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COMMENTARY

Calcium Channels Are Models of Self-Control

Kathleen Dunlap

Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111

When Ca2+ ions fl ow through the pore of an individual 

voltage-gated Ca2+ channel, they act back on the channel 

they’ve passed through and alter subsequent Ca2+ fl ow. 

Such local, almost instantaneous regulation involves both 

positive and negative feedback mechanisms: Ca2+-depen-

dent facilitation (CDF) and Ca2+-dependent inactivation 

(CDI), respectively. Indeed, some types of Ca2+ channel 

are capable of undergoing both CDF and CDI, with each 

form of modulation following a different time course 

and having a different dependency on the rate, extent, 

and spatial localization of Ca2+ entry. These channels are 

equipped with a special Ca2+-sensitive toolkit, which they 

use to exquisitely manipulate their own Ca2+ infl ux, and 

thereby adjust the many effector responses that lie down-

stream of the Ca2+ entry. Although such self-regulation 

has been recognized at the cellular level for decades 

(Brehm and Eckert, 1978; Marban and Tsien, 1982), 

recent work has begun to illuminate the underlying 

molecular mechanisms and their inherent complexity. 

Chaudhuri et al. (see p. 385 of this issue) have added 

several essential links to this chain of discovery.

CDF and CDI are present in most, but not all, members 

of the high voltage–activated Cav1 and Cav2 channels, but 

are entirely absent in the low voltage–activated Cav3 chan-

nels. Curiously, despite their diametrically opposite effects 

on channel gating and consequent Ca2+ infl ux, both CDF 

and CDI are mediated by calmodulin (CaM). Site-directed 

mutagenesis of recombinant Cav1 and Cav2 channels 

demonstrated that CaM interacts with a canonical “IQ” 

domain (a highly conserved region in the cytoplasmic 

C-terminal tail of all Cav1 and Cav2 pore-forming sub-

units). Removal of the IQ domain and mutations in the 

IQ domain that prevent CaM binding eliminate both CDF 

and CDI (Zühlke and Reuter, 1998; Qin et al., 1999; 

Zühlke et al., 1999). The high selectivity of CaM for Ca2+ 

over Ba2+ (Chao et al., 1984) explains the long-recognized 

inability of Ba2+ to evoke CDF and CDI. Although at fi rst 

glance this might seem like a limited toolkit, CaM oper-

ates a bit like a fully loaded Swiss Army knife (Fig. 1).

How Can CaM Produce Two Opposing Actions 
on the Same Channel?
This dumbbell-shaped molecule coordinates two cal-

cium ions (via a pair of EF hands) in both its N- and C-

terminal lobes (Babu et al., 1988; see Fig. 2). In previous 

work, the Yue lab introduced selective mutations into 

CaM to obliterate Ca2+ binding by the N lobe (CaM12), 

the C lobe (CaM34), or both (CaM1234), and these re-

combinant probes have identifi ed key features of CaM-

Cav channel signaling. Overexpressed CaM1234 acts in a 

dominant-negative fashion to eliminate both CDF and 

CDI in Cav2.1 channels, effectively competing with 

endogenous wild-type CaM (DeMaria et al., 2001). This 

result argues (a) that CaM can bind directly to the chan-

nel even in its Ca2+-free form and (b) that Ca2+ binding 

to CaM is essential for both CDF and CDI. In fact, the 

Yue lab has further demonstrated that preventing 

N lobe Ca2+ binding (with CaM12) selectively eliminates 

CDI in Cav2.1 channels, whereas preventing C lobe Ca2+ 

binding (with CaM34) selectively eliminates CDF 

(DeMaria et al., 2001).

CDF and CDI operate in distinctly different time do-

mains as well. During a train of action potentials, for ex-

ample, CDF develops over the fi rst few milliseconds of 

train initiation, while CDI requires many tens or hun-

dreds of milliseconds (which is nicely illustrated in Fig. 

1 A of Chaudhuri et al., 2007). To explain this kinetic 

difference, investigators have speculated that CDF me-

diated by the C lobe may be most effectively activated by 

rapid spikes of calcium (such as those that occur locally 

at the inner mouth of an open calcium channel), 

whereas CDI mediated by the N lobe may result from 

more slowly developing Ca2+ elevations (such as those 

produced globally through contributions from many 

channels opening in concert) (DeMaria et al., 2001). In 

other words, CaM relies on spatiotemporal aspects of 

the Ca2+ signal in choosing which knife blade (or set of 

blades) to use on the channel. Support for such specu-

lation has been indirect, based primarily on two experi-

ments that have analyzed macroscopic currents through 

Cav2.1. First, Ca2+ chelators, capable of buffering Ca2+ 

globally in the cytoplasm but not locally near the chan-

nel’s mouth, eliminate CDI without altering the devel-

opment of CDF in Cav2.1 (Liang et al., 2003). Second, 

CDI (but not CDF) depends upon the amplitude of the 

macroscopic current, which affects global more than 

local Ca2+ (Soong et al., 2002).
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Direct Test of the Local–Global Hypothesis
In the current article, Chaudhuri et al. provide a more 

direct test of the local–global hypothesis for CaM sig-

naling by studying CDF and CDI at the level of single 

Cav2.1 channels in cell-attached patches. Because Ca2+ 

ions fl owing through a single open channel will change 

the Ca2+ concentration in the immediate vicinity of 

the channel pore without signifi cantly affecting the 

global Ca2+ concentration in the cytoplasm at large, 

Chaudhuri et al. reasoned that a single active Cav2.1 

channel should undergo CDF but not CDI. Channel 

activity was recorded using 100 mM Ca2+ (or 90 mM Ba2+) 

as charge carrier and depolarizing test pulses of suffi -

cient amplitude (20 mV) and duration (250 ms) for both 

CDF (rapid) and CDI (slow) to be observed, if present. 

Immediately following the onset of depolarization, 

Chaudhuri et al. found that the single channel open 

probabilities (po) were comparable in Ca2+ and Ba2+. 

Over the ensuing 50 ms, however, po in Ca2+ rose mono-

tonically to a new level and stayed there throughout the 

remainder of the pulse (indicating CDF had occurred), 

while Ba2+ currents remained constant at the initial po 

for the entire length of the depolarization (consistent 

with the observation that CDF, and CaM, are not acti-

vated by Ba2+). In contrast, CDI is all but absent from 

the single channel records; at the end of the 250-ms-

long test pulse, a period over which macroscopic Cav2.1 

currents decline as much as 30% (Lee et al., 2000; 

DeMaria et al., 2001), the single channel po decreased no 

more than �5% in Ca2+. These data uphold the authors’ 

prediction that CDF, but not CDI, would be manifest at 

the single channel level.

Additional experiments performed by Chaudhuri 

et al. (2007) further strengthen the linkage between 

CDF measured at the single channel and macroscopic 

levels. First, when a conditioning depolarization was de-

livered immediately before the test pulse, the channel 

opened directly to the higher probability facilitated 

state, mirroring previous results on macroscopic cur-

rents (Lee et al., 2000; DeMaria et al., 2001). Second, 

a splice variant of Cav2.1 that was shown previously to be 

incapable of undergoing CaM-induced CDF, measured 

macroscopically (Chaudhuri et al., 2004), also lacked 

CDF measured on single channels. The new publica-

tion from the Yue lab thus provides strong support for 

the “local calcium preference” of C lobe–induced CDF 

and the “global Ca2+ preference” of N lobe–induced 

CDI in Cav2.1 channels.

What Is the Mechanistic Basis 
for the Local/Global Preference?
CaM is a small molecule; in its most extended form, the 

N and C lobes are separated by no more than �65 Å 

(Babu et al., 1988). By contrast, the rapid Ca2+ tran-

sients that activate local C lobe–mediated responses of 

CaM extend over at least tens of nanometers (Naraghi 

and Neher, 1997), making it unlikely (based solely on a 

spatial argument) that the two ends of CaM are sur-

rounded by different concentrations of Ca2+. Thus, the 

apparent local/global preference of CaM’s lobes must 

result from the differential kinetics with which the two 

lobes of CaM bind Ca2+ under physiological conditions 

(Pitt et al., 2001; Tadross, M., H. Liang, and D.T. Yue. 

2005. Biophys. Soc. Abstr. 439). That is, the local C lobe 

Ca2+ sensor may respond better to the rapid, local Ca2+ 

signal because it binds Ca2+ more quickly and/or loses 

it more slowly than does the N lobe, perhaps involving 

differential allosteric effects of the channel on the two 

lobes of CaM.

Proving that differences in the kinetics of Ca2+ bind-

ing to the two lobes of CaM actually underlie their 

local/global preferences is a formidable challenge, as 

methods have yet to be developed that will allow quan-

tifi cation of Ca2+ binding kinetics in the native cellular 

environment. As a fi rst step, however, Hamilton and 

colleagues have edged closer to the in vivo situation 

by using stopped-fl ow fl uorescence methods to study 

the interaction dynamics between Ca2+, CaM, and Cav 

channel IQ peptides in vitro (Black et al., 2005). They 

fi nd that IQ peptides differentially alter the rates of 

Ca2+ binding to (and dissociation from) the N and 

Figure 1. Calcium/calmodulin-mediated regulation of Cav2.1 
calcium channel. Calmodulin (Swiss Army knife) is shown inter-
acting with the IQ domain in the carboxy-terminal tail of a Cav2.1, 
voltage-gated calcium channel (light green). When calmodulin 
binds calcium ions (yellow circles), its two functional lobes differ-
entially activate a rapid mechanism (red) that facilitates current 
fl ow and a slower mechanism (blue) that inhibits current fl ow by 
changing the probability of channel opening. With apologies to 
Reuben Garrett L. Goldberg.
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C lobes of CaM. On average, the channel peptides slow 

Ca2+ dissociation from the C lobe more than from the 

N lobe, while speeding Ca2+ association to the N lobe 

more than to the C lobe. Furthermore, some Cav IQ 

domain peptides are more effective than others at reg-

ulating Ca2+ binding to CaM. Although it is too early 

to quantitatively extrapolate the in vitro results of the 

Hamilton lab to the native channel (in which multiple 

regions outside of the IQ domain are also known to al-

ter CaM’s effects on the channel), it is clear that varia-

tion in the two-way conversation between CaM and Cav 

channels offers abundant opportunities for fi ne tuning 

Ca2+ infl ux.

What Is the Biophysical Mechanism Underlying CDF?
In addition to providing direct support for the differen-

tial detection of Ca2+ transients by the two lobes of CaM, 

Chaudhuri et al. also used their single channel ap-

proach to discriminate between two separate mecha-

nisms that could, in theory, give rise to the CDF detected 

macroscopically. They reason that facilitation might re-

sult from a Ca2+-CaM–mediated transition to a unique 

gating state with a po higher than that of the normal 

open state (the “enhanced opening model”). Alterna-

tively, facilitation might encourage an otherwise slug-

gish channel to open more quickly, speeding the 

transition to the normal open state (the “accelerated 

activation model”). Chaudhuri et al. clearly summarize 

how these two models predict very different outcomes 

of experiments to quantify the latency to fi rst channel 

opening, conditional open probability, and voltage de-

pendence of po. Experiments on both single channel 

and macroscopic currents explore each of these in turn 

and lead the reader to the unequivocal conclusion that 

a unique open state (with a po signifi cantly higher than 

that of the normal open state) is responsible for CDF in 

Cav2.1 channels.

Variable Actions of CaM on Cav1 and Cav2 Channels
Previous work has demonstrated that Cav1 and Cav2 

channels are regulated unequally by CaM (Liang et al., 

2003); in fact, given the high level of conservation of IQ 

domains in Cav channels, there is an amazing variation 

in CaM action (Fig. 2). CDF appears to be the more 

variable of the two Ca2+-dependent regulatory mecha-

nisms. The C lobe of CaM promotes CDF in Cav2.1, for 

example, but not in Cav2.2 and Cav2.3, the two other 

members of the Cav2 family; in fact, the C lobe mutant 

CaM34 appears functionally silent on Cav2.2 and Cav2.3 

(Liang et al., 2003). Even more surprising, alternative 

splicing of Cav2.1 in regions outside the IQ domain is 

capable of abrogating CDF (Chaudhuri et al., 2004), 

leading to the conclusion that although the IQ domain 

is necessary for CDF, it is not suffi cient. Studies on 

Cav1.2 channels have further underscored the range of 

variation; CDF is absent from wild-type Cav1.2 channels 

but emerges following mutations in single hydrophobic 

residues in the IQ domain (Zühlke et al., 1999; Van 

Petegem et al., 2005).

Unlike CDF, CDI is found in all Cav1 and Cav2 chan-

nels (Budde et al., 2002; Liang et al., 2003), but the lobe 

of CaM responsible for CDI varies. For example, the C 

lobe of CaM mediates CDI in Cav1.2, not CDF as it does 

in Cav2.1, described above (Peterson et al., 1999). Inter-

estingly, whether the C lobe is mediating CDF or CDI, 

its effects are refractory to cytoplasmic Ca2+ buffers 

(Soong et al., 2002; Liang et al., 2003), indicating that 

the local Ca2+-sensing properties of the C lobe are con-

served across the Cav1/Cav2 family. Similarly, in all situ-

ations where the N lobe is active (e.g., across all Cav2 

family members, where it mediates CDI; Fig. 2) its 

effects are reduced or eliminated by cytoplasmic Ca2+ 

chelators (Zühlke et al., 1999; Liang et al., 2003), un-

derscoring the conserved global Ca2+-sensing proper-

ties of the N lobe.

What these examples illustrate is that the mechanistic 

underpinnings of CDF and CDI are complex and chan-

nel specifi c, with seemingly subtle structural differences 

having dramatic biochemical and biophysical conse-

quences. There is still much to learn from time resolved 

measurements of channel gating (such as employed in 

Chaudhuri et al., 2007) and Ca2+-CaM-channel bind-

ing (Black et al., 2005) applied to engineered channels 

carrying unique subsets of the known domains impor-

tant for CaM’s action on Cav channels. Such functional 

Figure 2. Lobe specifi city of calmodulin. Summary of the effects 
of the N and C lobes of calmodulin on the voltage-gated calcium 
channel types noted in the leftmost column. CDI (calcium-depen-
dent inactivation); CDF (calcium-dependent facilitation); - - - (no 
effect). Crystal structure of chicken calmodulin complexed with 
four calcium ions (yellow spheres) shown at top (from Rupp 
et al., 1996; Protein Data Bank entry 1UP5). Adapted from Liang 
et al., 2003.
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 studies will provide the necessary framework for build-

ing models that can then be validated by crystallo-

graphic snapshots of the interacting pairs.

The fi rst structural pictures of Ca2+-CaM in complex 

with the Cav1.2 IQ domain have recently been obtained 

(Fallon et al., 2005; Van Petegem et al., 2005). This work 

demonstrates that several hydrophobic residues in the 

IQ domain are involved in the Ca2+-dependent inter-

action of CaM with Cav1.2. The Ca2+-bound C lobe asso-

ciates with the IQ domain more tightly than does the N 

lobe and provides the primary means of anchoring CaM 

to the channel (Van Petegem et al., 2005). The N lobe, 

by contrast, appears free to assume different conforma-

tions, two of which have been captured thus far. Al-

though, as mentioned above, the N lobe appears to lack 

functional consequences on wild-type Cav1.2, the Minor 

lab demonstrated that mutating one aromatic C lobe 

anchor point (I1624) in the IQ domain of the full-length 

Cav1.2 channel allowed the normally silent N lobe 

to evoke CDF (Van Petegem et al., 2005), confi rming 

earlier mutagenesis experiments highlighting the abil-

ity of this residue to normally suppress CDF in wild-type 

Cav1.2 channels (Zühlke et al., 1999).

These structural studies provide a robust predictive 

framework for evaluating differences in CaM’s lobe 

specifi city for Cav1 and Cav2 channels. The dominant 

interaction demonstrated between the C lobe and the IQ 

domain is consistent with the dominance of the C lobe 

in Cav1.2 channel function. Given the predominance of 

N lobe–mediated CDI in Cav2 channels, however, one 

wonders whether the N lobe might bind more tightly 

than does the C lobe in these channels. Consistent with 

this idea, Van Petegem et al. (2005) note that several of 

the aromatic anchors for C lobe binding in Cav1.2 are 

not well conserved in the IQ domains of Cav2 channels. 

It will be interesting to determine whether mutations in 

aromatic residues predicted to be necessary for N lobe 

binding to Cav2.2 and/or Cav2.3 (which normally lack 

CDF) might breathe new life into the otherwise ineffec-

tive CaM C lobe to evoke CDF in these channels. Other 

key questions remain as well: (a) can mutating aromatic 

anchoring residues in Cav2.1 further strengthen CDF; 

(b) does splice variation in Cav1.2, Cav2.2, and Cav2.3 

contribute to heterogeneity in these channels’ responses 

to CaM as it does for Cav2.1 and Cav1.3 (Soong et al., 

2002; Chaudhuri et al., 2004; Shen et al., 2006); and (c) 

what are the additional endogenous mechanisms (see, 

for example, Yang et al. 2006) that naturally regulate 

CaM-Cav interactions in vivo?

Final Thoughts on the Potential Physiological Impact 
of Cav Channel Self-Regulation
Calcium’s job description as a cellular regulator is formi-

dable: to initiate synaptic vesicle fusion, transcriptional 

activation, muscle contraction, and membrane permea-

bility changes. Each of these effector responses is optimally 

activated by a uniquely tailored Ca2+ signal. Furthermore, 

some types of Ca2+ signals are clearly out of bounds, as an 

overabundance of Ca2+ is toxic. Not surprisingly, there-

fore, mechanisms that regulate Ca2+ are assumed to be of 

great physiological consequence, although defi nitive tests 

of this assumption have only begun to emerge.

CDF and CDI offer two opposing, activity-dependent 

means of altering Ca2+ infl ux and the many effector re-

sponses it triggers. Several aspects of this dual regulatory 

system are intriguing. CDF is one of nature’s rare positive 

feedback mechanisms. The enhanced opening mecha-

nism proposed by Chaudhuri et al. predicts that both the 

amplitude and the duration of Ca2+ infl ux will increase 

during CDF. This prediction has been confi rmed in ex-

periments that directly measure Ca2+ infl ux during ac-

tion potential trains. The suggestion is that CDF provides 

an effective means of bringing about use-dependent 

enhancement of cellular responses that are mediated by 

Ca2+, particularly those effector responses (e.g., exocytosis 

at synapses mediated by Cav2.1 and Cav2.2) that vary as a 

nonlinear function of Ca2+ infl ux (Cuttle et al., 1998).

When left unchecked, however, CDF is a potentially 

dangerous form of regulation, given the toxic nature of 

sustained elevations in cytoplasmic Ca2+ concentration. 

Might this explain why CDF appears to be absent from 

most Cav channel types in vivo (Liang et al., 2003)? 

Given the sparse expression of CDF amongst the Cav 

channels, it is also interesting to speculate that the pres-

ence of CDF might signal a unique functional role for 

those rare variants capable of experiencing it. The haz-

ards of runaway CDF may also provide a rationale for 

CDI as a coexisting countermeasure to terminate Ca2+ 

infl ux. Conveniently, CDI develops with some delay rel-

ative to CDF, which would allow short-term physiologi-

cal potentiation of Ca2+ infl ux, while avoiding long-term 

pathophysiological consequences.

Unlike CDF, CDI is ubiquitous amongst the Cav1 and 

Cav2 channels (Liang et al., 2003) and, as such, clearly 

also has functions outside the context of CDF (Budde 

et al., 2002). In cardiac myocytes, for example, C lobe–

mediated CDI of Cav1.2 channels appears to be an essen-

tial regulator of action potential duration (Alseikhan 

et al., 2002); in nerve terminals, N lobe–mediated CDI 

appears to underlie use-dependent short-term plasticity 

of synaptic transmitter release via Cav2.1 and Cav2.2 

(Forsythe et al., 1998; Xu and Wu, 2005). Such stud-

ies, in combination with the impressive contributions of 

Chaudhuri et al. in this issue, move us inexorably closer 

to the era of CaM-Cav channel enlightenment in which 

we will understand not only how many blades CaM’s 

knife contains but how each is shaped and, thereby, 

carves out a unique physio logical niche.
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