyl-alkyl-phosphatidylcholines
(C34:3, C40:6, C42:5, C44:4, C44:5)

Yes; KORA,
Germany; 876 (91

T2D); 7 years

[43], 2013 METSIM; Finland;
population-based cohort

4306 (276 T2D);
5 years Targeted; NMR Plasma Incident T2D Age, BMI, smoking, and

physical activity (+): acetoacetate No
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Table 2. Cont.

Reference;
Year Study Design Number, Follow-Up Technique Biological

Matrix Outcome Adjustments Major Findings Replication

[44]; 2013 METSIM; Finland;
population-based cohort

4335 (276 T2D);
4.5 years Targeted; NMR Plasma Incident T2D Age, BMI, smoking, and

physical activity

(+): glycerol, total fatty acids,
triglycerides, monounsaturated

fatty acids%, saturated fatty
acids%;

(−): n-3 fatty acids%, n-6 fatty
acids%, linoleic acid%.

No

[45]; 2015 SABRE; Britain;
population-based cohort

801 Europeans (113
T2D) and 643 South

Asians (227 T2D);
19 years

Targeted; NMR Serum Incident T2D

Age, WHR, truncal
skinfold thickness,

Matsuda-IR,
HDL-cholesterol level,
current smoking, and
alcohol consumption

(+): tyrosine for South Asians;
(−): glycine for Europeans No

[46]; 2015 METSIM; Finland;
population-based cohort

6607 (386 T2D);
5.9 years Targeted; NMR Serum Incident T2D Age, BMI, smoking, and

physical activity

(+): ApoA1/HDL-C ratio,
ApoB/LDL-C ratio,

ApoB/non-HDL-C ratio;
(−): HDL cholesterol and large

HDL particles

No

[47]; 2015 IRAS; America;
population-based cohort 146 (76 T2D); 5 years Targeted;

MS/MS Plasma Incident T2D Age, sex, BMI, and
ethnicity

(+): alanine, valine, leucine or
isoleucine, phenylalanine,
glutamine and glutamate;

(−): glycine, asparagine and
aspartate

No

[48]; 2016

Four cohorts: ULSAM;
Sweden,

population-based cohort;
PIVUS; Sweden,

population-based cohort;
the TwinGene study;
Sweden, case–cohort;

KORA; Germany,
population-based cohort

1138 from ULSAM
(78 T2D), 970 from

PIVUS (70 T2D),
1630 from TwinGene
(122 T2D), and 855

from KORA (88 T2D)

Untargeted;
LC-MS

Plasma and
serum Incident T2D

Age, sex, BMI, waist
circumference, and fasting

glucose

(+): γ-glutamyl-leucine,
2-methylbutyroylcarnitine,

barogenin, L-tyrosine,
monoacylglycerol (18:2),

deoxycholic acid;
(−): cortisol,

LysoPC/PC(O-16:1/0:0), SM
(33:1, d18:2/18:1, 34:2), LysoPC
(20:2), CerPE (38:2), PC (42:7)

No

[49]; 2016
Two Chinese cohorts:

DFTJ and JSNCD; nested
case–control studies

2078 from DFJT
(1039 T2D); 4.6 years;
140 form JSNCD (520

T2D); 7.6 years

Targeted; LC-MS Plasma Incident T2D

Age, BMI, smoking and
drinking status, education

level, physical activity,
systolic blood pressure,
serum HDL cholesterol

and triglycerides, fasting
glucose, family history of

diabetes, and
metabolomics batch

(+): alanine, phenylalanine,
tyrosine, palmitoylcarnitine Yes
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Table 2. Cont.

Reference;
Year Study Design Number, Follow-Up Technique Biological

Matrix Outcome Adjustments Major Findings Replication

[50]; 2016

RISC; Europe,
population-based cohort

DMVhi; Britain;
population-based cohort

855 (623 NGT, 56
isolated IGT (iIGT),
220 isolated IFG, 56

IFG and IGT);
3 years

668 (not given);
3 years

Targeted;
LC-MS/MS Plasma iIGT Age, sex, and BMI

(+): a-hydroxybutyric acid,
oleic acid;

(−): linoleoyl-
glycerophosphocholine

Yes, Botnia, Finland;
2430 (not given)

[51]; 2016 SCHS; Singapore; nested
case–control

394 (197 T2D);
6 years

Untargeted;
LC-MS and

GC-MS
Serum Incident T2D BMI, smoking status, and

history of hypertension

(+): aminomalonic acid, glycine,
isoleucine, leucine, threonine,
valine, hippuric acid, cytidine

diphosphate glucose, D-galactose,
gluconate, palmitic acid (16:0),

stearic acid (18:0), oleic acid
(18:1), linoleic acid (18:2), LPG
(12:0), LPI (16:1, 18:1, 18:2, 20:3,
20:4, 22:6), lactic acid, pyruvate,

urea, 1,3-propanediol;
(−): 2-aminooctanoic acid,

ornithine, phosphoserine, proline,
serine, glycerol,

9-decenoylcarnitine (C10), CMPF,
LPE (20:3, 20:5)

No

[52]; 2017
Botnia Prospective Study;

Finland;
population-based cohort

543 (146 T2D);
7.7 years

Untargeted and
targeted; MS Serum Incident T2D

Age, sex, BMI, fasting
insulin level, and family
history of type 2 diabetes

(+): glucose, mannose,
α-hydroxybutyrate, isoleucine,

valine, glutamate, trehalose;
(−): histidine, bilirubin,
glutamine, α-Tocopherol

Yes; DESIR, France;
1044 (231 T2D);

9 years

[53]; 2017 ERF; Netherlands;
population-based cohort

1571 (137 T2D);
11.3 years

Targeted; NMR
and LC-MS Plasma Incident T2D Age, sex, and

lipid-lowering medication

(+): isoleucine, tyrosine,
2-hydroxybutyrate, 2-oxoglutaric
acid, glycerol, lactate, pyruvate,
TG (48:0), TG (48:1), TG (50:5),

VLDL free cholesterol, extremely
large VLDL cholesterol, VLDL
triglycerides, very small LDL

and ApoB

No
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Table 2. Cont.

Reference;
Year Study Design Number, Follow-Up Technique Biological

Matrix Outcome Adjustments Major Findings Replication

[54]; 2018

The Västerbotten
Intervention Programme
cohort; Sweden; nested

case–control study

1006 (503 T2D);
7 years

Untargeted;
LC-MS Plasma Incident T2D BMI and FPG

(+): PC(16:0/16:1),
DAG(16:1/16:1, 14:0/16:0,

14:0/18:1, 16:0/18:1),
3-hydroxyisovalerylcarnitine,

phenylalanine, leucine,
isoleucine, valine, tryptophan,
L-tyrosine, alanine, citrulline;
(−): lysoPC (18:2, 18:1, p16:0,
17:0, 19:1, 20:1), PC (15:1/18:2,

17:0/18:2), n-acetylglycine,
2-hydroxyethanesulfonate,
3-methyl-2-oxovaleric acid

No

[55]; 2018 SCHS; Singapore; nested
case–control study

320 (160 T2D); not
given

Targeted; LC-MS
and GC-MS Serum Incident T2D

BMI, history of
hypertension, smoking,
physical activity, fasting
status, triglycerides, and

HDL-cholesterol

(+): lysophosphatidylinositol
(16:1, 18:0), myristic acid (14:0),
palmitic acid (16:0), palmitoleic
acid (16:1n-7), stearic acid (18:0),

eicosadienoic acid (20:2n-6),
dihomo-gamma-linolenic

acid (20:3n-6), arachidonic acid
(20:4n-6), adrenic acid (22:4n-6)

No

[56]; 2018 KoGES;
community-based cohort

1939 (282 T2D);
8 years Targeted; MS Serum Incident T2D

Sex, age, energy intake,
body-mass index,

metabolic equivalent,
smoking status, drinking
status, household income,

and education level,
consumption of coffee, red
meat, and whole grain, and

history of hypertension

(+): alanine, arginine, isoluecine,
proline, tyrosine, valine, hexose,

phosphatidylcholine diacyl
(C32:1, C34:1, C36:1, C40:5,

C42:5);
(−): spermine, lyso

phosphatidylcholine acyl (C17:0,
C18:2, C38:0, C40:1, C42:1, C34:3,
C36:3), hydroxysphingomyelin

C22:2, sphingomyelin C16:1

No

[57]; 2018 ARIC; America;
community-based cohort

2939 (1126 T2D);
20 years

Untargeted;
LC-MS Serum Incident T2D

Age, sex, race, center,
batch, education level,
systolic blood pressure,
diastolic blood pressure,
BMI, HDL-cholesterol,

LDL-cholesterol, smoking
status, physical activity

level, history of
cardiovascular disease,

eGFR, and fasting glucose

(+): isoleucine, leucine,
3-(4-hydroxyphenyl)lactate,
valine, trehalose, erythritol;

(−): asparagine

No
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Table 2. Cont.

Reference;
Year Study Design Number, Follow-Up Technique Biological

Matrix Outcome Adjustments Major Findings Replication

[58]; 2018 FHS; America;
community-based cohort

1150 with NFG (95
T2D); 20 years

Targeted;
LC-MS/MS Plasma Incident T2D Age, sex, BMI, fasting

glucose, and triglycerides
(+): phenylalanine;

(−): glycine, taurine No

[59]; 2019

Four Finnish
population-based

cohorts: YFS;
FINRISK-1997; DILGOM;

NFBC

11,896 (392 T2D);
8–15 years Targeted; NMR Serum Incident T2D Sex, baseline age, BMI, and

fasting glucose

(+): isoleucine, leucine,
phenylalanine, glycerol,

glycoprotein acetyls, total fatty
acids, monounsaturated fatty

acids%,
triacylglycer/phosphoglyceride

ratio, VLDL cholesterol, total
triacylglycerol, triacylglycerol in

VLDL, triacylglycerol in LDL,
apo B/apo A1 ratio, VLDL

particle size;
(−): polyunsaturated fatty

acids%, n-6 fatty acids%, linoleic
acid%, HDL cholesterol, HDL

particle size

No

[60]; 2019 METSIM; Finland;
population-based cohort

4851 (522 T2D);
7.4 years

Untargeted;
LC-MS Plasma Incident T2D

Batch effect, age, BMI,
smoking, and physical

activity

(+): tyrosine, alanine, isoleucine,
aspartate, glutamate No

[61]; 2019 MPP; Sweden;
case–cohort study

698 (202 T2D);
6.3 years

Untargeted;
LC-MS Plasma Incident T2D Age, sex, fasting glucose,

and BMI

(+): N2,N2-dimethylguanosine,
7-methylguanine,

3-hydroxy-trimethyllysine, urea

Yes, MDC-CC,
Sweden;

population-based
cohort; 3423 (402
T2D); 18.2 years

[62]; 2019 PREDIMED; Spain;
case–cohort

853 (243 T2D);
3.8 years Targeted; LC-MS Plasma Incident T2D

Age, sex, intervention, BMI,
smoking, dyslipidemia,

hypertension, and baseline
plasma glucose

(+): lysine, 2-aminoadipic acid No

[63]; 2020 METSIM; Finland;
population-based cohort

4851 (522 T2D);
7.4 years

Untargeted;
LC-MS Plasma Incident T2D Age, BMI, smoking, and

physical activity

(+): creatine;
1-palmitoleoylglycerol (16:1),

urate, 2-hydroxybutyrate,
xanthine, xanthurenate,

kynurenate, 3-(4-hydroxyphenyl)
lactate, 1-oleoylglycerol (18:1),

1-myristoylglycerol (14:0),
dimethylglycine,

2-hydroxyhippurate;
(−): 1-linoleoyl-GPC (18:2)

No
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Table 2. Cont.

Reference;
Year Study Design Number, Follow-Up Technique Biological

Matrix Outcome Adjustments Major Findings Replication

[64]; 2021 DFTJ; China; nested
case–control

1000 (500 T2D);
4.61 years

Untargeted;
LC-MS Serum Incident T2D

Age, sex, BMI, smoking
status, drinking status, and

physical activity

(+): carnitine 14:0, PE 34:2, FFA
20:4;

(−): pipecolinic acid,
1,5-Anhydro-D-Glucitol, LPC

18:2, Isoleucine/leucine,
epinephrine

No

[65]; 2021

Five cohorts from
America: HCHS/SOL;
ARIC; FHS, WHI and a

case–cohort study nested
in PREDIMED;

prospective

9180 (2031 T2D);
5.7 years LC-MS Serum and

plasma Incident T2D

Age, sex, smoking, alcohol
consumption, education,

family income, family
history of diabetes,

self-reported hypertension
and/or antihypertensive

medication use,
self-reported dyslipidemia

and/or lipid-lowering
medication use, other

study-specific covariates,
BMI and WHR; yes

(+): tryptophan, kynurenine,
kynurenate, xanthurenate,

quinolinate;
(−): indolepropionate

No

[66]; 2021 PREVEND; Netherlands;
population-based cohort

4828 (265 T2D);
7.3 years Targeted; NMR Plasma Incident T2D

Age, sex, family history of
diabetes, smoking, alcohol

assumption, BMI,
hypertension,

high-sensitivity C-reactive
protein, lipid-lowering
medication, and fasting

glucose

(+): small HDL;
(−): HDL cholesterol, large HDL,

medium HDL
No

IRAS, Insulin Resistance Atherosclerosis Study; WHS, Women’s Health Study; FHS, Framingham Heart Study; METSIM, Metabolic Syndrome in Men; KORA, Cooperative Health Research in the Region
of Augsburg; EPIC, European Prospective Investigation into Cancer and Nutrition; SABRE, Southall Additionally, Brent Revisited; ULSAM, Uppsala Longitudinal Study of Adult Men; PIVUS, Prospective
Investigation of the Vasculature in Uppsala Seniors; DFTJ, Dongfeng-Tongji; JSNCD, Jiangsu Noncommunicable Disease; RISC, Relationship Between Insulin Sensitivity and Cardiovascular Disease; SCHS,
Singapore Chinese Health Study; DESIR, Data from an Epidemiological Study on the Insulin Resistance Syndrome; ERF, Erasmus Rucphen Family genetic isolate study; KoGES, Korean Genome and Epidemiology
Study; ARIC, Atherosclerosis Risk in Communities; YFS, Cardiovascular Risk in Young Finns Study; DILGOM, Dietary, Lifestyle, and Genetic Determinants of Obesity and Metabolic Syndrome; NFBC,
Northern Finland Birth Cohort; MPP, Malmö Preventive Project; MDC-CC: Malmö Diet and Cancer–Cardiovascular Cohort; PREDIMED, Prevención con Dieta Mediterránea study; HCHS/SOL, Hispanic
Community Health Study/Study of Latinos; PREVEND: Prevention of Renal and Vascular End-Stage Disease; BMI, body-mass index; CerPE, ceramide phosphoethanolamine; CMPF, 3-carboxy-4-methyl-5-
propyl-2-furanpropionic acid; DAG, diglyceride; eGFR, estimated glomerular filtration rate; FFA, free fatty acid; FPG, fasting plasma glucose; GPC, glycerophosphocholine; HbA1C, glycated hemoglobin;
IGT, impaired glucose tolerance; IR, insulin resistance; L-GPC, linoleoyl-glycerophosphocholine; LPC, lysophosphatidylcholine; LPE, lysophosphatidylethanolamine; LPG, lysophosphatidylglycerol; lysoPC,
lysophosphatidylcholine; NFG, normal fasting glucose; NGT, normal glucose tolerance; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PI, lysophosphatidylinositol; SM, sphingomyelin; T2D, type 2
diabetes; TG, triacylglycerol; WHR, waist-hip ratio.



Cells 2021, 10, 2832 12 of 38

4.1. Amino Acids
4.1.1. Branched-Chain Amino Acids (BCAAs)

BCAAs (isoleucine, leucine, and valine) have been found to be altered among obese
vs. lean humans, and were found to contribute to insulin resistance in experimental
studies [67]. First reported in the Framingham Heart Study (FHS) and subsequently
replicated in the Malmö Diet and Cancer study [38], BCAAs and two aromatic amino
acids (AAAs, tyrosine and phenylalanine) were found to be associated with increased
risk of T2D during a 12-year follow-up, and the associations remained significant after
adjustment for age, sex, body-mass index (BMI), and fasting glucose [38]. The combination
of three amino acids (isoleucine, tyrosine, and phenylalanine) could predict T2D (odds ratio
[OR] 2.42, 95% confidence interval [CI] 1.66–3.54). Furthermore, compared to individuals
from the lowest quartile, people in the highest quartile had an odds ratio of 5.99 (95%
CI, 2.34–15.34) for diabetes [38]. Multiple studies across different ethnicities have since
replicated the association between BCAAs and risk of diabetes [39,45,47,51–54,57,59,60].
BCAAs have been found to be related to insulin resistance in animal and human studies [68],
however, it remains unclear whether BCAAs contribute to diabetes in a causal manner.
Residual confounding and reverse causation in observational studies often hamper the
causal inference between biomarkers and outcomes. Using genetic variants mimicking
the life-time effects of an environmental exposure which are fixed at conception as the
instrumental variable, Mendelian randomization (MR) studies have been utilized to explore
the potential causal link between exposures and outcomes. One MR study found that a GRS
(genetic risk score) for insulin resistance causally increased BCAAs levels, while genetically
increased BCAAs were not associated with insulin resistance [69]. Another two-sample
MR study further supported a causal link between insulin resistance and BCAAs [70].
Despite lacking a direct causal link with diabetes, these results suggest that BCAAs may
lie on the causal pathway from insulin resistance to diabetes by mediating the effect of
insulin resistance on the development of diabetes, since BCAAs levels have been found to
be increased by obese microbiomes, and there is decreased oxidation in the adipose tissue
and liver in people with insulin resistance [71] (Figure 2). BCAAs may therefore serve as
predictive biomarkers, especially given their levels may be increased as early as a decade
before overt diabetes.
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Figure 2. The role of BCAAs in the progression from insulin resistance to type 2 diabetes. In mendelian randomization
studies, genetically predicted insulin resistance increased BCAAs, rather than the reverse. BCAAs oxidation in adipose
tissue and liver was decreased in people with insulin resistance, leading to elevated circulating BCAAs. Obese microbiomes
could elevate BCAAs. One of the BCAAs, leucine, could activate the mTOR pathway. The above findings suggest a potential
mediating role of BCAAs in the progression from insulin resistance to type 2 diabetes. Increased BCAAs oxidation in skeletal
muscle depletes the intracellular pool of glycine and increases 3-hydroxyisobutyrate production, resulting in skeletal muscle
lipotoxicity, which may be the mechanism linking BCAAs and insulin resistance. BCAAs, branched-chain amino acids; MR,
mendelian randomization; mTOR, mechanistic target of rapamycin.
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4.1.2. Aromatic Amino Acids

Tyrosine and phenylalanine, two kinds of AAAs, have also been associated with
risk of diabetes [38,39,45,47,49,54,56,59,60]. Analyses in individuals with normal fasting
glucose from the FHS found a positive association between phenylalanine and future
diabetes, and the consistent findings in MR studies further supported a potential causal
role of phenylalanine in the pathogenesis of diabetes [58]. A breakdown product of
phenylalanine, 3-(4-hydroxyphenyl) lactate, has been found to be associated with decreased
insulin secretion and diabetes in the Metabolic Syndrome in Men (METSIM) study [63].
Results from the Southall Additionally, Brent Revisited (SABRE) study suggested a stronger
association of tyrosine with diabetes in South Asians than in Europeans, indicating that
the metabolic profile may differ between different ethnicities, and that metabolites may
be helpful towards exploring ethnic differences in diabetes incidence. Tyrosine may be an
ideal predictive biomarker for diabetes in South Asians [45].

4.1.3. Other Amino Acids

Glycine, a nonessential amino acid [72], was found to be inversely associated with
diabetes in Europeans [40,42,47,58], whereas a positive association has been reported in
a Chinese population [51]. The MR analysis from the FHS suggested a potential causal
link between glycine and diabetes, with the genetically predicted glycine being inversely
associated with risk of diabetes [58]. However, a study including 74,124 T2D cases and
824,006 controls did not find an association between genetically predicted glycine and
diabetes risk [73]. Furthermore, the study found that genetically higher insulin resistance
was associated with lower levels of glycine, suggesting a mediating role of glycine between
insulin resistance and diabetes [73]. Alanine, a nonessential amino acid synthesized from
pyruvate and BCAAs, has also been reported to be associated with diabetes [39,47,49,54,56].
Glutamate, synthesized from α-ketoglutaric acid in the citric acid cycle, has been found to
be associated with the risk of diabetes [47,52,60] and a reverse association of glutamine,
a transamination product of glutamate, has been reported [39,52]. The biological roles of
these amino acids in the development of diabetes are, however, yet to be elucidated.

4.2. Organic Acids

Alpha-hydroxybutyrate, a product of threonine and methionine, upstream of the
tricarboxylic acid (TCA) cycle, has been associated with impaired glucose tolerance and
diabetes [41,50,52,53,63]. Ketone bodies are an important alternative energy source during
fasting, and levels of ketone bodies represent the balance of production (ketogenesis)
and utilization (ketolysis). Acetoacetate, converted from free fatty acids (FFAs), has been
associated with impaired insulin secretion and diabetes [43].

4.3. Lipids
4.3.1. Lipoproteins

Individuals with T2D commonly exhibit dyslipidemia, namely, high levels of triglyc-
erides and small dense LDL particles, low levels of high-density lipoprotein (HDL) choles-
terol, and normal or near-normal low-density lipoprotein (LDL) cholesterol levels [74].
NMR has emerged as a novel method to measure lipoprotein particles [75], and has been
applied in investigations on lipoproteins and onset of diabetes. In the Insulin Resistance
Atherosclerosis Study (IRAS), very-low-density lipoprotein (VLDL) size and small HDL
were associated with increased risk of diabetes, independent of triglycerides and HDL
cholesterol in prediabetic subjects [36]. In the Women’s Health Study (WHS), both lipopro-
tein particle size and concentration have been associated with incident diabetes during
13-year follow-up; VLDL size, total/large/small VLDL concentration, and small LDL and
HDL were positively associated with diabetes, while large LDL and HDL were inversely
associated [37]. Analyses from Finnish populations have also found a positive association
for VLDL and a negative association for HDL [46,59]. Recent analyses from the Prevention
of Renal and Vascular End-Stage Disease (PREVEND) study with detailed HDL subspecies
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measurements reported heterogeneous associations between HDL subclasses and inci-
dent diabetes: larger HDL size and particles were associated with lower risk of incident
diabetes [66].

4.3.2. Fatty Acids

FFAs are produced during hydrolysis of triglycerides [76]. Under the insulin-resistant
state, increased lipolysis leads to overproduction of FFAs. In the METSIM study, saturated
FAs were associated with increased risk of diabetes, while an inverse association has been
found between unsaturated FAs and diabetes [44]. Furthermore, monounsaturated FAs
(MUFAs%) were associated with risk of diabetes in a prospective study combining four
Finnish cohorts over 8–15 years of follow-up, and polyunsaturated FAs (PUFAs%), mainly
n-6 FAs, were associated with decreased risk of diabetes [59]. A two-sample MR study
suggested potential causal associations between FAs and fasting glucose, beta cell function,
and diabetes [77]. Genetically predicted linoleic acid, the main n-6 PUFAs, has been consis-
tently associated with lower risk of diabetes in a two-sample MR using different genetic
variants and analytical approaches [78]. FAs can be derived from dietary triglycerides and
phospholipids and dietary counselling has been shown to modify circulating FAs levels [79].
With possible causal links with diabetes, FAs may be emerging as new intervention targets
for the prevention of diabetes.

5. Metabolomics in Diabetic Kidney Disease

The kidneys are metabolically active organs involved in modulating the circulating
levels of metabolites through filtration, reabsorption, secretion, and metabolism (including
catabolism and anabolism). Consequently, changes in metabolite concentrations may reflect
kidney function, and these changes may even precede the onset or progression of kidney
disease, hence providing insights into the development and progression of DKD. Creatinine
is one of the commonly applied metabolites that is freely filtered at the glomerulus, and not
reabsorbed, with only limited secretion by tubules [80]. Serum creatinine can be used to
estimate glomerular filtration rate (eGFR) noninvasively, however, creatinine is significantly
increased at more advanced stages of CKD (CKD stage three and onward) and is affected
by age, sex, race, and muscle mass. The identification of early markers is warranted given
the availability of treatments which can prevent and delay DKD progression. Metabolomic
studies have been applied to investigate blood or urine metabolomic biomarkers for DKD
and have provided novel insights into the mechanisms leading to DKD and its progression,
which make potential therapeutic targets possible. Table 3 summarized metabolomic
investigations in DKD [81–107].
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Table 3. Circulating metabolites associated with diabetic kidney disease in human studies.

Reference;
Year Study Design Number, Follow-Up Technique Biological

Matrix Outcome, Number Adjustments Major Findings Replication

[81]; 2009 China;
case–control

119 (31 control: no DM
and DN, 23 T2D without

DN, 65 T2D and DN)
Targeted; LC-MS Plasma NA NA

Higher levels of inosine, adenosine, uric
acid, and xanthine in DN group

compared with control or T2D without
DN group

No

[82]; 2012 Japan;
case–control

78 T2D
(20 normoalbuminuria,
32 microalbuminuria,
26 macroalbuminuria)

Untargeted; MS Serum NA No

Higher levels of creatinine, aspartic acid,
γ-butyrobetaine, citrulline, SDMA and
kynurenine and lower levels of azelaic

acid and galactaric acid in
macroalbuminuria group compared with

normoalbuminuria group

No

[83]; 2012
FinnDiane;

Finland; nested
case–control

52 T1D (26 progressing
to micro/

macroalbuminuria,
26 nonprogressor);

5.5 years

Untargeted;
LC-MS and

GC-MS
Urine

Progression from
normoalbuminuria

to micro- or
macro-albuminuria;

26

No
Higher level of substituted carnitine and

S-(3-oxododecanoyl) cysteamine and
lower level of hippuric acid in progressors

No

[84]; 2012
FinnDiane;

Finland;
cross-sectional

326 T1D (182 normal
AER,

58 microalbuminuria,
86 macroalbuminuria)

Targeted; NMR Serum 24 h AER

Diabetes duration, gender,
waist, SBP, HbA1C,
triglycerides, HDL

cholesterol, and serum
creatinine

(+): sphingomyelin No

[85]; 2013 America;
case–control

47: 23 healthy control,
24 T2D with CKD
(screening group)

Targeted;
GC-MS

Urine and
plasma NA Age, race, and sex

Lower levels of urine 3-hydroxy
isovalerate, aconitic acid, citric acid,

2-ethyl 3-OH propionate, glycolic acid,
homovanillic acid, 3-hydroxyisobutyrate,

2-methylacetoacetate, 3-methyladipic
acid, 3-methylcrotonylglycine,

3-hydroxypropionate, tiglylglycine, and
uracil in DM with CKD group compared

with control group

Yes; 61 diabetes
(12 T1D and 49
T2D) with CKD

as validation
group

[86]; 2014

PREVEND;
Netherlands;

The Steno
Diabetes Center;
Denmark; nested

case–control

90 T2D (24 from
normoalbuminuria to

microalbuminuria,
24 normoalbuminuria

control; 21 from
microalbuminuria to
macroalbuminuria,

21 microalbuminuria
control); 2.9 years

Targeted; LC-MS Urine and
Plasma

Transition from
normo- to

micro-albuminuria
or from micro- to

macro-albuminuria;
24 from normo- to
micro-albuminuria,
21 from micro- to

macro-albuminuria

Baseline UAE and eGFR

Higher plasma levels of butenoylcarnitine
and lower levels of plasma histidine,

urine hexose, urine glutamine, and urine
tyrosine in patients progressing from

microalbuminuria to macroalbuminuria
compared with controls

No
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Table 3. Cont.

Reference;
Year Study Design Number, Follow-Up Technique Biological

Matrix Outcome, Number Adjustments Major Findings Replication

[87]; 2014 DCCT; America;
prospective 497 T1D; 14–20 years Targeted; LC-MS Plasma

Incident
macroalbuminuria;

65

DCCT Treatment Group,
baseline retinopathy status,

use of ACE/ARB drugs
during study period,
gender, and baseline

measures of duration of
T1DM, age, HbA1C %, BMI,

triglyceride levels, and
AER

(−): very long chain ceramide species
(C20, C22:1, C24, C26, and C26:1) No

[88]; 2014

The Joslin Study
of the Genetics

of Type 2
Diabetes and

Kidney
Complications;

America; nested
case–control

80 T2D (40 incident
ESRD, 40 without ESRD);

8–12 years

Targeted and
untargeted;
LC-MS and

GC-MS

Plasma
Incident ESRD: renal

death, renal
replacement therapy

HbA1C, AER, and eGFR

(+): p-cresol sulfate, gulono-1,4-lactone,
threitol, erythronate, pseudouridine,

N2,N2-dimethylguanosine,
N4-acetylcytidine, C-glycosyltryptophan,

glutaroyl carnitine,
methylglutarylcarnitine,

3-dehygrocarnitine, urea, myo-inositol,
urate, phenylacetylglutamine;

(−): 2-hydroxyisocaproate,
2-oxoisoleucine, 2-hydroxyisovalerate,

2-hydroxybutyrate

No

[89]; 2015
GO-DARTS;

Scotland; nested
case–control

307 T2D with baseline
eGFR

30–60 mL/min/1.73 m2;
3.5 years

Targeted; LC-MS Serum

Rapid eGFR
progression: >40%

compared with
baseline; 154

Age, sex, eGFR,
albuminuria status, HbA1C,
use of ACE inhibitors, and

use of ARBs

(+): C16-acylcarnitine, creatinine,
methylmalonic acid, n-acetylaspartate,

sialic acid, SDMA, SDMA/ADMA, uracil;
(-): lysine, tryptophan

No

[90]; 2016 Singapore;
case–control

129 T2D without DKD
(control), 126 T2D with
ACR 30–299 mg/g and

eGFR 60 mL/min/
1.73 m2 (early DKD),
154 T2D with ACR
≥300 mg/g or eGFR

<60 mL/min/1.73 m2

(overt DKD)

Targeted; LC-MS
and GC-MS Plasma NA Age, sex, and ethnicity

Higher levels of C2, C3, C4, C4-OH, C5,
C4-DC, C5:1, C5-DC, C5-OH/C3-DC, C6,

C8-OH/C6-DC, C14:1-OH,
C14-OH/C12-DC, C18-OH/C16-DC
acylcarnitines, Cer 18:1/16:0, GlcCer

18:1/18:0, SM 18:1/16:1, and sphingosine
and lower levels of serine, (32:2, 34:3, 36:6,
38:3, 40:5) in overt DKD compared with

control group

Yes, 149 T2D
without DKD,
149 T2D with

overt DKD

[91]; 2016 Italy;
prospective 286 T2D; 3 years

Untargeted;
LC-MS and

GC-MS

Urine and
serum

Association with
baseline eGFR and

ACR; incident
>10 mL/min/1.73 m2

eGFR decline;
incident >14 mg/g

ACR increase;
number not given

Gender, age, glucose, and
baseline eGFR

(+): C-glycosyl tryptophan,
pseudouridine, N-acetylthreonine No
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Table 3. Cont.

Reference;
Year Study Design Number, Follow-Up Technique Biological

Matrix Outcome, Number Adjustments Major Findings Replication

[92]; 2017 China;
case–control

20 healthy controls
(control); 25 T2D with

UACR <30 mg/g (T2D);
24 T2D with UACR
≥30 mg/g (DKD)

Untargeted;
GC-MS Urine NA No

Higher levels of uric acid, stearic acid,
palmitic acid, and hippuric acid and

lower levels of uracil, glycine, aconitic
acid, isocitric acid, 4-hydroxybutyrate,
glycolic acid, and 2-deoxyerythritol in

DKD compared with control or compared
with T2D group

No

[93]; 2017

The Joslin
Proteinuria

Cohort Study;
America;

prospective

158 T1D with proteinuria
and stage three CKD;

11 years

Targeted; LC-MS
and GC-MS Serum

Incident ESRD: renal
death or renal

replacement therapy;
99

Blood pressure, BMI,
smoking status, HbA1C,
ACR, eGFR, uric acid
levels, treatment with

renin-angiotensin system
inhibitors, other

antihypertensive treatment,
and statins

(+): n-acetylserine, n-acetylthreonine,
n6-acetyllysine,

n6-carbamoylthreonyladenosine,
c-glycosyltryptophan, pseudouridine,

o-sulfotyrosine

No

[94]; 2018
FinnDiane;

Finland; nested
case–control

200 T1D (102 progressing
to microalbuminuria,

98 nonprogressors); 3.2
and 7.1 years,
respectively

Untargeted;
LC-MS and

GC-MS
Serum

Progression to
microalbuminuria;

102

Age of diabetes onset,
HbA1C, and AER

(+): erythritol, 3-phenylpropionate,
N-trimethyl-5-aminovalerate No

[95]; 2018
ADVANCE;
Australia;

case–cohort
3587 T2D; 5 years Targeted; NMR Plasma

Major microvascular
events: a composite
of new or worsening

nephropathy or
retinopathy; 342

Age, sex, region and
randomized treatment, a

prior macrovascular
complication, duration of
diabetes, current smoking,

systolic blood pressure,
BMI, ACR, eGFR, HbA1C,

plasma glucose, total
cholesterol,

HDL-cholesterol,
triacylglycerols, aspirin or

other antiplatelet agent,
statin or other

lipid-lowering agent,
β-blocker, ACE inhibitor or

angiotensin receptor
blocker, metformin use,
history of heart failure,

participation in moderate
and/or vigorous exercise
for >15 min at least once

weekly, and
high-sensitivity CRP

(−): alanine, tyrosine No
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Table 3. Cont.

Reference;
Year Study Design Number, Follow-Up Technique Biological

Matrix Outcome, Number Adjustments Major Findings Replication

[96]; 2018
Macroalbuminuric

DKD; Brazil;
prospective

56 with T2D; 2.5 years Untargeted,
GC-MS Plasma

All-cause death,
doubling of baseline

serum creatinine
and/or dialysis

initiation; 17

eGFR (−): 1,5-anhydroglucitol, norvaline,
l-aspartic acid No

[97]; 2018

GenodiabMar;
not given;
TwinsUK;

Britain; KORA;
Germany;

prospective

655 T2D from
GenodiabMar; 111 T2D
from TwinsUK; 160 T2D

from KORA;
cross-sectional

Targeted; NMR Serum Association with
baseline eGFR; 926 Age, gender, and BMI

(+): apolipoprotein A1, total cholesterol in
HDL2, total cholesterol in very large HDL,
total cholesterol in HDL, free cholesterol

in medium HDL, cholesterol esters in
very large HDL, concentration of very
large HDL particles, concentration of
medium HDL particles, total lipids in

medium HDL, phospholipids in medium
HDL, esterified cholesterol, total

cholesterol, total cholesterol in large LDL,
total cholesterol in large LDL, total
cholesterol in medium LDL, total

cholesterol in small LDL, total cholesterol
in LDL, total cholesterol in IDL, free

cholesterol in large LDL, free cholesterol
in medium LDL, free cholesterol in small
LDL, free cholesterol in IDL, cholesterol
esters in large LDL, cholesterol esters in
medium LDL, cholesterol esters in small

LDL, cholesterol esters in IDL,
concentration of large LDL particles,

concentration of IDL particles, total lipids
in large LDL, total lipids in medium LDL,

total lipids in small LDL, total lipids in
IDL, phospholipids in large LDL,
phospholipids in medium LDL,

phospholipids in small LDL,
phospholipids in IDL;

(−): glycine, phenylalanine, citrate,
glycerol

No
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Table 3. Cont.

Reference;
Year Study Design Number, Follow-Up Technique Biological

Matrix Outcome, Number Adjustments Major Findings Replication

[98]; 2019

The
Renoprotection

in Early Diabetic
Nephropathy in

Pima Indians
trial; America;

prospective

92 T2D with baseline
eGFR

≥90 mL/min/1.73 m2;
9.6 years

Untargeted;
LC-MS Serum

≥40% reduction in
eGFR compared
with baseline; 32

GFR and ACR (+): unsaturated PEs;
(−): unsaturated FFAs No

[99]; 2019
Denmark;

prospective
cohort study

637 T1D; 5.5 years Targeted;
GC-MS Serum

Combined renal
endpoint: ≥30%

decrease in eGFR,
ESRD, or all-cause

mortality; 123

Age, sex, HbA1C, SBP,
smoking, BMI, statin

treatment, triglycerides,
total cholesterol, eGFR, and

logAER

(+): ribonic acid;
(−): isoleucine, leucine, valine No

[100]; 2019 China; nested
case–control

52 T2D with
macroalbuminuria and

eGFR >90 mL/min/
1.73 m2 (25 progressors
and 27 nonprogressors);

5–6 years

Targeted and
untargeted;

LC-MS
Urine

Early progressive
renal function

decline: at least a
33.3% decline of

eGFR and eGFR <60
mL/min/1.73 m2; 25

No (−): 5-hydroxyhexanoic acid No

[101]; 2019

GoDARTS;
Scotland; nested

case–control;
SDR; Sweden;
prospective;

CARDS; Britain;
clinical trial

430 T2D from GoDARTS,
227 T2D from SDR, 183
from CARDS; 7 years

MS Serum
>20% eGFR

reduction compared
with baseline; 403

Age, sex, baseline eGFR,
albuminuria, HbA1C, and

calendar time
(+): ADMA, SDMA No

[102]; 2019
SDRNT1BIO;

Scotland;
prospective

859 T1D with baseline
eGFR

30–75 mL/min/1.73 m2;
5.2 years

Targeted; LC-MS Serum

Rapid eGFR decline
during follow-up: >

3 mL/min/1.72
m2/year; 194

Age, sex, duration of
diabetes, study day eGFR,
and length of follow-up

(+): free sialic acid;
(−): tryptophan/kynurenine, threonine,

methionine, tryptophan
No

[103]; 2020 Denmark;
case–control

211 (50 heathy control,
161 T1D:

50 normoalbuminuria,
50 micoralbuminuria,

61 macroalbuminuria);
cross-sectional

Targeted; MS Plasma NA Use of medication, HbA1C,
and diabetes duration

Higher levels of indoxyl sulphate,
L-citrulline in T1D and macroalbuminuria

group compared with normo-or
microalbuminuria group; higher levels of
homocitrulline, L-kynurenine and lower
level of tryptophan in macroalbuminuria

group compared with
normoalbuminuria group

No
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Table 3. Cont.

Reference;
Year Study Design Number, Follow-Up Technique Biological

Matrix Outcome, Number Adjustments Major Findings Replication

[104]; 2020

KORA;
Germany;

population-
based
cohort

385 prediabetes or T2D;
6.5 years Targeted; LC-MS Serum

Incident CKD: eGFR
<60 mL/mL/min/

1.73 m2 and/or
UACR ≥ 30 mg/g;

85

Age, sex, BMI, SBP,
smoking status,

triglyceride, total
cholesterol, HDL

cholesterol, fasting glucose,
use of lipid-lowering,
antihypertensive and

antidiabetic medications,
baseline eGFR, and ACR

(+): PC aa (C38:0, C42:0, C40:6), SM (OH)
(C14:1, C16:1), SM (C16:0, C16:1, C18:0,

C18:1, C20:2, C24:1, C26:1);
(−): PC aa C32:2

No

[105]; 2020
CRIC; America;

prospective
cohort study

1001 diabetes with
baseline eGFR 20–70

mL/min/1.73 m2;
8 years

Untargeted; MS Urine

ESRD (incident
kidney failure with

replacement
therapy); 359

Age, race, sex, smoked
more than 100 cigarettes,

BMI, HbA1C, mean arterial
pressure, AER, and

baseline eGFR

(+): 3-hydroxypropionate,
3-hydroxyisobutyrate, glycolic acid No

[106]; 2020

5 Dutch cohort
studies: DCS

West-Friesland,
the Maastricht

study, the
Rotterdam study,
the Netherlands
Epidemiology of

Obesity study,
the Cohort of
Diabetes and

Atherosclerosis
Maastricht study

3089 T2D; 4–7 years Targeted; NMR Plasma

Cross-sectional
association with

baseline eGFR and
ACR

Age, sex, use of statins,
other lipid-modifying

agents, oral
glucose-lowering

medications, insulins,
RAS-blocking agents and
other antihypertensives,

SBP, BMI, smoking,
diabetes duration, HbA1C,
and baseline ACR/UAE

1) For baseline eGFR:
(+): tyrosine, lactate, glucose, HDL
particle, HDL cholesterol, apo A1,

(−): phenylalanine, isoleucine, glutamine,
histidine, leucine, glycoprotein acetyls,

citrate, acetoacetate, VLDL particle,
non-HDL cholesterol, triglycerides, lipid

components in IDL and LDL
2) for baseline ACR:

(+): glucose, glycoprotein acetyls,
phosphatidylcholine and other cholines,

free cholesterol in large VLDL;
(−): very large HDL particle, glutamine

No

[107]; 2020

FinnDiane;
Finland;

nationwide
prospective

cohort

1087 T1D; 10.7 years Targeted; NMR Serum

Fastest eGFR decline:
highest quartile of
eGFR decline over

follow up
(−4.4 mL/min/

1.73 m2) and
progression from

macroalbuminuria to
ESRD

Age at diabetes onset, sex,
diabetes duration,

smoking, SBP, HbA1C, BMI,
HDL cholesterol, and

triacylglycerols

(+): sphingomyelin No

FinnDiane, Finnish Diabetic Nephropathy Study Group; PREVEND, Prevention of Renal and Vascular End-stage Disease; DCCT, Diabetes Control and Complications Trial; GO-DARTS, Genetics of Diabetes
Audit and Research Tayside Study; ADVANCE, Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation; SDR, Scania Diabetes Registry; CARDS, Collaborative
Atorvastatin in Diabetes Study; SDRNT1BIO, Scottish Diabetes Research Network Type 1 Bioresource; CRIC, The Chronic Renal Insufficiency Cohort; DCS, Hoorn Diabetes Care System; ACE, angiotensin
converting enzyme; ADMA, asymmetric dimethylarginine; AER, albumin excretion rate; Apo A1, apolipoprotein A1; ARB, angiotensin receptor blocker; Cer, ceramide; CRP, C-reactive protein; DN, diabetic
nephropathy; FFAs, free fatty acids; GlcCer, glucosylceramide; PC; phosphatidylcholine; Pes, phosphatidylethanolamines; SDMA, symmetric dimethylarginine; SM, sphingomyelin; UAE, urinary albumin excretion.
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5.1. Amino Acids
5.1.1. Asymmetric Dimethylarginine (ADMA) and Symmetric Dimethylarginine (SDMA)

ADMA (an inhibitor of nitric oxide [NO] syntheses) and SDMA are arginine metabo-
lites formed during enzymatic methylation of arginine residuals. SDMA is a structural
isomer of ADMA and is excreted directly by the kidney without any metabolism. A higher
serum level of SDMA has been found in people with DKD [82] and SDMA or its ratio to
ADMA was predictive of rapid kidney function decline in T2D, independent of baseline
eGFR and albuminuria [89,101]. ADMA is metabolized into citrulline and dimethylamine
in the kidneys and has been associated with rapid kidney function decline in T2D, possibly
due to endothelial dysfunction [101].

5.1.2. Aromatic Amino Acids

Both tryptophan (an essential amino acid) and its downstream metabolites, such as
kynurenine, are altered in DKD [88,89,91,93,102,103]. Impaired kidney function upregu-
lates tryptophan metabolism pathways and results in increased kynurenine production,
stimulating leukocyte activation, cytokine production, oxidative stress, and inflamma-
tion [108] (Figure 3). Higher serum levels of tryptophan (or tryptophan/kynurenine) have
been found to be inversely associated with rapid eGFR decline in patients with DKD at
baseline, independent of baseline renal function [89,102]. Similarly, elevated levels of
tryptophan downstream metabolites were positively associated with DKD progression
both in patients with type 1 diabetes (T1D) and T2D [88,91,93].
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acid that cannot be synthesized in the body. A minor fraction of tryptophan (<5%) is metabolized by the indole pathway
to produce indoxyl sulfate. Most tryptophan (around 95%) is metabolized by the kynurenine pathway. Downstream
metabolites of tryptophan, including indoxyl sulfate, kynurenic acid, picolinic acid, xanthurenic acid, quinolinic acid, and
NAD, contribute to oxidative stress, inflammation, and immune response, which lead to the development and progression
of CKD. CKD, chronic kidney disease; NAD, nicotinamide adenine dinucleotide.

Tyrosine and phenylalanine have also been associated with kidney function and al-
buminuria in patients with diabetes. A meta-analysis of five cohorts of patients with T2D
found a strong inverse association between phenylalanine and baseline eGFR after a com-
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prehensive adjustment for confounding variables, including albuminuria [106], in line with
a study comprising three cohorts of patients with T2D [97]. Analyses from the Action in
Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Eval-
uation (ADVANCE) trial found a crude association of phenylalanine with macrovascular
disease and all-cause mortality in T2D, however, adjustment for cardiovascular risk factors
attenuated the associations, and phenylalanine was not associated with microvascular
disease prospectively [95]. Tyrosine is synthetized by the hydroxylation of phenylalanine
through phenylalanine hydroxylase. In the setting of CKD, dysfunctional activity of pheny-
lalanine hydroxylase leads to impaired conversion of phenylalanine to tyrosine, resulting
in higher phenylalanine and lower tyrosine [109]. In contrast to phenylalanine, tyrosine
has been both cross-sectionally [106] and prospectively [93,95] associated with DKD. A
higher level of tyrosine has been associated with higher baseline eGFR [106] and lower
risk of microvascular disease in ADVANCE [95]. The downstream metabolite of tyrosine
(o-sulfotyrosine) has been positively associated with ESKD in a Joslin proteinuria cohort
including patients with T1D, proteinuria and stage three CKD [93].

5.1.3. Other Amino Acids

Leucine and isoleucine have been inversely associated with baseline eGFR in patients
with T2D using NMR [106]. However, a study from Steno Diabetes Center Copenhagen
using GC-MS found that BCAAs were associated with lower risk of a combined endpoint
(kidney dysfunction or all-cause mortality) in patients with T1D [99]. A study from
ADVANCE also found that leucine and valine were inversely associated with all-cause
mortality in patients with T2D, while alanine, synthesized from BCAAs, was inversely
associated with microvascular disease, indicating the complex interactions between BCAAs
and diabetes and its complications [95]. Threonine, an essential amino acid involved in
the production of glycine, has been associated with lower risk of rapid eGFR decline in
patients with T1D [102], and the downstream metabolite of threonine (n-acetylthreonine)
was predictive of fast eGFR decline in patients with T2D [91] and ESKD in patients with
T1D [93].

5.1.4. Organic Acids Involved in Energy Metabolism

Uracil, a pyrimidine derivative, was altered in urine samples from patients with
DKD [85,92]. Pseudouridine, synthesized from uracil, showed association with eGFR
decline and urinary albumin–creatinine ratio (UACR) increase in patients with T2D [91]
and ESKD in patients with T1D or T2D from studies in Joslin [88,93]. 3-hydroxyisobutyrate,
a catabolic intermediate of valine which is produced in mitochondria, has been shown
to be altered in patients with DKD [85] and has been found to be associated with ESKD
in patients with diabetes in the Chronic Renal Insufficiency Cohort (CRIC) Study [105].
Alpha-hydroxybutyrate, positively associated with insulin resistance and diabetes as men-
tioned above, however, has been found to be associated with lower risk of ESKD in patients
with T2D [88]. Glycine has been found to be reduced in urine samples from patients
with established DKD [92], and glycolic acid, an intermediate of glycine, was also re-
duced [85,92] and was associated with ESKD in analyses from CRIC [105]. Acetoacetate
has also been inversely associated with baseline eGFR in patients with T2D [106], and
2-methylacetoacetate, an intermediate of isoleucine metabolism, was reduced in urine from
patients with DKD [85]. The abovementioned metabolites are all produced in the mito-
chondria and are involved in energy metabolism, suggesting that mitochondrial function
is dysregulated in DKD.

5.2. Lipids
5.2.1. Lipoproteins

HDL particles and their composition (cholesterol and apolipoprotein A1) have been
found to be cross-sectionally associated with higher baseline eGFR in studies combining
several T2D cohorts using NMR, whereas triglyceride-rich lipoproteins and their lipid
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components were inversely associated, and HDL particles were also negatively associated
with albuminuria [97,106]. A two-sample MR study using the Global Lipids Genetics
Consortium (n = 188,577) and the CKD Genetics Consortium (n = 133,814) suggested a
causal link between HDL cholesterol and better kidney function: genetically increased
HDL cholesterol was associated with 0.8% higher eGFR and lower risk of incident CKD,
and this finding was robust in all the sensitivity analyses; however, there was no strong
evidence supporting causal associations of LDL cholesterol and triglycerides with baseline
eGFR/UACR or incident CKD [110].

5.2.2. Phospholipids

Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) are the two most abun-
dant phospholipids of mammalian cell types, comprising 40–50% and 15–25% of the total
cellular phospholipids, respectively [111]. A case–control study found lower plasma levels
of PCs metabolites in patients with T2D and overt DKD (macroalbuminuria or CKD),
and this finding was replicated in another group of patients [90]. A prospective analysis
from the Cooperative Health Research in the Region of Augsburg (KORA) also found that
serum PCs were predictive of incident CKD in hyperglycemic patients, independent of
conventional risk factors [104]. Unsaturated PEs have been found to be distinguishable
between progressors (≥40% eGFR reduction) and nonprogressors in patients with T2D and
baseline eGFR ≥ 90 mL/min/1.73 m2 [98]. Sphingolipids are also important constituents
of cell membranes and have been involved in cell signaling and activation. Ceramides, the
essential precursors of sphingolipids, and sphingomyelin, the most common sphingolipids,
were altered in patients with DKD. Higher plasma levels of ceramide metabolites have
been reported in patients with DKD [90]; studies from the Diabetes Control and Compli-
cations Trial (DCCT) study found that higher plasma levels of very-long-chain ceramides
were associated with incident macroalbuminuria in patients with T1D during 14–20 years
of follow-up [87]. Sphingomyelin level has been found to be elevated in patients with
DKD [84] and was associated with incident CKD in hyperglycemic patients [104] and
progression of DKD in patients with T1D [107].

5.2.3. Fatty Acids and Acylcarnitines

Apart from the link between insulin resistance and diabetes, FFAs have also been
found to be predictive of DKD progression. Among patients with T2D and baseline eGFR
≥ 90 mL/min/1.73 m2, unsaturated FFAs were associated with lower risk of ≥40% eGFR
reduction during follow-up [98]. Although associated with macrovascular events and
death, FAs were however, not associated with microvascular events or onset or worsening
of nephropathy in the ADVANCE trial [112]. Acylcarnitines, involved in the β-oxidation
of FAs in the mitochondria and barely detectable in nonpathological conditions, have
also been found to be elevated in DKD [90]. C16-acylcarnitine was a strong predictor of
fast eGFR decline in patients with T2D and CKD at baseline, independent of traditional
risk factors [89]. Disturbed lipid metabolism (remodeling of sphingolipid or impaired
β-oxidation of FAs) indicates once again the perturbation of energy metabolism and the
role of mitochondrial dysfunction in the development and progression of DKD.

5.3. Sodium–Glucose Cotransporter-2 Inhibitors (SGLT2i)

SGLT2i reduced the risk of albuminuria and progression of DKD in patients with T2D
in multiple clinical trials [15,113,114], however, its underlying effective pathways remain
unclear. Metabolomics have been applied to explore potential molecular mechanisms
mediating the protective effects of SGLT2i on DKD. Dapagliflozin has been suggested
to improve mitochondrial function. Levels of a panel of urinary metabolites previously
linked to mitochondrial dysfunction were increased after 6-week of treatment using GC-
MS [115]. A study combining metabolomics (plasma) and transcriptomics (kidney biopsy)
found three pathways linked with energy metabolism or mitochondrial function have
been affected by dapagliflozin, namely, glycine degradation (mitochondrial function),
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tricarboxylic acid cycle (TCA cycle) II (energy metabolism), and L-carnitine biosynthesis
(energy metabolism) [116]. The improvement of mitochondrial function by SGLT2i as the
underlying mechanism to delay the development and progression of DKD further supports
the observation that mitochondria play a role in DKD.

5.4. Current Challenges in Metabolomics Studies in DKD

The kidney itself can modulate the metabolic pathways, which as a result, affects
the levels of circulating metabolites. Furthermore, the definition of CKD in most of the
current studies is based on eGFR rather than the measured glomerular filtration rate, while
eGFR is insufficient to reflect early kidney dysfunction. Although changes in metabolites
may precede the onset or progression of DKD, they may be resulted from early DKD
which is not reflected by clinical manifestations or the surrogate markers (i.e., eGFR). For
example, tyrosine is positively associated with baseline eGFR [106], as improved kidney
function induces increased production of tyrosine from phenylalanine [109]. Tyrosine and
its downstream metabolites are also predictive of onset or worsening of nephropathy [95]
and ESKD [93], which may be due to the link between tyrosine and kidney function,
that tyrosine metabolism as a reflection of kidney function can predict renal outcomes
rather than being a physiological pathway. The complex interplay between the kidney and
metabolites makes causal inference difficult. However, some metabolites are predictive of
DKD independent of baseline eGFR and albuminuria, highlighting their value as prognostic
biomarkers. Moreover, the lack of large, prospective cohort studies and independent
replications limit the interpretations of these observations and clinical utility of potential
biomarkers.

6. Metabolomics in Cardiovascular Disease

The heart is responsible for around 10% of the fuel consumption of whole body [117]
and beats around 2.5 to 4 billion times over an average human life, even though myocardial
energy stores are only enough for several heart beats [118]. To meet these high energy
need, the heart consumes more than 20 g of carbohydrates and 30 g of fat per day and
uses 35 L of oxygen to generate adenosine triphosphate (ATP) [117]. The metabolism in
the heart is highly flexible, such that it can alter the energy utilization rapidly to adapt
to the changes in environment via using different kinds of energy substrates, including
glucose, fatty acids, ketone bodies, and amino acids [119]. The perturbations of metabolism
in the heart can usually be reflected by the changes in the involved circulating metabolites.
Detection and quantification of these metabolites provide a way to investigate the under-
lying pathogenic mechanisms of CVD. Moreover, some of the metabolites have potential
to be biomarkers (i.e., screening, diagnostic, or prognostic biomarkers). Metabolomics
have been comprehensively applied in studying CVD in the general population and CVD
cohorts [119,120]. Table 4 summarizes metabolomics studies in CVD in people with dia-
betes [95,107,112,121–127].
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Table 4. Circulating metabolites associated with cardiovascular disease in individuals with diabetes.

Reference;
Year Study Design Number, Follow-Up Technique Biological

Matrix Outcome, Number Adjustments Major Findings Replication

[121]; 2003 EDC; America;
nested case–control

118 T1D (59 coronary
artery disease);

10 years

Targeted;
NMR Plasma

Fatal or nonfatal myocardial
infarction, angina, coronary

stenosis >50%; 59

eGDR, smoking, overt
nephropathy, retinopathy, WHR,

and blood-pressure lowering
drugs

(+): medium HDL particle, VLDL
particle

(−): large HDL particle
No

[122]; 2006 Austria;
cross-sectional 136 T2D Targeted; LC Plasma

Macrovascular disease:
history of stroke, myocardial

infarction, coronary heart
disease or peripheral arterial

occlusive disease; 55

L-arginine, AER, homocysteine,
and eGFR (+): ADMA No

[123]; 2007 SDC; Denmark;
prospective

572 T1D (397 with
overt DN, 175 with

persistent
normoalbuminuria);

11.3 years

Targeted; LC Plasma fatal and nonfatal
cardiovascular disease; 116

Sex, age, HbA1C, SBP, GFR,
cholesterol, smoking status,

previous CVD events,
antihypertensive treatment,

NT-proBNP, and CRP

(+): ADMA No

[124]; 2007 Austria; prospective 125 T2D; 21 months Targeted; LC Plasma

Cardiovascular events:
myocardial infarction,

percutaneous coronary
intervention, coronary artery
bypass graft, stroke, carotid

revascularization, and
all-cause mortality; 48

Age, sex, history of
macrovascular disease, and GFR (+): ADMA No

[125]; 2014

The Shiga
Prospective

Observational
Follow-up Study;

Japan; prospective

385 T2D; 10 years Targeted;
LC-MS Plasma

Cardiovascular composite
endpoints: myocardial

infarction, angina pectoris,
worsening of congestive

heart failure, and stroke; 63

Age, SBP, hypertension, log (HDL
cholesterol), log (AER), eGFR,

and baPWV

(+): cardiovascular disease-amino
acid-based index composed of
ethanolamine, hydroxyproline,

glutamic acid, 3-methylhistidine,
tyrosine, tryptophan

No

[126]; 2016 China; case–control
15 healthy control, 13

CHD, 15 T2D, 28
T2D and CHD

Untargeted;
NMR Plasma No

Higher levels of VLDL/LDL, glucose
and lower levels of isoleucine, valine,

isopropanol, alanine, leucine,
arginine, acetate, proline, glutamine,

creatine, creatinine, glycine,
threonine, tyrosine, 3-methylhistidine

in T2D and CHD compared with
healthy control

No
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Table 4. Cont.

Reference;
Year Study Design Number, Follow-Up Technique Biological

Matrix Outcome, Number Adjustments Major Findings Replication

[95]; 2018
ADVANCE;
Australia;

case–cohort
3587 T2D; 5 years Targeted;

NMR Plasma

Macrovascular events:
cardiovascular death,
nonfatal myocardial
infarction or nonfatal

stroke; 655

Age, sex, region and randomized
treatment, a prior macrovascular

complication, duration of
diabetes, current smoking,

systolic blood pressure, BMI,
ACR, eGFR, HbA1C, plasma

glucose, total cholesterol,
HDL-cholesterol, triacylglycerol,
aspirin or other antiplatelet agent,

statin or other lipid-lowering
agent, β-blocker, ACE inhibitor
or angiotensin receptor blocker,
metformin use, history of heart

failure, participation in moderate
and/or vigorous exercise for

>15 min at least once weekly, and
high-sensitivity CRP

(+): phenylalanine before fully
adjustment

(−): glutamine, histidine before full
adjustment

No

[107]; 2020
FinnDiane; Finland;

nationwide
prospective cohort

1087 T1D; 10.7 years Targeted;
NMR Serum

Coronary heart disease:
myocardial infarction or

coronary
revascularisation; 110

Age at diabetes onset, sex,
diabetes duration, and smoking (+): sphingomyelin No

[127]; 2020 SURDIAGENE;
France; prospective 1463 T2D; 85 months Targeted;

LC-MS Plasma

Major adverse cardiovascular
events: a composite of CV

death, nonfatal MI, nonfatal
stroke; 403

Sex, age, MI history, eGFR, ACR,
and NT-proBNP (+): TMAO No

[112]; 2020
ADVANCE;
Australia;

case–cohort
3576 T2D; 5 years Targeted;

NMR Plasma

Major macrovascular events:
cardiovascular death, fatal
myocardial infarction and

nonfatal stroke; 654

Age, sex, region and the
treatments randomly allocated,

history of macrovascular disease,
duration of diabetes, current

smoking status, SBP, BMI, ACR,
eGFR, HbA1C, HDL-cholesterol,

triacylglycerol, and use of aspirin
or other antiplatelet agents,

statins or other lipid-lowering
agents, β-blockers and ACE

inhibitors or angiotensin receptor
blockers

(−): n-3 fatty acids, DHA No

EDC, Pittsburgh Epidemiology of Diabetes Complications; SDC, Steno Diabetes Center; SURDIAGENE, SURVIe, DiAbete de type 2 et GENEtique; baPWV, brachial-ankle pulse wave velocity; DHA,
docosahexaenoic acid; eGDR, estimated glucose disposal rate; NT-proBNP, N-terminal pro b-type natriuretic peptide; TMAO, rimethylamine N-oxide.
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6.1. Amino Acids
6.1.1. ADMA

ADMA has been found to be elevated in patients with CVD and associated with
higher odds of CVD in a cross-sectional study of patients with T2D [122]. ADMA was also
predictive of cardiovascular events (CVE) in patients with T2D [124] and patients with
T1D and DKD [123]. Higher risks of faster eGFR decline and ESKD in patients with higher
ADMA [123] suggest that endothelial dysfunction may be a shared mechanism responsible
for vascular complications (cardiorenal complications) in diabetes.

6.1.2. Other Amino Acids

Besides the link with diabetes, BCAAs, tyrosine, and phenylalanine have been found
to be associated with intima-media thickness and incident CVD in population-based stud-
ies [128–130]. Higher phenylalanine was associated with risk of macrovascular outcomes
and all-cause mortality after adjustment for age, sex, region, and randomized treatment
in the ADVANCE trial, however, further adjustment for other cardiovascular risk factors
attenuated the association [95]. Glutamine and histidine, inversely associated with dia-
betes [39,52], were also inversely associated with macrovascular outcomes in ADVANCE,
although adjustment for risk factors attenuated the associations [95]. Although negatively
associated with kidney function [106], phenylalanine has been associated with higher
risk of incident heart failure and showed added value on the risk-stratification of heart
failure [131]. A CVD index composed of six amino acids (ethanolamine, hydroxyproline,
glutamic acid, 3-methylhistidine, tyrosine, and tryptophan) was predictive of CVD [125].
The altered levels of amino acids in diabetes, DKD and CVD might suggest some shared
pathways or mechanisms leading to diabetes and its complications.

6.2. Lipids
6.2.1. HDL

Despite the inverse association between HDL cholesterol and risk of CVD in epi-
demiological studies, MR studies and randomized clinical trials to raise HDL cholesterol
level failed to find a protective effect of HDL cholesterol on CVD [132–139]. HDL parti-
cles are highly heterogeneous in size, structure, composition, and function [140]. Recent
structural and functional studies suggested that the biological function of HDL particles
differed in size with small, dense, and protein-rich HDL particles involved in the first
step of reverse cholesterol transport (RCT) by mediating the effect of ATP-binding cassette
transporter A1 (ABCA1) [141,142]. Besides mediating RCT from macrophages, small HDL
particles also have anti-inflammatory, antioxidant, and endothelial protective functions
(Figure 4) [143–146]. In line with this, small HDL particles have been found to be inversely
associated with CVD, stroke, CV death, or all-cause mortality in some well-established
studies [147–154]. Nevertheless, contrasting findings have also been reported [155,156].
There seems to be a bidirectional relationship between T2D and HDL whereby diabetes
could also modulate the composition and function of HDL [157]. Concentration of large
HDL particle and HDL particle size have been found to be increased in patients with
T1D compared with participants without diabetes, while small HDL and total HDL par-
ticle concentration were reduced [158]. A nested case–control study from the Pittsburgh
Epidemiology of Diabetes Complications Study found that HDL particle subclasses were
predictive of incident coronary artery disease in patients with T1D [121]. Large HDL parti-
cle size was associated with risk of death in the Catheterization Genetics (CATHGEN) study
and a positive association has been found between higher large HDL particle concentration
and death in patients with preserved-ejection-fraction heart failure and patients without
heart failure, even after stringent Bonferroni correction and comprehensive adjustment
including HDL cholesterol [147]. A nested case–control study from the Prevención con
Dieta Mediterránea (PREDIMED) cohort measured HDL functional characteristics and
found that lower levels of HDL function markers were associated with higher odds of
acute coronary syndrome independent of HDL cholesterol in patients at high CV risk [159].
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Taken together, despite a complex interplay between diabetes and HDL, HDL particles
or function, rather than simply HDL cholesterol, may be of potential to be prognostic
biomarkers and therapeutic targets for CVD (Figure 4). More studies are warranted in
this area.
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and function. Altered lipid composition, protein components, and sizes result in dysfunctional HDL. Decreased cholesterol
efflux from macrophages, antioxidant and anti-inflammatory capacity, and endothelial protective function of HDL induce
atherosclerosis and cardiovascular disease. HDL, high-density lipoprotein.

6.2.2. Fatty Acids and Phospholipids

FAs, including n-3 FAs and docosahexaenoic acid, were inversely associated with
macrovascular events in a study from ADVANCE, with the associations mainly driven by
the associations with CV death and nonfatal stroke [112]. An inverse association between
n-3 FAs and death has also been reported [112], indicating the potential of FAs as prognostic
biomarkers for CVD in patients with diabetes. Further exploration of the causal role of FAs
on CVD may help confirm whether FAs may be therapeutic targets. Apart from the link
with progression of DKD, sphingomyelin has been found to be associated with incident
coronary heart disease, although further adjustment for CV risk factors attenuated the
association [107].

7. Intercorrelation of Metabolomic Biomarkers: Limited Predictive Value

Although independent of traditional risk factors, the selected biomarkers usually
provided limited predictive value when added over models comprised of conventional risk
factors or established risk equations [59,130,131,160]. The highest quantile of a weighted
multimetabolite score (0.320 × phenylalanine—0.474 × non-esterified cholesterol in large
HDL-0.321 × ratio of cholesteryl esters to total lipids in large VLDL) could predict incident
T2D during 15-year follow-up (OR 5.80 [2.22, 15.1]) compared with the lowest quantile, after
adjusting for risk factors including BMI, fasting glucose, triglycerides, HDL cholesterol,
and HOMA-IR [59]. Addition of the metabolite score over a model including the above-
mentioned predictors improved the discrimination and reclassification, with significantly
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improved integrated discrimination improvement (IDI) and continuous net reclassification
improvement (NRI), though the increase in c-statistic was modest and not significant (0.012,
p = 0.13) [59]. Despite being predictive of adverse outcomes in patients with diabetes, most
of the metabolites (sphingomyelin, amino acids and FAs) failed to increase the c-statistic
on top of established risk factors [95,107,112]. As demonstrated by Wang and colleagues,
the key determinant of the predictive value of multiple biomarkers was the degree of
correlation between biomarkers [161,162]. To improve the c-statistic by 0.05, more than
50 moderately correlated (r = 0.4) biomarkers were needed; while when the biomarkers
were weakly correlated (r = 0.05), less than 10 biomarkers would be needed to increase the
c-statistic by 0.05. Metabolites identified may be enriched in well-recognized pathways
associated with diabetes and its complications (DKD and CVD), such as insulin resistance,
energy metabolism, cholesterol biosynthesis and transportation, inflammation, and kidney
function [163]. Although biomarkers from a shared pathway may indicate the mechanistic
role and therapeutic potential of the pathway, intercorrelation with established risk factors
can limit their contribution to the predictive value of a model already including those risk
factors [163].

8. Systems Biology: Integrating Multidimensional Data

With advancement in technologies, the availability of multi-omics data such as se-
quencing data (gene and ribonucleic acid), proteomics, metabolomics, and lipidomics has
made it possible to investigate diabetes and its complications using a systems biology
approach [164]. A proportion of interindividual variability of metabolite concentrations
can be explained by genetics. Variants identified in a large GWAS can account for up to
23% of the variance of metabolite concentrations [165]. Analysis performed in a Finnish
Twin Cohort study found that the heritability estimates ranged between 23–55% for amino
acids and other small-molecule metabolites and 48–76% for lipids and lipoproteins [166].
Some loci even explained up to 36% of the variance in circulating metabolites [167]. By
using genetic variants associated with metabolites identified in GWAS as instrumental
variables, MR can be utilized to make causal inferences with observational data. As ge-
netic variants are randomly assigned during meiosis and fixed at conception, MR can
overcome issues of residual confounding or reverse causality commonly observed in
epidemiological studies [168]. If a metabolite is causally associated with diabetes or its
complications, it may become possible to identify potential drugs targeting the underlying
mechanism as a new treatment strategy. Moreover, the integration of multi-omics data or
even clinical data using systems biology approaches may identify previously unappreciated
inter-relationships between different biological or molecular pathways. For example, by
combining metabolomics and transcriptomics via a metabolite–protein interaction network,
four pathways associated with eGFR have been identified to be affected by dapagliflozin,
which might shine a light on the potential renoprotective mechanisms of SGLT2i [116]. In
contrast to the rapid development of “omics” technologies, statistical and computational
techniques required to handle high-dimensional data, however, remain a major challenge
and bottleneck [169].

9. Exogenous Metabolites, Gut Microbiota, and Diabetes and Its Progression

Exogenous inputs, such as food intake, affect the levels of circulating metabolites [170]
and it has been increasingly appreciated that the gut microbiota play a key role in modify-
ing the metabolome and metabolic homeostasis. Dietary phosphatidylcholines, including
betaine, choline, and trimethylamine-N-oxide (TMAO), have been found to be altered in
individuals with CVD and appear to promote development of atherosclerosis [171]. Higher
plasma TMAO by LC-MS was also associated with CVE in patients with T2D [127]. A recent
bidirectional two-sample MR found that genetically predicted TMAO was not associated
with T2D, CKD, or CVD, whereas T2D and CKD were causally associated with higher
TMAO, indicating that TMAO may play a mediating role between diabetes/CKD and
CVD [172]. Using untargeted LC-MS, more microbial metabolites have been found to be
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predictive of incident diabetes in the METSIM study [63]. Studies integrating metabolomics
with genetics and gut microbiota have been implemented to explore the interplay be-
tween genetic variants, dietary intake, gut microbiome and metabolites in diabetes and its
complications [65,103].

10. Conclusions and Perspectives

Metabolomic studies present the molecular characterization of diabetes and its com-
plications and could elucidate underlying pathological pathways that are perturbed in a
disease state. Metabolomics, especially using the untargeted approach, can provide a global
metabolic snapshot and may identify previously unknown molecules that are involved in
the development and progression of diabetes. Metabolomic studies, as mentioned above,
have identified biomarkers for the screening, diagnosis, and prediction of diabetes and its
complications; some metabolites could also be biomarkers for monitoring the therapeutic
effects of treatment. If being causal of a disease, the associated pathways could even be
considered therapeutic targets. The integration of genetics, transcriptomics, proteomics,
metabolomics, or even clinical data in a systems approach may present a comprehensive
metabolic network of cardiometabolic disease. In this regard, metabolomics is a powerful
approach which can deepen the molecular understanding of and improve efforts towards
preventing or improving clinical management of T2D and its complications.
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