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Abstract: This paper presents a study of the Ti-6Al-4V alloy milling under different lubrication
conditions, using the minimum quantity lubrication approach. The chosen material is widely used in
the industry due to its properties, although they present difficulties in terms of their machinability.
A minimum quantity lubrication (MQL) prototype valve was built for this purpose, and machining
followed a previously defined experimental design with three lubrication strategies. Speed, feed rate,
and the depth of cut were considered as independent variables. As design-dependent variables,
cutting forces, torque, and roughness were considered. The desirability optimization function was
used in order to obtain the best input data indications, in order to minimize cutting and roughness
efforts. Supervised artificial neural networks of the multilayer perceptron type were created and
tested, and their responses were compared statistically to the results of the factorial design. It was
noted that the variables that most influenced the machining-dependent variables were the feed
rate and the depth of cut. A lower roughness value was achieved with MQL only with the use of
cutting fluid with graphite. Statistical analysis demonstrated that artificial neural network and the
experimental design predict similar results.

Keywords: Ti-6AL-4V; MQL; machining; milling; lubrication; optimization

1. Introduction

Machining processes, such as turning, boring, drilling, and milling, are some of the most important
techniques used in industries [1]. In these processes, the material is separated from the original body
by the chips, creating a new shape, and it is estimated that it contributes to approximately 5% of the
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GDP in developed countries [2]. This removal of wanted parts leads to plastic deformations of work
specimens, and most of the fed energy is converted into heat [3].

Considering the importance of these processes in the industry, mainly in aerospace, which is highly
specialized, it is necessary to keep resources and developments to meet the demand when it arises [4].
Most materials used in the aerospace industry are hard to machine [5]. The Ti-6Al-4V alloy with an α-β
microstructure is estimated to account for 50% of the global titanium metal production, and 80% of this
corresponds to the aerospace and medical industries [6,7]. According to [8], 14% of the aerostructure
of the Airbus A350-900 XWB [2], 15% of the Boeing 787 [3], and 25% of the GE CF6 aeroengine is
made from titanium alloys. In addition to the aerospace industry, titanium is also used in the marine,
biomedicine, energy, automobile, and chemical industries [9,10]. The main properties of titanium are
a high hot strength and hardness, and a superior corrosion resistance and fracture toughness when
compared with other materials. It has the highest strength-to-weight ratio amongst all structural
materials, excellent creep and biocompatibility, a low elastic modulus, and chemical inertness at room
temperature [11]. As a result of these properties, titanium is considered a hard-to-cut material [12],
and the main problems include the fact that the high chemical reactivity makes chips easily adhere to
the tool-cutting edge, and the low thermal conductivity (1/6 of that for steel) increases the temperature
at the tool’s cutting edge (which can easily reach beyond 1000 ◦C) [13–16]. A low modulus of elasticity
and an extreme strength at high temperature generate long ductile chips, a relatively large contact
length between the chip and the cutting tool, and a high compressive stress, leading to a poor tool life,
or to higher cutting forces [17].

Since heat generated during machining is a major problem, it is important to choose an adequate
lubrication/cooling condition, to improve the machinability of a difficult-to-cut material [12,18].
The minimum quantity lubrication (MQL) is an attractive alternative solution for floods, which have
occurred for decades and bring health risks to workers [17,19], and for dry machining, which can
accelerate tool wear and the degradation of piece surface integrity [11]. This technique has also been
used more often, due to pressure from governments, law enforcement, and environmental agencies that
have compelled manufacturers to adopt it [20]. It uses a small amount of cutting fluid in the form of an
oil mist that is directly sprayed to the contact zone, helping to reduce friction and cutting forces, and
decreasing the surface’s crumple zone by a large amount (~50%) when compared with dry cutting [21].
Consequently, MQL reduces tool wear [22,23]. This technique combines the lubrication from the
cutting fluid and the cooling from the air pressure, sometimes reducing the thermal shock caused by
flood lubrication [24], and can be used in drilling, milling, turning, and others. Studies conducted
by [25] also showed a minimization in vibrations along with radial force during turning.

Artificial neural networks (ANNs) model the complex nonlinear relationships between input
and output parameters by observing datasets and identifying patterns, without the need to write
explicit programs [4]. An ANN is inspired by the way biological nerves, such as the brain, work to
solve problems, and the first artificial neuron was produced in 1943 by McCulloch and the logician
Walter Pits [26,27]. The ANN and the genetic algorithm (GA) are important alternatives to be used
in machining processes, due to their high complexity in optimizing cutting parameters. They have
become very popular in recent years due to their capability of learning nonlinear behavior [28], with
many studies conducted. The authors in [27] studied ANNs to predict the material removal rate and
surface roughness in the CNC milling of P20 steel and the results indicating a successful application.
The authors in [9] used a backpropagation neural network (BPNN), and optimized the overall
cutting performance during the high-speed turning of the Ti-6Al-4V alloy, and the results achieved a
balance among all studied responses. The authors in [18] investigated the characteristics of different
nano-cutting fluids, molybdenum disulfide, and graphite under MQL conditions, using Box–Cox
transformation, normal probability plots, and analysis of variance (ANOVA) tests. The best choice for
the application was chosen, and the machining characteristics of the Inconel-800 alloy were improved.
The authors in [17] studied turning tests with a combination of cooling techniques on titanium (Grade 2).
The surface quality measurements, force values, and tool wear were investigated using a combination
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of ANOVA, and the correlations were established with a success rate of 90%. The authors in [28] used
regression analysis and an ANN to predict the surface roughness during the hard turning of AISI 52100,
and found superior results in the ANN application. The authors in [4] used the friction force computed
for 648 experimental trials to develop and optimize ANN architecture prediction during turning with
different materials and cutting parameters, and obtained a 12.5% difference between the estimated
and measured values. The results obtained in [24] were even better, with variations from 1% to 4%
during a comparative experimental study in three different machining environments (dry air cooling,
flood cooling, and minimum quantity cutting fluid). The authors in [29] studied the dry machining
of hardened steel En31 to identify the influence of input parameters (speed, feed rate, and the depth
of cut) on the surface roughness, and it was possible to analyze the process sensitivity. The authors
in [30] used an ANN to predict the cutting force by monitoring the spindle and the individual drives,
obtaining success in application during 2.5D milling in E355 steel. The authors in [31] also used an
ANN and a GA to predict the minimum surface roughness and chose the best cutting parameters to
achieve it. The authors in [32] described numerous papers in which an ANN was developed using this
modern technique for many applications besides machining, showing its versatility.

Over time, statistical tools have been applied and have helped to assist in the process of analyzing
problems and making decisions. The design of experiments (DOE) has often been used to design a
specific experiment or to define data in a methodology. The collection and organization of data for
the experiment should ensure that the process has the best possible yield and that there is safety or a
minimal difference in the empirical results related to the collected data.

As demonstrated by a growing number of articles published in the last decade, many researchers
in the manufacturing field explore ways of applying artificial neural networks to control or to perform
an estimation of a product’s critical quality, and to optimize production processes [33]. In this respect,
many authors use DOE techniques to implement and optimize ANN parameters. According to
authors in [34] the combination of multilayer perceptron with DOE has proven to be an appropriate
tool in modeling and problem analysis. Chromium layer thickness predictions on hard chrome
plating processes´ results suggest that DOE may be successfully used for the optimization of ANNs´
backpropagation parameters. In another paper on turning, DOE was employed to determine factor
levels that benefit network forecasting skills, concluding that the DOE methodology constitutes a
better approach to the design of RBF networks for roughness prediction than most trial and error
common approaches [35]. Authors in [36] comment that an efficient methodology is needed to obtain
optimal values for various parameters in artificial neural networks. In their paper, authors used the
Gray–Taguchi method to determine the optimal value of various ANN model input parameters trained
by different algorithms in a 2.5D milling process modeling.

The results showed that the combination with RNA presents a better performance. In the search
for better prediction values, some studies compare statistical methodologies to ANNs. Authors in [37]
studied the AISI316L steel dry turning surface roughness prediction, by comparing ANNs to multiple
regression methods. The results found by the methods indicate a better artificial neural networks
accuracy. A study involving the prediction of surface roughness in red brass turning was developed
using a comparison between a complete factorial planning and ANN. The finding was that, based on
ANN percentage error and the regression model, the artificial neural network was considered more
accurate than the regression model [38]. Authors in [39] developed a model to investigate C23000
turning cutting parameter effects. Artificial neural networks and multiple regression models were used
to model cutting forces based on cutting parameters, using variance analysis. It was concluded that the
ANN model was more accurate than the regression model. Another study compared the mathematical
regression with ANN, in order to predict the wear of the AISI 304 cutting tool. Experimental design
includes four factors at five levels. According to the authors, the artificial neural network model
was capable of better tool wear predictions [40]. A tool wear prediction by artificial neural networks
in the Aluminum 7075 milling was proposed by [41]. Authors subdivided the research using the
Taguchi model and ANNs. It was found that ANN prediction correlates very well with experimental
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results. In a turning paper, DOE was employed to select factor levels that benefit network prediction
skills, concluding that the DOE methodology constitutes a better approach to the design of RBF
networks for roughness prediction than most trial and error approaches. However, a frequently
cited ANN disadvantage is the lack of a systematic way to design high-performance networks [35].
Another study deals with AISI 1040 steel machining. Response surface and ANN approaches were
used. According to the authors, both approaches predict surface roughness accurately [42]. The authors
in [43] reviewed several publications dealing with modeling and roughness by ANNs in machining
processes. The review showed that most of the paper had a roughness (Ra) average prediction, and
that little attention was given to the efficiency of the training. Researchers point out the definition
of the ideal network topology as the main problem in roughness modeling. Optimization efforts are
detected in a small number of publications, and comparisons between topology definition approaches
are hardly found. Moreover, with regard to validation, most publications neglect or make this ability
unclear. The use of the third validation data set can be found in only a few studies. The use of statistical
evaluation to compare trained networks can be found in only one fifth of the peer-reviewed papers, in
addition to the lack of a statistical evaluation comparing ANN-based models and models obtained
by other methods. According to authors, the ANNs models´ accuracy are points that require more
attention and many papers are presented only in graphic forms, thus lacking information as to the
results’ reproduction. There is no standard procedure for choosing more appropriate ANN settings,
thus becoming a difficult task that depends on many variables. The trial and error method is the
procedure most commonly used to identify the best settings [44]. Based on the peer-reviewed literature,
some areas of improvement are suggested, such as the no need to transform or change data, that reveal
non-regular periodic movement. In addition, papers focus on network characteristics in a specification
phase, with tests being performed to determine errors and R oscillations, and to validate a performance
optimization model [45].

The objective of this paper is to evaluate the application of different MQL strategies in Ti-6Al-4V
alloy machining, and to study whether the prediction of results between the ANNs approaches and
factorial design describe similar values. The classical DOE approach and its comparison with a
high number of different neural network architectures have not yet been studied. The number of
comparative analysis studies between the DOE and ANN approaches is still limited. This paper
includes training and testing of 15,000 artificial neural networks to minimize a systematic trial and
error in the top milling of a Ti-6Al-4V alloy. An MQL valve was built for this purpose.

2. Materials and Methods

This was divided into two analyses: the first uses a factorial planning and its statistical correlations,
and the second analysis uses artificial neural networks. Milling tests were performed using three
different strategies. As results of the experimental planning, the influence of the independent variables
on force and roughness parameters was verified by Pareto graphs. Statistical predictions were made
using the generated response surfaces. The measured cutting and roughness data served to feed the
artificial neural networks, and the predictions obtained by the two approaches were compared by
means of a variance analysis. The desirability optimization function was used to seek optimal results
aiming at lower roughness and lower cutting efforts. Figure 1 shows the experiment overview.
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Figure 1. Experiment overview.

The strategies and materials utilized to manufacture the MQL valve, milling trials, and training
of the ANNs are described in this section. A commercial Ti-6Al-4V (Grade 5) titanium alloy bar
of 500 mm × 50 mm × 17 mm with an average hardness of 32.4 Hardness Rockwell C was used in
this study. Figure 2 illustrates the material with the machining tests performed. Table 1 shows the
respective chemical composition.
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Figure 2. Ti-6AL-4V bar after machining.

Table 1. Chemical composition of Ti-6Al-4V (provided by VINER Brasil Tecnologia Ltda., Sao Paulo, Brazil).

Composition Ti Al V Fe H N O C Y

Data (%) Balance 6.49–6.56 4.03–4.14 0.16–0.19 0.002–0.003 0.003–0.004 0.192–0.196 0.024–0.028 <0.001
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2.1. Experimental Design and Machining

An experimental design of three factors and two levels (23) with two central points was used,
as shown in Table 2. A replication was performed for each cutting condition, totaling 60 tests. From
these, the respective averages were calculated. The data adopted for the cutting speed (vc), feed rate
(f), and depth of cut (ap) were recommended by the insert manufacturer. The procedure for using each
cutting insert was used up to a wear of 0.1 mm.

Table 2. Factorial design used for machining.

Tests vc (m/min) f (mm/rev) ap (mm)

1 80 0.06 0.5
2 100 0.06 0.5
3 80 0.1 0.5
4 100 0.1 0.5
5 80 0.06 1.0
6 100 0.06 1.0
7 80 0.1 1.0
8 100 0.1 1.0
9 90 0.08 0.75

10 90 0.08 0.75

The speed, feed rate, and depth of cut were considered as independent variables. As dependent
variables, cutting force (Fc), feed force (Ff), penetration force (Fp), torque (Mz), root mean square height
of the surface (Sq), Skewness of height distribution (Ssk) and Kurtosis of height distribution (Sku) were
considered. Response surfaces were generated, and the desirability function was used to optimize the
results of each strategy employed. Three different conditions were stipulated for the trials: (a) using no
lubrication, called Strategy 1, (b) applying the designed mixing valve and adopting the MQL approach
with oil (Strategy 2), and (c) using the MQL approach with the addition of 30% commercial graphite
(Strategy 3). The trials were carried out according to Table 3. For the MQL approach, the Superfluid 3
lubricating oil from Quimatic/Tapmatic was applied. Its characteristics are listed in Table 4. The fluid
was driven by a Magneti Marelli MAM00103 electric automotive pump (Mauá, Brazil), with a working
pressure of 3 bar and a flow rate of 110 L/h connected to a 20 L fuel tank, and with an oil return
circuit to the tank. The flow regulation was performed by a manual control valve set to 110 mL/h.
The compressed air pressure was maintained at 6 bar.

Table 3. Lubrication strategies used (dry/oil/oil + graphite).

Strategy Cooling and Lubrication Condition

1 Dry (only compressed air)
2 Oil (minimum quantity lubrication (MQL))
3 Oil + Graphite (MQL)

Table 4. Characteristics of the cutting fluid used (provided by QUIMATIC/TAPMATIC).

Parameters Properties

Aspect Clear green viscous liquid
Scent Characteristic, light

Density at 25 ◦C (g/mL) 0.88–0.91
Corrosion test on iron chips No corrosion after 2 h
Viscosity centistokes, 25 ◦C 20–35

Acidity index 10–20

The ROMI D600 machining center (Santa Bárbara d’Oeste, Brazil) with the SIEMENS 840-D CNC
control (Figure 3a), a 20 hp motor, and total installed power of 30 kVA was used for milling tests.
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The insert BDMT 11 03 02 ER-JS (CVD) with grade CA6535 from KYOCERA (Sorocaba, Brazil) was
chosen for milling (Figure 3b).
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Figure 4. MQL valve circuit. (1) oil inlet; (2) return hose; (3) regulating valve; (4) check valve;
(5) hydraulic equal cross coupling—air + oil mixture; (6) inlet compressed air; (7) control valve for
compressed air.

The needle and jet of fluid can be seen in Figure 5. The CAD design and the assembled valve
can be seen in Figure 6. The valve was attached to a lubrication hose that was adequate to the
machining center.
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2.2. Measurements

For the measurement of forces during machining, a KISTLER 9123C rotary dynamometer
(Sao Caetano do Sul, Brazil) with 5223B signal conditioner (Sao Paulo, Brazil) was used. Figure 7a
shows the dynamometer mounted on the machine, and Figure 7b shows the tool and the mounted
valve. The acquisition of the signals was carried out by the PCI 4472 card (Sao Caetano do Sul, Brazil),
together with the Labview Signal Express 2.5 software from National Instruments. The frequency for
data acquisition was 100 kHz. A Leica S6D microscope (Sao Paulo, Brazil) was used to check the wear
after each machining, guaranteeing a Vb flank wear of up to 0.2 mm. Figure 8 shows the measurement
of an insert.
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Figure 8. Wear measurement example.

The Talysurf CCI Lite white light interferometer (Sao Paulo, Brazil) was used for surface
measurement. The surface roughness parameters generated using the software TalyMap Gold v.
6.2 and considered in this work were: Sq (root mean square height of the surface), Ssk (skewness of
height distribution) and Sku (kurtosis of height distribution). The measuring area was 4.3 mm2 with
used 0.8 mm cut-off. Figure 9 illustrates the measurement procedure.
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interferometer (b) Position and application area. (c) Measurement being performed. (d) Milled 3D
surface topography.
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2.3. Artificial Neural Networks

From the machining data obtained by the experimental design and measurements, artificial neural
networks were created for each cutting condition. With the “Automated Neural Network” workbench
from Statistica software (version 13.5), multilayer perceptron networks (MLP) in three independent
variables as input were created, and with the machining forces and roughness measured as the “target.”
Table 5 indicates the independent and dependent variables’ selection of the networks used.

Table 5. Select variables for analysis.

Train, Test and Validation—ANNs Variables

Continuous inputs vc, f, ap
Continuous targets Fc, Ff, Fp, Mz, Sq, Ssk, Sku

The MLP architecture has a feedforward characteristic, with a one-way sequence between layers.
Neurons have activation functions that use input signals of the anterior layer in a mathematical
function, and the choice of activation function influences the behavior of the neural network. The most
commonly used ANN type is feedforward, with input, hidden, and output layers. Network data are
entered through the input layer and each neuron in this layer relates to each input variable. Hidden
layers transmit input data to output layers by accurately simulating the function of the original system.
The output layer is related to the results of the network, based on the predicted results errors and the
weights of the connections values between neurons. The function of each neuron contains synapses,
sums function, and transfer function. Through connections, neurons communicate, multiplying
the input value with weight coefficients. These signals are transformed by an activation function,
generating the network output result [46]. For each machining strategy, 5000 networks were trained,
using various combinations of neuron numbers, activation functions and number of layers, until they
reached satisfactory values. Table 6 shows the values used for the training, testing, and validation data
for each chosen strategy.

Table 6. Sampling Method (Random).

Train sample size (%) 70
Test sample size (%) 20

Validation sample size (%) 10

Various training and tests were carried out using the test averages to validate the networks’
efficiency. Among the averages, three samples were randomly chosen for the tests, and seven samples
were used for training. They were replicated 15 times, totaling 112 samples for training. The networks
chosen were the ones that obtained the best results in training and testing, as exemplified in Figure 10.

The minimum and maximum number of neurons in the hidden layer were 3 and 25, respectively.
The error function chosen was the sum of squares (SOS), due to the fact that it is one of the most used
in training of artificial neural networks in regression tasks. The weight decay factor was stipulated
between 0.0001 and 0.001. All available activation functions (identity, logistic, tanh, exponential and
sine) were used for training.



Materials 2020, 13, 3828 11 of 29

Materials 2020, 13, x FOR PEER REVIEW 10 of 29 

 

2.3. Artificial Neural Networks 

From the machining data obtained by the experimental design and measurements, artificial 
neural networks were created for each cutting condition. With the “Automated Neural Network” 
workbench from Statistica software (version 13.5), multilayer perceptron networks (MLP) in three 
independent variables as input were created, and with the machining forces and roughness measured 
as the “target.” Table 5 indicates the independent and dependent variables’ selection of the networks 
used. 

Table 5. Select variables for analysis. 

Train, Test and Validation—ANNs Variables 
Continuous inputs vc, f, ap 
Continuous targets Fc, Ff, Fp, Mz, Sq, Ssk, Sku 

The MLP architecture has a feedforward characteristic, with a one-way sequence between layers. 
Neurons have activation functions that use input signals of the anterior layer in a mathematical 
function, and the choice of activation function influences the behavior of the neural network. The 
most commonly used ANN type is feedforward, with input, hidden, and output layers. Network 
data are entered through the input layer and each neuron in this layer relates to each input variable. 
Hidden layers transmit input data to output layers by accurately simulating the function of the 
original system. The output layer is related to the results of the network, based on the predicted 
results errors and the weights of the connections values between neurons. The function of each 
neuron contains synapses, sums function, and transfer function. Through connections, neurons 
communicate, multiplying the input value with weight coefficients. These signals are transformed by 
an activation function, generating the network output result [46]. For each machining strategy, 5000 
networks were trained, using various combinations of neuron numbers, activation functions and 
number of layers, until they reached satisfactory values. Table 6 shows the values used for the 
training, testing, and validation data for each chosen strategy. 

Table 6. Sampling Method (Random). 

Train sample size (%) 70 
Test sample size (%) 20 

Validation sample size (%) 10 

Various training and tests were carried out using the test averages to validate the networks’ 
efficiency. Among the averages, three samples were randomly chosen for the tests, and seven samples 
were used for training. They were replicated 15 times, totaling 112 samples for training. The networks 
chosen were the ones that obtained the best results in training and testing, as exemplified in Figure 
10. 

 
Figure 10. Scatterplot of Fc_Target x Fc_Output ANN. Figure 10. Scatterplot of Fc_Target x Fc_Output ANN.

2.4. Comparative Analysis

With the tabulated data, statistical tests were performed to verify the homogeneity of variances
and to compare the pairs of averages. At the end of any experimental design, it should be checked
whether the mathematical model obtained is valid [47]. Statistical tests were used to determine whether
the two prediction strategies combined with the measurement produce equivalent estimates, i.e., to
determine if there is a difference between the averages of results of the artificial neural networks
and the experimental design. Analysis of variance was used, and therefore it can be seen if there are
statistical differences between the predictions.

In addition, the desirability optimization function was used, in order to obtain optimal values for
the three cutting conditions. The approach used in the desirability optimization consists of converting
each response of the experimental design yi into a function di, varying between 0 and 1. If the answer
is the desired one, a value of di = 1 is accepted, otherwise, di = 0 [47]. In this way, the independent
variables are chosen to maximize the global desirability function. In this work, di = 1 was chosen as
the lowest value for machining forces and roughness.

3. Results and Discussion

This topic provides the experimental design used, and the results of the average measurements of
the machining forces and roughness and of the influence of the machining parameters, in relation to
the dependent variables. The architectures of the ANNs are demonstrated, and a comparison of the
treatments used is made.

3.1. Statistical Results of Surface Roughness Measurements

For every cutting condition, the maximum and minimum conditions of the parameters used
were analyzed. The Sq parameter corresponds to the standard deviation of the distribution curve [48].
The Sku parameter is always presented with the Ssk parameter, describing the shape of a topographic
surface and its roughness distribution. Mathematically, the parameters skewness and kurtosis measure
the symmetry and histogram deviation of all peaks and valleys heights of a machined surface in relation
to the Gaussian distribution. The skewness roughness parameter can monitor machined surfaces’ wear
and tear in service. A surface with a Gaussian distribution, which is symmetrically distributed, has the
Ssk parameter equal to zero. Positive Ssk values indicate the predominance of high peaks, and negative
values indicate the prevalence of valleys. On the other hand, Sku parameter measures the degree of
flattening or thinning of a topographic distribution of a peak´s roughness profile. On a surface with
normal symmetric distribution, the Sku parameter is equal to three. In practical terms, Sku > 3 indicates
the presence of acute peaks, while Sku < 3 indicates surface texture free of disproportionately sharp
peaks [49,50]. In this work, the lowest Sq value was obtained by the number 2 assay used in strategy 3
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(0.39 µm). The maximum condition occurred in test 10 strategy 1 (1.57 µm). For the Ssk parameter,
the minimum value occurred in test 1 strategy 3 (−1.05), and the maximum condition occurred in test
1 strategy 2 (0.49). As for the Sku parameter, the minimum and maximum results are respectively
found in test 2 strategy 1 (2.68) and test 1 strategy 3 (15.30). The statistical results are shown in Table 7.
Based on statistical analysis results, the minimum and maximum topography surface values measured
for each Sq, Ssk, Sku parameter are shown in Figure 11.

Table 7. Descriptive statistics—roughness.

Variable Mean Minimum Maximum Std. Dev.

Sq (µm) 0.69 0.39 1.57 0.37
Ssk −0.14 −1.05 0.49 0.26
Sku 4.35 2.68 15.30 2.22

Materials 2020, 13, x FOR PEER REVIEW 12 of 29 

 

Table 7. Descriptive statistics—roughness. 

Variable Mean Minimum Maximum Std. Dev. 
Sq (µm) 0.69 0.39 1.57 0.37 

Ssk −0.14 −1.05 0.49 0.26 
Sku 4.35 2.68 15.30 2.22 

 
Figure 11. Sq, Ssk, Sku minimum and maximum milled surface topography parameter values 
measured. (a) Sq = 0.39 µm; (b) Sq = 1.57 µm; (c) Ssk = −1.05 and Sku = 15.30; (d) Ssk = 0.49 µm; (e) Ssk = 
2.68 µm 

Figure 11. Sq, Ssk, Sku minimum and maximum milled surface topography parameter values measured.
(a) Sq = 0.39 µm; (b) Sq = 1.57 µm; (c) Ssk = −1.05 and Sku = 15.30; (d) Ssk = 0.49 µm; (e) Ssk = 2.68 µm
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3.2. Results and Analysis of Factorial Design

The use of experimental design resulted in measurements of the dependent variables for the
three lubrication conditions. The data can be viewed in Table 8. The analysis of the feed rate, cutting,
and penetration machining forces for the three tests, as illustrated in the following items, showed
that these forces are dominated by the feed rate and the penetration depth variables. It is known
that the greater these parameters are, the greater the chip removal forces are and, consequently, the
greater the forces generated to remove them are. It has been noted that the cutting force decreases
strongly in applications with oil and oil + graphite in relation to the cut without using fluid, due to
the fluid emulsivity, minimizing friction, and temperature, acting directly on the flank of the cutting
insert. The type of base fluid has a strong effect on the components of the cutting force. Consequently,
the force is significantly reduced [1]. For the roughness parameter, the main factors that influence it
are the feed rate, the cutting speed, the depth of cut, the vibrations of the cutting tools, the lubricant
conditions, and the tool specifications [19]. In this study, it was found that the feed rate and ap were
the variables that most influenced roughness.

Table 8. Results of factorial design used.

Dry vc
(m/min)

f
(mm/rev)

ap
(mm) Fc (N) Ff (N) Fp (N) Mz

(Nm) Sq (µm) Ssk Sku

1 80 0.06 0.5 258.97 71.00 52.04 0.62 0.57 −0.13 3.95
2 100 0.06 0.5 228.50 108.00 60.96 0.68 0.80 −0.17 2.68
3 80 0.1 0.5 364.12 112.99 93.74 1.03 0.82 −0.20 3.06
4 100 0.1 0.5 427.50 109.00 113.53 0.97 1.01 −0.29 3.34
5 80 0.06 1.0 371.80 94.73 63.35 1.01 1.13 −0.06 3.18
6 100 0.06 1.0 396.81 100.50 70.97 0.98 1.31 0.09 3.65
7 80 0.1 1.0 510.50 172.62 119.37 1.44 1.46 0.04 3.07
8 100 0.1 1.0 531.50 139.40 103.14 1.45 1.14 −0.05 3.60
9 90 0.08 0.75 570.50 164.42 203.95 1.14 1.51 −0.09 4.30

10 90 0.08 0.75 617.50 207.94 207.94 1.31 1.57 0.36 5.39

Oil vc
(m/min)

f
(mm/rev)

ap
(mm) Fc (N) Ff (N) Fp (N) Mz

(Nm) Sq (µm) Ssk Sku

1 80 0.06 0.5 117.00 216.50 84.80 0.59 0.68 0.49 5.71
2 100 0.06 0.5 89.00 260.00 95.20 0.64 0.46 −0.28 4.08
3 80 0.1 0.5 107.00 285.00 110.00 0.95 0.44 −0.17 3.62
4 100 0.1 0.5 116.00 310.00 113.00 0.93 0.45 −0.32 4.26
5 80 0.06 1.0 154.00 365.00 99.40 1.01 0.47 −0.01 4.37
6 100 0.06 1.0 116.50 315.00 96.00 1.03 0.46 −0.17 4.13
7 80 0.1 1.0 195.00 412.50 124.00 1.25 0.57 −0.24 3.54
8 100 0.1 1.0 182.50 435.00 129.00 1.30 0.60 −0.17 3.32
9 90 0.08 0.75 125.50 330.00 137.60 0.88 0.48 −0.19 4.61

10 90 0.08 0.75 119.00 335.00 125.00 0.91 0.46 −0.08 3.59

Oil +
Graphite

vc
(m/min)

f
(mm/rev)

ap
(mm) Fc (N) Ff (N) Fp (N) Mz

(Nm) Sq (µm) Ssk Sku

1 80 0.06 0.5 80.00 192.50 52.00 0.55 0.45 −1.05 15.30
2 100 0.06 0.5 84.00 217.50 63.00 0.63 0.39 0.00 3.28
3 80 0.1 0.5 127.50 242.50 71.00 0.77 0.45 0.01 3.76
4 100 0.1 0.5 115.00 255.00 81.00 0.78 0.44 −0.27 4.11
5 80 0.06 1.0 127.50 375.00 77.00 1.04 0.41 −0.48 6.17
6 100 0.06 1.0 142.50 410.00 88.00 1.02 0.40 −0.23 4.06
7 80 0.1 1.0 175.00 485.00 112.00 1.34 0.56 −0.06 3.26
8 100 0.1 1.0 190.00 465.00 121.00 1.36 0.58 −0.13 3.33
9 90 0.08 0.75 130.00 410.00 124.00 1.08 0.44 −0.30 4.73

10 90 0.08 0.75 140.00 395.00 116.00 1.06 0.40 −0.34 5.11

3.2.1. Trial without Lubrication

Based on the Pareto graphs, it was observed that, for a 95% confidence interval, the cutting speed,
advancing and forces were not influenced by the dependent variables. The roughness parameters also
did not show any influence on the confidence interval adopted, although the ap and f are the variables
with the greatest influence. Analyzing the illustration in Figure 12, the torque was influenced by the
feed rate f and the depth of cut ap.
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Figure 12. Pareto chart for the dry machining condition: torque Mz.

In analyzing the response surfaces obtained by the factorial design of the test without lubrication
illustrated in Figure 13, it can be seen that the minimum torque values occur with lower feeds,
and lower depths of cut. The analysis process discards the statistical value of vc, since it does not
influence the torque in the studied confidence interval. The lowest values of cutting forces, feed rate
force, penetration force, and torque occur in smaller feeds, smaller depths of cut, and lower cutting
speeds. The contributions of ap and f are striking, indicating that they are possibly responsible for the
mechanism regulating the machining forces of this test condition. The area of the section of cut that is
defined by the product of the feed by the depth of cut increases with the increase of the feed and the
depth of cut, causing an increase in the forces in question.
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3.2.2. Trial with Oil

Based on the Pareto graphs illustrated in Figure 14, it was observed that the variable ap, the
advance f, and the interaction ap and f demonstrated an influence on the cutting force. The variables
ap and f demonstrated an influence on the advance force for the 95% confidence interval.
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(d) Roughness Sq. (e) Skewness of height distribution.

For the same confidence interval, the penetration force was not influenced by the independent
variables. Advancement was the most influential variable when a lower confidence interval
was adopted.

The torque was influenced by the depth of cut and the feed. For the studied interval, the roughness
Sq was influenced by interaction ap and f. The Ssk parameter was influenced by the cutting speed, the
feed rate and the interactions between vc and f and vc and ap.

Analyzing the response surfaces obtained by the test´s factorial with lubrication, it can be seen
that the minimum Sq values also occur for lower f and higher ap.
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The lowest values of cutting forces and torque, illustrated in Figure 15, occur with smaller feed
rates and smaller depths of penetration—discarding the cutting speed since it does not influence the
approached parameter. The smallest feed rate forces, penetration forces, and torque occur with smaller
depths of cut and smaller feed rates.
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3.2.3. Trial with Graphite

Based on the Pareto graphs illustrated in Figure 16, it was observed that the variable ap and
the feed rate showed an influence on the cutting force. The ap variable showed an influence on the
feed rate force, and for a 95% confidence interval, the penetration force was not influenced by the
independent variables. The depth of cut was the variable of greatest influence for the penetration force.
The torque was influenced by the depth of penetration and the feed rate. For the confidence interval
adopted, the Sq roughness was influenced by the feed rate.

Analyzing the response surfaces obtained by the factorial design of the trial with oil and graphite
illustrated in Figure 17, it can be seen that the minimum roughness values occur with lower feed rates
and smaller depths of cut. The lower values of the cutting forces, feed rate forces, penetration forces,
and torque occur with smaller feed rates, smaller depths of penetration, and lower cutting speeds.
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Figure 17. Response surfaces for the lubrication condition with graphite. (a) Cutting force Fc (ap × f).
(b) Feed force Ff (ap × f). (c) Torque Mz (ap × f). (d) Roughness Sq (ap × f).
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Table 9 lists the functions of the responses of the variables Fc, Ff, Fp, Mz, Ssk, Sku and Sq, obtained
by the application of the factorial plan in this work.

Table 9. Statistical functions for the prediction of dependent variables—Mathematical Function.

Dry MathematicalFunction

Fc = 253.250 − 3.99675 × vc − 867.125 × f + 56.15 × f × vc + 0.655 × ap × vc 768.999 × ap × f + 201.2475
Ff = −451.195 + 6.336 × vc + 4113.75 × f − 49.990 × f × vc − 3.023 × ap × vc + 1845.0 × ap × f + 133.2
Fp = −212.050 + 2.299 × vc + 1984.197 × f − 8.112 × f × vc − 1.865 × ap × vc − 151.680 × ap × f + 148.705
Mz = −0.435 + 0.0045 × vc + 10.75 × f − 0.05 × f × vc − 0.0009 × ap × vc + 5.0 × ap × f + 0.36
Sq = −4.94 + 0.05 × vc + 39.99 × f −0.34 × f × vc − 0.028 × ap × vc − 7.4 × ap × f + 3.01
Ssk = −0.59 + 0.006 × vc + 12.475 × f − 0.185 × f × vc + 0.009 × ap × vc + 3.7 × ap × f − 0.595
Sku = 17.67 − 0.15 × vc − 93.925 × f + 1.00125 × vc × f + 0.099 × ap × vc + 1.80 × ap × f − 6.64

Oil Mathematical Function

Fc = 375.025 − 2.8 × vc − 4400 × f + 38.750 × f × vc − 1.550 × ap × vc + 2250.0 × ap × f + 51.75
Ff = −41.225 + 1.412 × vc − 2168.750 × f + 33.750 × f × vc − 4.800 × ap × vc + 1225.0 × ap × f + 421.
Fp = 13.775 + 0.580 × vc + 298.750 × f + 0.625 × f × vc − 0.590 × ap × vc + 365.0 × ap × f + 34.95
Mz = −0.554 + 0.0017 × vc + 12.125 × f − 0.0250 × f × vc + 0.002 × ap × vc − 3.5 × ap × f + 0.63
Sq = 3.48 − 0.025 × vc − 24.69 × f + 0.168 × f × vc + 0.012 × ap × vc + 12.625 × ap × f − 1.55
Ssk = 9.01 − 0.087 × vc − 63.04 × f + 0.541 × f × vc + 0.042 × ap × vc + 11.525 × ap × f − 3.627
Sku =20.85 − 0.15 × vc − 155.44 × f + 1.43 × f × vc + 0.03 × ap × vc + 6.60 × ap × f − 3.06

Oil + Graphite Mathematical Function

Fc = 14.96 − 0.350 × vc + 1703.125 × f − 10.312 × f × vc + 1.925 × ap × vc + 412.50 × ap × f − 69.0
Ff = −414.31 + 4.875 × vc + 3921.875 × f − 42.187 × f × vc − 1.125 × ap × vc + 1937.5 × ap × f + 270.0
Fp = −27.625 + 0.7 × vc+243.75 × f − 1.875 × f × vc − 0.05 × ap × vc + 775.0× ap × f + 6.0
Mz = −0.438 + 0.006 × vc + 2.937 × f − 0.019 × f × vc − 0.004 × ap × vc + 6.75 × ap × f + 0.66
Sq = 1.191 − 0.006 × vc − 6.425 × f + 0.036 × f × vc + 0.0036 × ap × vc + 7.25 × ap × f − 0.59475
Ssk = −12.026 + 0.117 × vc + 106.056×f − 1.03 × f × vc − 0.03 × ap × vc − 6.67 × ap × f + 2.589
Sku = 140.035 − 1.26 × vc − 1039.62 × f + 9.081 × f × vc + 0.48 × ap × vc + 176.87 × ap × f − 46.74

In tests with no lubrication, it can be perceived that the machining forces (Fc, Ff, Fp) are not
statistically influenced by the independent variables. Only torque was influenced by the parameters f
and ap in the confidence interval studied. In the tests with lubrication, both with oil and graphite, it
is apparent that machining forces and torque are significantly influenced by the parameters ap and
f. The Sq roughness was influenced by the interaction between ap and f in the oil assay, while in the
graphite assay, only the f parameter showed significant influence.

The roughness increased with higher feed rates. With the cut depth and feed increase, the
cutting area in the tool is increased and, with this, the cutting effort is increased. In the oil strategy,
the minimum Ssk values occur with higher cutting speeds and greater feed rates. This is due to a
reduction in plastic deformation in the cutting zone incurred by a higher cutting speed. The surface
defect is smaller, with a lower overall roughness value. Surface roughness decreases with increased
cutting speed due to lower plastic deformation in the cutting zone associated with high speeds [51].
With the increase of the cutting speed, the temperature is increased, and the force is minimized by
heating the material, helping its removal, and reducing roughness that, in turn, depends on feed rates.
Oil application contributes to this process, minimizes temperature and favors tool life. Tool wear and
coolant use generally influence surface finish [52]. This can be seen with the lowest roughness values
in the strategies using oil and graphite-added oil. Lower cutting forces and lower feed rates provided
lower roughness values. The analysis infers that the cutting force corroborates the surface roughness
analysis [52].

3.2.4. Machined Surface Roughness Analysis

Roughness parameters were shown to be governed by the independent variables ap and f.
The variable vc is only noted in this work influencing Ssk in Strategy 2. To verify the roughness
parameters behavior studied, the study of the lowest and highest values of the cut-off conditions
was adopted as a premise. Thus, tests 1 and 8 of each experimental planning strategy are analyzed.
Figure 18 shows the isometric surfaces and contour maps of the tests for the dry strategy. An increase of
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Sq in 99.8% was perceived due to the increase in ap and f causing greater irregularities of the roughness
profile. The negative Ssk parameter for both conditions indicates the prevalence of valleys. The positive
Sku parameter indicates that the peaks of the machined surface are sharp.
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Figure 19 shows the isometric surfaces and contour maps of superfluid tests. The Ssk parameter,
positive for the minimum cut-off condition, indicates the prevalence of peaks, which does not occur for
the maximum values. The positive Sku parameter indicates that the peaks of the machined surface are
sharp. It is observed that the increase in feed and cutting speed accentuated the milling marks.



Materials 2020, 13, 3828 20 of 29

Materials 2020, 13, x FOR PEER REVIEW 20 of 29 

 

 
Figure 19. Machined surface topography. Isometric views and contour maps—oil strategy. (a)vc = 80 
m/min, ap = 0.5 mm, f = 0.06 mm/rev.; (b) vc = 100 m/min, ap = 1.0 mm, f = 0.1 mm/rev 

Figure 20 shows the isometric surfaces and contour maps of the tests with the mixture of 
Superfluid 3 with graphite. An increase of Sq of 27% is noted. The Ssk parameter, negative for both 
cutting conditions, indicates the prevalence of valleys. The positive Sku parameter indicates that the 
peaks of the machined surface are sharp. It is observed that the increase of f accentuated the advance 
marks. 

Figure 19. Machined surface topography. Isometric views and contour maps—oil strategy.
(a) vc = 80 m/min, ap = 0.5 mm, f = 0.06 mm/rev.; (b) vc = 100 m/min, ap = 1.0 mm, f = 0.1 mm/rev

Figure 20 shows the isometric surfaces and contour maps of the tests with the mixture of Superfluid
3 with graphite. An increase of Sq of 27% is noted. The Ssk parameter, negative for both cutting
conditions, indicates the prevalence of valleys. The positive Sku parameter indicates that the peaks of
the machined surface are sharp. It is observed that the increase of f accentuated the advance marks.
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3.2.5. Desirability Function

Once you have the answer functions for all variables dependent on the research, an optimization
bringing together all the variables allows you to show the best values for the application of the
independent variables. The desirability function is used in single and multiple objective functions.
Unlike other strategies, this optimization function avoids a conflict of responses. The variation of the
input parameters must be planned to allow for working within the specified experimental design
interval [17]. Using the Statistica software, optimal values were sought using the desirability function
for each dependent variable. Table 10 and Figure 21 illustrate the results.

Table 10. Results of the application of the desirability optimization function.

Trial vc (m/min) f (mm/rev) ap (mm) %Confidence

Dry 90.0 0.06 0.5 54.0
Oil 100.0 0.07 0.5 66.0

Oil + Graphite 100.0 0.06 0.5 69.0
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3.3. Prediction of Results by Artificial Neural Networks

With the data obtained by measuring the machining forces and roughness, different training
standards and trials of the artificial neural networks were performed. Trainings were performed for
different lubrication conditions with an average of 10 samples, creating supervised networks with three
input variables (vc, f, and ap). As the target, the dependent samples Ff, Fc, Fp, Mz, and Ra were selected.

For the execution of the training and tests, the Automated Neural Network tool of the Statistica
software was used. The tests represent the result of the simulation of the previously trained networks.
For a future test to validate the training, three samples were randomly reserved. The remaining 7
samples were replicated 15 times, totaling 112 samples for training. Table 11 shows the variables
chosen randomly for the validation tests. Table 12 contains information on the architectures of the
artificial neural networks used to predict.

Table 11. Samples chosen randomly for testing the training of the ANNs created.

Dry vc
(m/min)

f
(mm/rev) ap (mm) Fc (N) Ff (N) Fp (N) Mz

(Nm) Sq(µm) Ssk Sku

6 100 0.06 1.0 396.81 100.50 70.97 0.98 1.31 0.09 3.65
7 80 0.1 1.0 510.50 172.62 119.37 1.44 1.46 0.04 3.07
9 90 0.08 0.75 570.50 164.42 203.95 1.14 1.51 −0.09 4.30

Oil vc
(m/min)

f
(mm/rev) ap (mm) Fc (N) Ff (N) Fp (N) Mz

(Nm) Sq(µm) Ssk Sku

1 80 0.06 0.5 117.00 216.50 84.80 0.59 0.68 0.49 5.71
4 100 0.1 0.5 116.00 310.00 113.00 0.93 0.45 −0.32 4.26
9 90 0.08 0.75 125.50 330.00 137.60 0.88 0.48 −0.19 4.61

Oil +
Graphite

vc
(m/min)

f
(mm/rev) ap (mm) Fc (N) Ff (N) Fp (N) Mz

(Nm) Sq (µm) Ssk Sku

2 100 0.06 0.5 84.00 217.50 63.00 0.63 0.40 0.00 3.28
7 80 0.1 1.0 175.00 485.00 112.00 1.34 0.56 −0.06 3.26
9 90 0.08 0.75 130.00 410.00 124.00 1.08 0.44 −0.30 4.73

Table 12. Summary of active networks.

Summary Dry Oil Oil + Graphite

Index 4 2 1
Network Name MLP 3-8-7 MLP 3-24-7 MLP 3-16-7

Training 1.0 1.0 1.0
Test 1.0 1.0 1.0

Validation 1.0 1.0 1.0
Training error 0.0 0.0 0.0

Test error 0.0 0.0 0.0
Validation error 0.0 0.0 0.0

Training algorithm BFGS 237 BFGS 128 BFGS 68
Error function SOS SOS SOS

Hidden activation Tanh Tanh Exponential
Output activation Identity Identity Identity

The test results can be seen in Tables 13 and 14. The measured values and the results of the ANNs
are listed respectively as output. There is a good approximation between the values.
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Table 13. Custom predictions—Forces and torque.

Dry Fc Fc_Output Ff Ff_Output Fp Fp_Output Mz Mz_Output

1 396.81 385.77 100.50 130.93 70.97 91.13 0.98 0.98
2 510.50 500.35 172.62 95.27 119.37 81.32 1.44 1.36
3 570.50 617.46 164.42 207.93 203.95 207.95 1.14 1.31

Oil Fc Fc_Output Ff Ff_Output Fp Fp_Output Mz Mz_Output

1 117.00 81.04 216.50 255.59 84.80 102.08 0.59 0.59
2 116.00 90.17 310.00 298.07 113.00 123.28 0.93 0.93
3 125.50 119.00 330.00 334.99 137.60 124.99 0.88 0.91

Oil + Graphite Fc Fc_Output Ff Ff_Output Fp Fp_Output Mz Mz_Output

1 84.00 102.16 217.50 296.71 63.00 90.20 0.63 0.75
2 175.00 199.59 485.00 533.07 112.00 154.14 1.34 1.51
3 130.00 139.99 410.00 394.99 124.00 115.99 1.08 1.06

Table 14. Custom predictions—Superficial Roughness.

Dry Sq Sq_Output Ssk Ssk_Output Sku Sku_Output

1 1.31 1.46 0.09 −0.03 3.65 2.81
2 1.46 0.93 0.04 −0.11 3.07 3.98
3 1.51 1.57 −0.09 0.35 4.30 5.39

Oil Sq Sq_Output Ssk Ssk_Output Sku Sku_Output

1 0.68 0.37 0.49 −0.04 5.71 4.17
2 0.45 0.46 −0.32 −0.12 4.26 3.33
3 0.48 0.46 −0.19 −0.07 4.61 3.58

Oil + Graphite Sq Sq_Output Ssk Ssk_Output Sku Sku_Output

1 0.40 0.35 0.00 −0.55 3.28 7.20
2 0.56 0.52 −0.06 −0.01 3.26 2.14
3 0.44 0.41 −0.30 −0.33 4.73 5.10

3.4. Comparative Analysis of Predictions

To verify whether the prediction strategies used in this work produce similar responses, a statistical
test was carried out to verify the equality of treatment averages (ANOVA). It was found, as shown in
Figure 22, that there were no global differences between prediction strategies (p-value > 0.05). In these
graphs, the numbers 1, 2, and 3 represent the measured values, the results of the experimental design
using the equations, and the results of the ANNs, respectively.
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Future research can use statistical tests such as Duncan, Bonferroni, Tukey, and the validation in
the case of differences in averages that they indicate, can be verified by the Levene test. The inclusion
of other percentages of graphite and its comparison with other lubrication strategies, such as liquid
nitrogen under dripping, would be interesting.

4. Conclusions

The design of the MQL mixing valve made it possible to study and analyze different lubrication
conditions. The assembled circuit was based on commercial parts. It was found that the independent
variables that most influenced the cutting forces and roughness were the depth of cut and feed rate.
The cutting forces were significantly reduced with the use of the MQL approach, probably allowing for
heat reduction in the cutting flank of the insert, due to the fluid emulsivity. The lowest average of the
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Sq roughness was achieved by using the MQL practice with cutting fluid and graphite. The desirability
function provided the optimized search for the lowest cutting forces and for a lower roughness value,
aiming at the surface finish. In tests with no lubrication, it can be perceived that the machining forces
(Fc, Ff, Fp) are not statistically influenced by the independent variables. Only torque was influenced
by the parameters f and ap in the confidence interval studied. In the tests with lubrication, both with
oil and graphite, it is apparent that machining forces and torque are significantly influenced by the
parameters ap and f. The Sq roughness was influenced by the interaction between ap and f in the oil
assay, while in the graphite assay, only the f parameter showed significant influence. Lower cutting
forces and lower feed rates provided lower roughness values. The paper took into account surface
finishing cutting conditions. In the lowest feed rate and depth cut, it can be perceived that statistically,
for the confidence interval adopted, that the forces had lower statistical influences than variables ap

and f. It has been observed that variables ap and f define the cutting geometry, ergo being responsible
for the roughness. The Ssk values showed values close to zero in most tests, indicating a symmetry
between peaks and valleys. Negative values, however, indicate a trend of valley predominance and a
concentration of material near the surface. All Sku parameters measured demonstrated positive values,
showing that the tests presented centralized acute peaks. With sharp peaks, there is the possibility
of premature wear and tear in contact with another surface. The statistical comparison between the
experimental design adopted and the artificial neural networks provided similar responses.
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Nomenclature

ANN Artificial Neural Networks
ANOVA Analysis of variance
ap Depth of cut (mm)
BPNN Backpropagation neural network
CVD Chemical vapor deposition
CNC Computer numeric controlled
DOE Design of experiments
f Feed rate (mm/rev)
Fc Cutting force (N)
Ff Feed force (N)
Fp Penetration force (N)
GA Genetic algorithm
MQL Minimum quantity lubrication
Mz Torque (Nm)
MLP Multi Layer Perceptron
Sku Kurtosis of height distribution (dimensionless)
SOS Sum of squares error function (dimensionless)
Ssk Skewness of height distribution (dimensionless)
Sq Root mean square height of the surface (µm)
vc Cutting speed (m/min)
Vb Flank wear (mm)
2(**) two levels
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